Scholars Journal of Physics, Mathematics and Statistics ISSN 2393-8056 (Print)

Sch. J. Phys. Math. Stat. 2015; 2(2B):191-195 ©Scholars Academic and Scientific Publishers (SAS Publishers) (An International Publisher for Academic and Scientific Resources) ISSN 2393-8064 (Online)

Invariant submanifolds of (ε , δ)-trans-Sasakian manifolds Somashekhara G¹, Shivaprasanna G.S²*, Maralabhavi Y.B. ³, Rudraswamy Y. J⁴. ¹Department of Mathematics, Acharya institute of technology, Bengaluru-560107,India. ²Department of Mathematics, Dr.Ambedkar Institute of technology, Bengaluru-560056, India. ³Department of Mathematics, Central College, Bangalore University, Bengaluru-560 001, India. ⁴Department of Computer science, Reva institute of management studies, Bengaluru-560024, India.

*Corresponding Author: Shivaprasanna G.S Email: shivaprasanna28@gmail.com

Abstract: The object of present paper is to find necessary and sufficient conditions for invariant submanifolds of (ε, δ) -trans-Sasakian manifolds to be totally geodesic.

Keywords: (ε, δ) Trans-Sasakian manifold, second fundamental form, invariant submanifold, totally geodesic, semi parallel, pseudo-parallel.

INTRODUCTION

Invariant submanifolds of a contact manifold have been a major area of research for long time since the concept was borrowed from complex geometry. It helps us to understand several important topics of applied mathematics; for example, in studying non-linear autonomous systems the idea of invariant submanifolds plays an important role [1]. A submanifold of a contact manifold is said to be totally geodesic if every geodesic in that submanifold is also geodesic in the ambient manifold. The concept of (E)-Sasakian manifolds was introduced by A.Bejancu and K.L.Duggal [2] and further investigation was taken up by Xufend and Xiaoli[3] and Rakesh kumar et al.[4]. De and Sarkar [5] introduced and studied conformally flat, Weyl semisymmetric, ϕ -recurrent (ε) -Kenmotsu manifolds. In [1], the authors obtained Riemannian curvature tensor of (E)-Sasakian manifolