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Abstract  Original Research Article 
 

This article presents a novel continuous numerical method designed for the numerical integration of general third-order 

initial value problems (IVPs) of ordinary differential equations (ODEs). A combination of power series and exponential 

function was formulated for the purpose of collocation and interpolation at nodal and off-nodal points to generate system 

of linear equations necessary for the method. The resulting hybrid linear multistep method was implemented using block 
mode approach. Consistency, stability, and convergence of the method were verified using established criteria. The 

developed method was applied directly to solve linear and nonlinear third order ODEs without reducing them to systems 

of first-order equations. Computational results demonstrated better accuracy when compared with existing numerical 

methods in the literature. 
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1. INTRODUCTION 
High-order linear and nonlinear initial value 

problems (IVPs) frequently arise in engineering and 

scientific applications, particularly in fields such as 

Biological Sciences and Control Theory, where their 
solutions are critically important. Conventionally, these 

high-order IVPs are often addressed by the reduction 

method (see Lambert [1973] and Fatula [1988]), which 

transforms the high-order equation into a system of first-

order ordinary differential equations (ODEs). The 
reduction approach has several limitations, including 

unnecessary computational burden, excessive computer 

subroutines, and high computational costs (see 

Mehrkanoon [2011], Kayode [2011], Kayode and 
Adeyeye [2013], Awoyemi et al [2014], Kayode and 

Obarhua [2015]). 

 
This paper discusses the development of approximate solution of general third-order ordinary differential equations 

of the form: 
𝑦′′′ = 𝑓(𝑥, 𝑦, 𝑦′ , 𝑦′′), 𝑦(𝑥0) = 𝜉0, 𝑦

′(𝑥0) = 𝜉1 , 𝑦
′′(𝑥0) = 𝜉2. (1) 

 

Where 𝑥, 𝑦 ∈ ℝ𝑛 and 𝑓 ∈ ℂ′[𝑎, 𝑏]. 
 

Many authors has highlighted the advantages of 

direct methods, in solving higher-order IVPs that avoid 

the reduction process, with improved computational 
efficiency and accuracy. In this regard, several 

continuous collocation and interpolation techniques have 

been extensively studied, For example, Kayode [2011] 

investigated a three-step one point method based on 
collocation at selected both one off-grid and grid points 

to approximate second order ordinary differential 

equations but with low order of accuracy. Kayode and 

Adeyeye [2013], however, propagated a two-step two-

point hybrid method for general second order differential 

equations with application of Chebyshev series as an 

approximate solution. The computational results showed 
that the method is better in accuracy than some existing 

methods. Areo and Adeniyi [2013] investigated a self-

starting linear multistep method for direct solution of 

IVPs of second order ODEs. Kayode and Obarhua 
[2015] constructed a 3-step y-function Hybrid Methods 

for Direct Numerical Integration of second Order IVPs 

in ODEs. In all these methods, third order ordinary 
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differential equations cannot be solved unless reduced to 
second order ODEs. 

 

In this development, several direct methods 

have been proposed for solving (1) in literature. Allog- 
many and Ismail [2020] examined an Implicit Three-

Point Block Numerical Algorithm for Solving Third 

Order Initial Value Problem Directly with Applications. 

Adeyefa and Olanegan [2022] proposed an Accurate 
Four-Step Hybrid Block Method for solving Higher-

Order Initial Value Problems. Duromola [2022] 

developed a Single-Step Block Method of P-Stable for 

solving Third-Order Differential Equations (IVPs) 
having Ninth Order of Accuracy. Other works in 

literature on this topic include Ramos and Rufai [2018], 

Abolarin et al., [2020]. In Obarhua [2023] a ninth-order 

three-step, four-point optimized hybrid block method 
was developed all with the intention to solving same 

problem. Motivated by the ongoing quest for higher 

accuracy and efficiency in numerical integration, this 
study presents a three-step with six-point Hybrid Block 

Method. This novel method is problem-independent, 

providing high degree of freedom in the choice of 

interpolation points based on the order of the differential 
equation with greater adaptability in application 

compared to other problem-dependent block methods. 

Specifically, the research introduces an order-ten block 

integrator with six off-step points, designed for third-
order ODEs, a significant advancement in the direct 

numerical solution of high-order ODEs. 

 

2. Mathematical Formulation 

In this work, the approximation of the exact 

solution y(x) of the third-order initial value problem of 

ordinary differential Equation (1) is considered by a 

combination of power series polynomial and exponential 
functions of the type 

 

𝑝(𝑥) = ∑  

𝑛−1

𝑗=0

 𝑎𝑗𝑥
𝑗 + 𝑎𝑐+𝑖−1 ∑  

𝑛

𝑗=0

 
𝛼𝑗𝑥

𝑗

𝑗!
(2) 

 

The third derivatives of (2) is obtained as 

𝑝′′′(𝑥) = ∑  

𝑛−4

𝑗=3

 𝑗(𝑗 − 1)(𝑗 − 2)𝑎𝑗𝑥
𝑗−3 + 𝑎𝑗−3 ∑ 

𝑛

𝑗=3

 
𝛼𝑗𝑥

𝑗−3

(𝑗 − 3)!
(3) 

 

Equations (1) and (3) yields a differential system: 

𝑓(𝑥, 𝑦, 𝑦′ , 𝑦′′) = ∑  

𝑛−4

𝑗=3

 𝑗(𝑗 − 1)(𝑗 − 2)𝑎𝑗𝑥
𝑗−3 + 𝑎𝑗−3 ∑ 

𝑛

𝑗=3

 
𝛼𝑗𝑥

𝑗−3

(𝑗 − 3)!
(4) 

 

where 𝑥 is continuous and differentiable, parameters 𝑎𝑗 's in (2), (3), and (4) are linear terms to be determined. To 

get the system of algebraic equations in equations (5) and (6), = 𝑥𝑛+𝑗 , 𝑗 = 0, 𝜏1 , 𝜏2 , 𝜏3 , 1,2, 𝜓1 , 𝜓2, and 𝜓3 was applied to 

equation (2) and 𝑥 = 𝑥𝑛+𝑗 , 𝑗 = 0(1)3 applied to equation (4). 

 

𝑦𝑛+𝑗  = ∑  

9

𝑗=3

  𝑎𝑗𝑥
𝑗−1 + ∑ 

10

𝑗=3

 
𝛼𝑗𝑥

𝑗−3

(𝑗 − 3)!
, 𝑗 = 0, 𝜏1 , 𝜏2 , 𝜏3 , 1,2, 𝜓1, 𝜓2, 𝜓3 (5)

𝑓𝑛+𝑗  = ∑  

6

𝑗=3

 𝑗(𝑗 − 1)(𝑗 − 2)𝑎𝑗𝑥
𝑗−3 + 𝑎𝑗−3 ∑ 

10

𝑗=3

 
𝛼𝑗𝑥

𝑗−3

(𝑗 − 3)!
𝑗 = 0(1)3 (6)

 

 

Using the relation 𝑥
𝑛+

𝑗

4

= 𝑥𝑛 +
𝑗ℎ

4
, (5) and (6) were written as matrix form and solved using CAS in Wolfram 

Mathematical to obtain the parameters 𝑎𝑗 's for j = 0,1,2,⋯ ,12 which were then substituted back into (2) to yields the 

following continuous scheme after some simplifications: 

 

𝑦(𝑥) = ∑  

2

𝑗=0

  𝛼𝑗𝑦𝑛+𝑗 + ∑ 

<1

𝑖>0

  𝛼𝜏𝑖
𝑦𝑛+𝜏𝑖

+ ∑ 

<3

𝑣>2

 𝛼𝜓𝑣
𝑦𝑛+𝜓𝑣

+ ℎ3 ∑ 

3

𝑗=0

 𝛽𝑗𝑓𝑛+𝑗 (7) 

 

where 𝑥 = 𝑥𝑛+𝑡 = 𝑥𝑛 + 𝑡ℎ, 𝛼𝑗
′𝑠 and 𝛽𝑗

′𝑠 are the coefficients that defined the scheme. Evaluating (7) at 𝑡 = 3 yields the 

main formula of the developed Three-Step Hybrid Block method. This gives 
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𝑦𝑛+3 +
12298770837

433189561
𝑦𝑛+2 +

12406261536

433189561
𝑦

𝑛+
5
2
+

3309410304

433189561
𝑦

𝑛+
1
4

 +
20091557888

433189561
𝑦

𝑛+
3
4
−

12298770837

433189561
𝑦𝑛+1 −

12406261536

433189561
𝑦

𝑛+
1
2
−

20091557888

433189561
𝑦

𝑛+
9
4

                                     (8) 

 

2.1 Block Formulation of the Derived Formula 

In keeping with [7], the normalized form of the general block method is given by 
 

𝐺𝑌𝑖 = 𝐸𝑦𝑛 + ℎ𝜇−𝜌𝑑𝑓(𝑦𝑛) + ℎ𝜇−𝜌𝐻𝐹(𝑦𝑛) (9) 
 
To derive the block formula described in (9), we combine the formulas in (8) with the first, and second derivative 

formulas obtained from (7), and write them in block form using the definition of the implicit block method in (9) 

 

ℎ𝑎 ∑ 

𝑞

𝑗=0

 𝜑𝑚,𝑗𝑦𝑛+𝑗
𝜙

= ℎ𝜙 ∑ 

𝑞

𝑟=0

 ∇𝑚,𝑗𝑦𝑛
𝜙

+ ℎ𝑝−𝜙 (∑ 

𝑞

𝑗=0

 Δ𝑚,𝑗𝑓𝑛 + ∑ 

𝑞

𝑟=0

 𝜂𝑚,𝑗𝑓𝑛+𝑗) (10) 

 

where 𝜌 represent the power of the derivative of the continuous method and 𝑝 represent the order of the problem 

to be solved. Equation (10) was solved for 𝑗 = 0 (
1

4
) 3 in order to obtain the following block formulas that constitute the 

derived Three-Step Hybrid Block Method. 

 

𝑦
𝑛+

1
4
=𝑦𝑛 +

1

4
ℎ𝑦𝑛

′ +
1

32
ℎ2𝑦𝑛

′′ +
ℎ3

18884159078400
(27324004827𝑑𝑓𝑛 + 44926673520𝑓

𝑛+
1
4
− 48487649276𝑓

𝑛+
1
2

 +40628682160𝑓
𝑛+

3
4
− 16678823337𝑓𝑛+1 + 8023499385𝑓𝑛+2 − 12626777328𝑓

𝑛+
9
4
+ 8495097468𝑓

𝑛+
5
2

(11) 

 

𝑦
𝑛+

1
2
 = 𝑦𝑛 +

1

2
ℎ𝑦𝑛

′ +
1

8
ℎ2𝑦𝑛

′′ +
ℎ3

73766246400
(544380697𝑓𝑛 + 1554906880𝑓

𝑛+
1
4
− 1198319100𝑓

𝑛+
1
2 

 +1015669248𝑓
𝑛+

3
4
− 416275827𝑓𝑛+1 + 199365507𝑓𝑛+2 − 313570048𝑓

𝑛+
9
4
+ 210868988𝑓

𝑛+
5
2

       (12) 

 

𝑦
𝑛+

3

4

=𝑦𝑛 +
1

4
3ℎ𝑦𝑛

′ +
9

32
ℎ2𝑦𝑛

′′ +
ℎ3

77712588800
(1392449289𝑓𝑛 + 4924186128𝑓

𝑛+
1

4

− 2503958292𝑓
𝑛+

1

2

 +2639875920𝑓
𝑛+

3

4

− 1083763395𝑓𝑛+1 + 522575955𝑓𝑛+2 − 822426000𝑓
𝑛+

9

4

+ 553319316𝑓
𝑛+

5

2

         (13) 

 

𝑦𝑛+1 =𝑦𝑛 + ℎ𝑦𝑛
′ +

1

2
ℎ2𝑦𝑛

′′ +
ℎ3

576298800
(19059894𝑓𝑛 + 74491008𝑓

𝑛+
1

4

− 24717880𝑓
𝑛+

1

2

+ 40870016𝑓
𝑛+

3

4
          (14) 

 

𝑦𝑛+2 =𝑦𝑛 + 2ℎ𝑦𝑛
′ + 2ℎ2𝑦𝑛

′′ +
ℎ3

36018675
(5150159𝑓𝑛 + 21707648𝑓

𝑛+
1

4

+ 2233968𝑓
𝑛+

1

2

+ 10158720𝑓
𝑛+

3

4

                (15) 

 

𝑦
𝑛+

9
4

=𝑦𝑛 +
9

4
ℎ𝑦𝑛

′ +
81

32
ℎ2𝑦𝑛

′′ +
ℎ3

77712588800
(14343221529𝑎𝑓𝑛 + 58964284368𝑏𝑓

𝑛+
1
4
+ 13713933420𝑓

𝑛+
1
2
(16)

 +19966540176𝑓
𝑛+

3
4
+ 32642582445𝑓𝑛+1 + 25358652099𝑓𝑛+2 − 30971088720ℎ𝑓

𝑛+
9
4

 

 

𝑦
𝑛+

5

2

=𝑦𝑛 +
5

2
ℎ𝑦𝑛

′ +
25

8
ℎ2𝑦𝑛

′′ +
ℎ3

2950649856
(684728625𝑓𝑛 + 2737344000𝑓

𝑛+
1

4

+ 984494500𝑓
𝑛+

1

2

 +553696000𝑓
𝑛+

3

4

+ 2111905125𝑓𝑛+1 + 1686460875𝑓𝑛+2 − 1902912000𝑓
𝑛+

9

4

+ 1123633500𝑓
𝑛+

5

2

      (17) 

 

𝑦
𝑛+

11
4

=𝑦𝑛 +
11

4
ℎ𝑦′ 𝑛 +

121

32
ℎ2𝑦𝑛′′ −

ℎ3

156067430400
(44552319427𝑓𝑛 + 169736963583𝑓𝑛+1 + 140184427185𝑓𝑛+2(18)

 +3259394061𝑓𝑛+3 + 83289779364𝑓
𝑛+

1
2
+ 89233205468𝑓

𝑛+
5
2
+ 173160863920𝑓

𝑛+
1
4
+ 11557019760𝑓

𝑛+
3
4

 

 

𝑦𝑛+3 =𝑦𝑛 + 3ℎ𝑦𝑛
′ +

9

2
ℎ2𝑦𝑛

′′ +
ℎ3

2371600
(817698𝑓𝑛 + 3093120𝑓

𝑛+
1
4
+ 1841400𝑓

𝑛+
1
2
− 198528𝑓

𝑛+
3
4
                (19) 
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𝑦
𝑛+

1
4

′ =𝑦𝑛
′ +

ℎ𝑦𝑛
′′

4
+

ℎ2

1180259942400
(16937905691𝑎𝑓𝑛 + 38008281600𝑏𝑓

𝑛+
1
4
− 37530351452𝑐𝑓

𝑛+
1
2
                (20)

 +31025613520𝑓
𝑛+

3
4
− 12663740133𝑓𝑛+1 − 9506522432𝑓

𝑛+
9
4
+ 6391847484𝑓

𝑛+
5
2

 

 

𝑦
𝑛+

1
2

′ =𝑦𝑛
′ +

ℎ𝑦𝑛
′′

2
+

ℎ2

9220780800
(303963961𝑓𝑛 − 241231749𝑓

𝑛+
1
4
+ 116562303𝑓𝑛+2 + 5428045𝑓𝑛+3

 −632649600𝑓
𝑛+

1
2
+ 123431264𝑓

𝑛+
5
2
+ 1119154480𝑓𝑛+1 + 582089552𝑓

𝑛+
3
4
− 183455536𝑓

𝑛+
9
4

            (21) 

 

𝑦
𝑛+

3
4

′ =𝑦𝑛
′ +

3

4
ℎ𝑦𝑛

′′ +
ℎ2

4857036800
(249574059𝑓𝑛 + 1051054992𝑓

𝑛+
1
4
− 262025676𝑓

𝑛+
1
2
+ 510456320𝑓

𝑛+
3
4
   (22)

 −200583405𝑓𝑛+1 − 151454160𝑓
𝑛+

9
4
+ 101899116𝑓

𝑛+
5
2
− 33596352𝑓

𝑛+
11
4

+ 4481281𝑓𝑛+3

 

 

𝑦𝑛+1
′ =𝑦𝑛

′ + ℎ𝑦𝑛
′′ +

ℎ2

288149400
(20118959𝑓𝑛 + 89638464𝑓

𝑛+
1

4

− 9493880𝑓
𝑛+

1

2

+ 56968384𝑓
𝑛+

3 

4
                            (23) 

 

𝑦𝑛+2
′ =𝑦𝑛

′ + 2ℎ𝑦𝑛
′′ +

ℎ2

36018675
(5564524𝑓𝑛 + 21561472𝑓

𝑛+
1
4
+ 13396944𝑓

𝑛+
1
2
− 415360𝑓

𝑛+
3
4
                            (24) 

 

𝑦
𝑛+

9
4

′ =𝑦𝑛
′ +

9

4
ℎ𝑦𝑛

′′ +
ℎ2

4857036800
(865279233𝑓𝑛 + 3157351488𝑓

𝑛+
1
4
+ 2638732140𝑓

𝑛+
1
2

 −917045712𝑓
𝑛+

3
4
+ 5006381985𝑓𝑛+1 + 3968707347𝑓𝑛+2 − 4211412480𝑓

𝑛+
9
4
+ 2411056692𝑓

𝑛+
5
2

   (25) 

 

𝑦
𝑛+

5
2

′ =𝑦𝑛
′ +

5

2
ℎ𝑦𝑛

′′ +
ℎ2

368831232
(74431525𝑓𝑛 + 258750000𝑓

𝑛+
1
4
+ 263516000𝑓

𝑛+
1
2
− 134926000𝑓

𝑛+
3
4 

 +492438375𝑓𝑛+1 + 421867875𝑓𝑛+2 − 404734000𝑓
𝑛+

9
4
+ 243619200𝑓

𝑛+
5
2
− 71090000𝑓

𝑛+
11
4

        (26) 

 

𝑦
𝑛+

11
4

′  = 𝑦𝑛
′ +

11

4
ℎ𝑦𝑛

′′ +
ℎ2

9754214400
(2199000881𝑓𝑛 + 7346374640𝑓

𝑛+
1
4
+ 8635086108𝑓

𝑛+
1
2

 −5289500480𝑓
𝑛+

3
4
+ 15988806537𝑓𝑛+1 − 12899775152𝑓

𝑛+
9
4
+ 8545717444𝑓

𝑛+
5
2
− 2272089600𝑓

𝑛+
11
4

(27) 

 

𝑦𝑛+3
′ =𝑦𝑛

′ + 3ℎ𝑦𝑛
′′ +

ℎ2

1185800
(295491𝑓𝑛 + 953280𝑓

𝑛+
1
4
+ 1255320𝑓

𝑛+
1
2
− 856768𝑓

𝑛+
3
4
+ 2307096𝑓𝑛+1           (28) 

 

𝑦
𝑛+

1
4

′′  = 𝑦𝑛
′′ +

ℎ

2438553600
(185791571𝑓𝑛 + 695236504𝑓1

4
+𝑛

− 553656388𝑓1
2
+𝑛

+ 447678040𝑓3
4
+𝑛                 

        (29) 

 

𝑦
𝑛+

1
2

′′ =𝑦𝑛
′′ +

ℎ

419126400
(30683051𝑓𝑛 + 161654560𝑓1

4+𝑛
− 11064856𝑓1

2+𝑛
+ 47535136𝑓3

4+𝑛                                          
 (30) 

 

𝑦
𝑛+

3
4

′′ =𝑦𝑛
′′ +

ℎ

331161600
(24534209𝑓𝑛 + 124341768𝑓1

4
+𝑛

+ 32949972𝑓1
2
+𝑛

+ 88230472𝑓3
4
+𝑛      

                          (31) 

 

𝑦𝑛+1
′′ =𝑦𝑛

′′ +
ℎ

26195400
(1922599𝑓𝑛 + 10009472𝑓1

4+𝑛
+ 1804000𝑓1

2+𝑛
+ 11302016𝑓3

4+𝑛
+ 1049037𝑓1+𝑛         (32) 

 

𝑦𝑛+2
′′ =𝑦𝑛

′′ +
ℎ

3274425
(310387𝑓𝑛 + 669824𝑓1

4+𝑛
+ 2256496𝑓1

2+𝑛
− 2341504𝑓3

4+𝑛
+ 4002900𝑓1+𝑛                      (33)

𝑦
𝑛+

9
4

′′ =𝑦𝑛
′′ +

ℎ

110387200
(10432107𝑓𝑛 + 22827096𝑓1

4+𝑛
+ 75289500𝑓1

2+𝑛
− 77703912𝑓3

4+𝑛
+ 134096391𝑓1+𝑛(34)

 

 

𝑦
𝑛+

5
2

′′ =𝑦𝑛
′′ +

ℎ

16765056
(1588195𝑓𝑛 + 3437600𝑓1

4
+𝑛

+ 11525800𝑓1
2
+𝑛

− 11941600𝑓3
4
+𝑛

+ 20459175𝑓1+𝑛        (35) 
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𝑦
𝑛+

11
4

′′ =𝑦𝑛
′′ +

ℎ

2438553600
(230031571𝑓𝑛 + 507428504𝑓1

4+𝑛
+ 1653703612𝑓1

2+𝑛
− 1702561960𝑓3

4+𝑛

 +2953570191𝑓1+𝑛 + 3220055025𝑓2+𝑛 − 2284389976𝑓9
4+𝑛

+ 2297471044𝑓5
2
+𝑛

− 217479064𝑓11
4 +𝑛

(36) 

 

𝑦𝑛+3
′′ = 𝑦𝑛

′′ +
ℎ

29400
(2821𝑓𝑛 + 5760𝑓1

4+𝑛
+ 21024𝑓1

2+𝑛
− 22144𝑓3

4+𝑛
+ 36639𝑓1+𝑛 + 36639𝑓2+𝑛

−22144𝑓9
4+𝑛

+ 21024𝑓5
2
+𝑛

+ 5760𝑓11
4 +𝑛

+ 2821𝑓3+𝑛) (37)
 

 

3. Analysis of the Properties of the Derived Method 
In this section, the analysis of the basic properties of the developed three-step Hybrid Block method is presented.s 

 

3.1 Order of the Method 

Assuming the linear operator ℒ associated with the 𝑘 − 𝑠𝑡𝑒𝑝 hybrid scheme is defined as 

ℒ{𝑦(𝑥): ℎ} = ∑  

𝑘

𝑗=0

  [𝛼𝑗𝑦𝑛+𝑗 − ℎ3 (𝛽𝑗𝑓(𝑥𝑛+𝑗))] (38) 

 

where 𝛼0 and 𝛽0 are not both zero and 𝑦(𝑥) ∈ 𝐶(𝑛)[𝑎, 𝑏]. Expanding 𝑦𝑛+𝑗 and 𝑓𝑛+𝑗 as Taylors series expansion gives 

𝑦𝑛+𝑗 = 𝑦(𝑥𝑛 + 𝑗ℎ) = 𝑦(𝑥𝑛) + 𝑗ℎ𝑦′(𝑥𝑛) +
(𝑗ℎ)2

2!
𝑦′′(𝑥𝑛) + ⋯+

(𝑗ℎ)𝑝+3

(𝑝 + 3)!
𝑦𝑝+3(𝑥𝑛) (39) 

 

𝑓𝑛+𝑗 = 𝑦(𝑖𝑖𝑖)(𝑥𝑛 + 𝑗ℎ) = 𝑦(𝑖𝑖𝑖)(𝑥𝑛) + 𝑗ℎ𝑦(𝑖𝑣)(𝑥𝑛) +
(𝑗ℎ)2

2!
𝑦(𝑣)(𝑥𝑛) +

(𝑗ℎ)3

3!
𝑦(𝑣𝑖)(𝑥𝑛) + ⋯+

(𝑗ℎ)𝑝

(𝑝)!
𝑦𝑝+3(𝑥𝑛)              (40) 

 
Substituting and collecting like terms gives 

ℒ{𝑦(𝑥), ℎ} = 𝐶0𝑦(𝑥) + 𝐶1ℎ𝑦′(𝑥𝑛) + 𝐶2ℎ
2𝑦′′(𝑥𝑛) + ⋯ 𝐶𝑝ℎ

𝑝𝑦𝑝(𝑥) (41) 
 

Therefore, applying the linear operator 𝐿(41) to determine the order and error constant of the main method 

𝑦𝑛+3 +
12298770837

433189561
𝑦𝑛+2 +

12406261536

433189561
𝑦

𝑛+
5
2
+

3309410304

433189561
𝑦

𝑛+
1
4

 +
20091557888

433189561
𝑦

𝑛+
3
4
−

12298770837

433189561
𝑦𝑛+1 −

12406261536

433189561
𝑦

𝑛+
1
2
−

20091557888

433189561
𝑦

𝑛+
9
4

        

 

where 𝐶𝑝 are constants. Since 𝐶0 = 𝐶1 = 𝐶2 = ⋯ = 𝐶𝑝+2 = 0, 𝐶𝑝+3 ≠ 0 is the error constant. 

Hence the method is of order 10 with error constant 𝑐𝑝+3 = −
2850317

642252800
 

 

Consistency of the Method 

The first and second characteristics polynomial (𝜌) and (𝜎) respectively of the main method are given as: 

𝜌(𝑟) = 𝑟3 − 𝑟0 −
3309410304

433189561
𝑟

1
4 +

12406261536

433189561
𝑟

1
2 −

20091557888

433189561
𝑟

3
4 +

12298770837

433189561
𝑟1 −

12298770837

433189561
𝑟2

+
20091557888

433189561
𝑟

9
4 

    

                     −
12406261536

433189561
𝑟

5

2 +
3309410304

433189561
𝑟

11

4 = 0                                                                                                                           

 

𝜎(𝑟) =
229905

247536892
𝑟0 +

44132445

247536892
𝑟1 +

44132445

247536892
𝑟2 +

229905

247536892
𝑟3                                                                     

 

It shows by appling the following conditions that the method developed in this article is consistent 

(i) The method is of order p = 10 > 1 

which is obvious condition (i) is satisfied 

(𝑖𝑖) ∑  

𝑘

𝑗=0

𝛼𝑗 = 0 
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 ∑ 𝛼𝑗 = −1 −
3309410304

433189561
+

12406261536

433189561
−

20091557888

433189561
+

12298770837

433189561
−

12298770837

433189561

 +
20091557888

433189561
−

12406261536

433189561
+

3309410304

433189561
+ 1 = 0

 

 

since 

𝛼0 = −1, 𝛼1 =
3309410304

433189561
, 𝛼2 = −

12406261536

433189561
, 𝛼3 =

20091557888

433189561
, 𝛼4 =

20091557888

433189561
, 

𝛼5 = −
12406261536

433189561
, 𝛼6 = −

3309410304

433189561
, 𝛼7 = −

12298770837

433189561
, 𝛼8 =

12298770837

433189561
 

𝛼9 = 1 condition (ii) is satisfied 

(iii) 𝜌(𝑟) = 𝜌′(𝑟) = 0 

𝜌(𝑟) = 𝑟3 − 1 −
3309410304

433189561
𝑟

1
4 +

12406261536

433189561
𝑟

1
2 −

20091557888

433189561
𝑟

3
4 +

12298770837

433189561
𝑟1 −

12298770837

433189561
𝑟2 

+
20091557888

433189561
𝑟

9
4 −

12406261536

433189561
𝑟

5
2 +

3309410304

433189561
𝑟

11
4 = 0 

and 
 

𝜌′(𝑟) =3𝑟2 −
827352576

433189561
𝑟

3
4 +

6203130768

433189561
𝑟

1
2 −

15068668416

433189561
𝑟

1
4 +

12298770837

433189561
−

24597541674

433189561
𝑟1 +

45206005248

433189561
𝑟

5
4 −

31015653840

433189561
𝑟

3
2 +

9100878336

433189561
𝑟

7
4 = 0

 

 

Also 

𝜌(1) = 1 − 1 −
3309410304

433189561
+

12406261536

433189561
−

20091557888

433189561
+

12298770837

433189561
−

12298770837

433189561
 

+
20091557888

433189561
−

12406261536

433189561
+

3309410304

433189561
= 0 

 

and 

𝜌′(1) =3 −
827352576

433189561
+

6203130768

433189561
−

15068668416

433189561
+

12298770837

433189561
−

24597541674

433189561
+

45206005248

433189561
−

31015653840

433189561
+

9100878336

433189561
= 0

 

 

 it follows that 𝜌(1) = 𝜌′(1) = 0 showing that the condition (iii) is satisfied as well 

𝜌′′′(𝑟) = 𝑛! 𝜎(𝑟) and for the principal root r = 1 

𝜌′′′(𝑟) =6 −
155128608

61884223
𝑟

11
4 +

4652348076

433189561
𝑟

5
2 −

4708958880

433189561
𝑟

9
4 +

14126876640

433189561
𝑟

3
4 −

23261740380

433189561
𝑟

1
2 +

1706414688

61884223
𝑟

1
4 =

133087050

61884223

3! 𝜎(𝑟) =3! (
229905

247536892
𝑟0 +

44132445

247536892
𝑟1 +

44132445

247536892
𝑟2 +

229905

247536892
𝑟3)

 

  

since 

𝜌′′′(1) =6 −
155128608

61884223
+

4652348076

433189561
−

4708958880

433189561
+

14126876640

433189561
−

23261740380

433189561
+

1706414688

61884223
=

133087050

61884223

 

  

and 

3! 𝜎(1) = 3! (
229905

247536892
+

44132445

247536892
+

44132445

247536892
+

229905

247536892
) = 3!

22181175

61884223
=

133087050

61884223
 

 

Therefore for the principal root  𝑟 = 1; it is observed that last condition above is satisfied, hence the method is consistent. 

condition (iv) is satisfied. 

 
Zero Stability of the Method 

Using (11)-(37) as ℎ → 0, we have 

det[𝛾𝐴(0) − 𝐴(0)] 
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= det

[
 
 
 
 
 
 
 
 
 
 
 
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1]

 
 
 
 
 
 
 
 
 
 
 

−

[
 
 
 
 
 
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1]

 
 
 
 
 

]
 
 
 
 
 
 
 
 
 
 
 
 

 = 𝛾9 − 𝛾8 = 0

 

By solving for 𝛾 we have 

𝛾8(𝛾 − 1) = 0 
 

Solving the above equation for 𝛾, 𝛾 = 1, 𝛾 = 0, 𝛾 = 0, 𝛾 = 0, 𝛾 = 0, 𝛾 = 0, 𝛾 = 0, 𝛾 = 0, 𝛾 = 0 

Hence, the method is zero-stable. 

 

3.2 Convergence 
For a numerical method to converge, it must be both consistent and zero-stable [10]. Therefore, since it has been 

obviously seen that the three-step hybrid block method is consistent and zero stable. Hence the method is convergent. 

 

Region of Absolute Stability of the Method 
The region of absolute stability of the method is examined via the procedure discussed in Lambert (1973). The 

stability matrix can be expressed as 

𝐽(𝑧) = 𝑧𝐻(𝐼 − 𝑧𝐺)−1𝑄 + 𝑅 (42) 
 

together with the Stability function 
𝑝(𝑛, 𝑧) = det(−𝐽(𝑧) + 𝑛𝐼) (43) 

 

for the Stability properties, the method (3.142) - (3.150) was formulated as a general linear method of the form, 

[
𝑌

− − −
𝑌𝑖+1

] = [
𝐺 𝑄

− − − − − − − −
𝐻 𝑅

] [
ℎ3𝑓(𝑢)
− − −
𝑌𝑖−1

] (44) 

 

where 𝑛 represents the roots of the first characteristics polynomial, and 

𝑌𝑖−1 = [
𝑦

𝑛+
1
4

𝑦𝑛
] , 𝑌𝑖+1 = [

𝑦
𝑛+

1
4

𝑦𝑛+3
] 
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𝐻 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 0 0 0 0 0 0 0 0

1301143087

899245670400

0 0 0 0 0 0 0 0
77768671

10538035200

0 0 0 0 0 0 0 0
18083757

100925400

0 0 0 0 0 0 0 0
50423

1524600

0 0 0 0 0 0 0 0
735737

5145525

0 0 0 0 0 0 0 0
2049031647

11101798400

0 0 0 0 0 0 0 0
32606125

140507136

0 0 0 0 0 0 0 0
6364617061

2229537200

0 0 0 0 0 0 0 0
58407

169400 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑅 = [
0 1
0 1

] , 𝑄 =

[
 
 
 
 
 
 
 
 
0 1
0 1
0 1
0 1
0 1
0 1
0 1
0 1
0 1]

 
 
 
 
 
 
 
 

, 𝑌 =

[
 
 
 
 
 
 
 
 
𝑦𝑛+1/4

𝑦𝑛+1/2

𝑦𝑛+3/4

𝑦𝑛+1

𝑦𝑛+2

𝑦𝑛+9/4

𝑦𝑛+5/2

𝑦𝑛+11/4

𝑦𝑛+3 ]
 
 
 
 
 
 
 
 

, 𝐼 = [
1 0
0 1

] ,𝑓(𝑦) =

[
 
 
 
 
 
 
 
 
 
𝑓𝑛+1/4

𝑓𝑛+1/2

𝑓𝑛+3/4

𝑓𝑛+1

𝑓𝑛+2

𝑓𝑛+9/4

𝑓𝑛+5/2

𝑓𝑛+11/4

𝑓𝑛+3 ]
 
 
 
 
 
 
 
 
 

 

 

Now, putting the values of the variables G, H, Q, R, J and I in equations (43) and (44), to obtain the Stability 

function. The stability polynomial (45) and its first derivatives (46) are then plotted in MATLAB (R2012a) environment. 

It should be noted that 𝐽 is 9 by 9 identity matrix. The region of absolute stability (RAS) of the method is shown in the 

Figure 1 below; 

 

𝑓(𝑧) = (𝛿 +
7493751𝑧2

54208000
+

322743𝑧

84700
− 1)𝛿8 (45)

𝑓 ′(𝑧) =
(7493751𝑧 + 103277760)𝛿8

27104000
(46)

 

 

The region of absolute stability of the method is P-stable, since the region consists of the complex plane outside 

the enclosed figure and its interval of periodicity lies between (0,0.52) which falls within the interval of periodicity for P-

stability. (0, ∞). 
 

 
Figure 1: Region of Absolute Stability of the new method. The figure shows the area where the method is stable 
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4 Numerical Experiments 
To test how well the proposed method works, the authors used three sample problems as numerical examples. 

They measured the accuracy of the method by calculating the absolute error it generated when applied to the sample 

problems. 

 
4.1 Problem 1 

The first sample problem considered in this work is 

𝑦′′′(𝑥) = 𝑥 − 4𝑦′(𝑥); 𝑦(0) = 0;𝑦′(0) = 0; 𝑦′′(0) = 1; ℎ = 0.1 

 

Exact Solution 𝑦(𝑥) =
3

16
(1 − cos (𝑥) +

𝑥2

8
) 

Source: Obarhua (2022) 

 

Table 1: Numerical Results for problem 𝟐, 𝒌 = 𝟑,𝒑 = 𝟏𝟎, 𝒉 = 𝟎. 𝟏 for problem 1 

𝒙 Exact Solution Computed Solution Error in 3-step 

0.10 0.0049875166547671941642130 0.00498751665476719433453626 1.70323E − 19 

0.20 0.0198010636244590469752760 0.01980106362445904816948220 1.19421E − 18 

0.30 0.0439995722044353192673220 0.04399957220443532468283120 5.41551E − 18 

0.40 0.0768674919974064835773590 0.07686749199740651444272070 3.08653E − 17 

0.50 0.1174433176497238029873240 0.11744331764972386434452000 6.13572E − 17 

0.60 0.1645579210356237041928050 0.16455792103562381289780000 1.08705E − 16 

0.70 0.2168811607062048240093600 0.21688116070620502252007000 1.98511E − 16 

0.80 0.2729749104314916361635820 0.27297491043149193735952200 3.01196E − 16 

0.90 0.3313503927549538228718760 0.33135039275495425500857300 4.32137E − 16 

1.00 0.3905275318525891975620440 0.39052753185258981085163100 6.13290E − 16 

 
Table 2: Comparison of the errors of the 3 -step with other existing method for problem 1. 

𝒙 3-step, 𝒑 = 𝟏𝟎, 𝒉 = 𝟎. 𝟏 Adeyefa and Olanegan (𝟐𝟎𝟐𝟐), 𝒑 = 𝟏𝟎,𝒉 = 𝟎. 𝟏 

0.10 1.70323E − 19 3.0000E − 10 

0.20 1.19421E − 18 2.1560E − 10 

0.30 5.41551E − 18 3.9810E − 10 

0.40 3.08653E − 17 7.2860E − 09 

0.50 6.13572E − 17 4.6470E − 09 

0.60 1.08705E − 16 9.0400E − 09 

0.70 1.98511E − 16 1.7320E − 08 

0.80 3.01196E − 16 2.6640E − 08 

0.90 4.32137E − 16 4.2960E − 08 

1.00 6.13290E − 16 6.2790E − 08 

 

 
Figure 2: Comparison of absolute errors of the proposed method on problem 1 as compared with 

Adeyefa and Olanegan (2022) 
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Problem 2: 

𝑦′′′ = −𝑒𝑥, 𝑦(0) = 1; 𝑦′(0) = −1; 𝑦′′(0) = 3;ℎ = 0.1 
Exact Solution 

𝑦(𝑥) = 2 + 2𝑥2 − 𝑒𝑥 
Source: Adoghe et al., (2016) 

 

Table 3: Numerical Results for 𝒌 = 𝟑,𝒑 = 𝟏𝟎,𝒉 = 𝟎. 𝟏 for problem 2 

𝒙 Exact Solution Computed Solution Error in 3-step 

0.10 0.91482908192435237518829 0.914829081924352375187823 4.67000E − 22 

0.20 0.85859724183983016607893 0.858597241839830166075687 3.24300E − 21 

0.30 0.83014119242399689601626 0.830141192423996896001787 1.44730E − 20 

0.40 0.82817530235872968217515 0.828175302358729682114330 6.08200E − 20 

0.50 0.85127872929987185315135 0.851278729299871853034126 1.17224E − 19 

0.60 0.89788119960949102512463 0.897881199609491024921742 2.02888E − 19 

0.70 0.96624729252952347837545 0.966247292529523478021593 3.53857E − 19 

0.80 1.05445907150753239542046 1.054459071507532394884220 5.36240E − 19 

0.90 1.16039688884305033619987 1.160396888843050335423870 7.76000E − 19 

1.00 1.28171817154095476463971 1.281718171540954763517960 1.12175E − 18 

 

Table 4: Comparison of errors in the 3-step with other methods for test problem 2. 

𝒙 3 -step, 𝒑 = 𝟏𝟎,𝒉 = 𝟎. 𝟏 Omole et al., (𝟐𝟎𝟐𝟒), 𝒑 = 𝟏𝟎, 𝒉 = 𝟎. 𝟏 

0.10 4.67000E − 22 8.1100E − 17 

0.20 3.24300E − 21 1.4010E − 16 

0.30 1.44730E − 20 2.0410E − 16 

0.40 6.08200E − 20 2.7010E − 16 

0.50 1.17224E − 19 3.4810E − 16 

0.60 2.02888E − 19 4.4310E − 16 

0.70 3.53857E − 19 5.3510E − 16 

0.80 5.36240E − 19 6.4410E − 16 

0.90 7.76000E − 19 7.6410E − 16 

1.00 1.12175E − 18 8.8410E − 16 

 

 
Figure 3: Comparison of absolute errors of the proposed method on problem 2 as compared with Omole (2024) 

 
Problem 3: 

𝑦′′′ = −𝑦, 𝑦(0) = 1; 𝑦′(0) = −1;𝑦′′(0) = 1; ℎ = 0.1 
Exact Solution 

𝑦(𝑥) = 𝑒−𝑥 
Source: Abolarin et al., (2020) 
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Table 5: Numerical Results for problem 𝟑, 𝒌 = 𝟑, 𝒑 = 𝟏𝟎, 𝒉 = 𝟎. 𝟏 

𝒙 Exact Solution Computed Solution Error in 3-step 

0.10 0.904837418035959573164249 0.904837418035959573163890 3.5900E − 22 

0.20 0.818730753077981858669936 0.818730753077981858667492 2.4440E − 21 

0.30 0.740818220681717866066874 0.740818220681717866056065 1.0809E − 20 

0.40 0.670320046035639300744433 0.670320046035639300705584 3.8849E − 20 

0.50 0.606530659712633423603800 0.606530659712633423531536 7.2264E − 20 

0.60 0.548811636094026432628459 0.548811636094026432507914 1.2055E − 19 

0.70 0.496585303791409514704800 0.496585303791409514511279 1.9352E − 19 

0.80 0.449328964117221591430102 0.449328964117221591149638 2.8046E − 19 

0.90 0.406569659740599111883454 0.406569659740599111495248 3.8821E − 19 

1.00 0.367879441171442321595524 0.367879441171442321071750 5.2377E − 19 

 

Table 6: Comparison of the errors in the 3 -step with other methods for problem 3 

𝒙 3-step, 𝒑 = 𝟏𝟎, 𝒉 = 𝟎. 𝟏 Abolarin et al., (𝟐𝟎𝟐𝟎), 𝒑 = 𝟏𝟓,𝒉 = 𝟎. 𝟏 

0.10 3.5900E − 22 3.450699E − 06 

0.20 2.4440E − 21 6.169050E − 05 

0.30 1.0809E − 20 1.532998E − 04 

0.40 3.8849E − 20 3.687668E − 04 

0.50 7.2264E − 20 7.117489E − 04 

0.60 1.2055E − 19 1.199891E − 03 

0.70 1.9352E − 19 1.845664E − 03 

0.80 2.8046E − 19 4.036620E − 03 

0.90 3.8821E − 19 3.638358E − 03 

1.00 5.2377E − 19 6.859964E − 03 

 

 
Figure 4: Comparison of absolute errors of the proposed method on problem 3 as compared with Abolarin (2020) 

 

5. CONCLUSION 
In this study, a three-step, P-stable, order ten 

hybrid block method that solve initial value problems of 
third order ordinary differential equations was 

developed. The method was zero stable and consistent 

satisfying basic requirements for convergence of Linear 

Multistep Methods (LMM). As shown by the region of 
absolute stability. The accuracy and the usability of 

developed method was tested by applying it to solve 

three numerical examples and was found to be efficient 

as it gives a minimal error, hence has higher accuracy for 
handling the direct solution of third-order initial value 

problem of ordinary differential equations. 
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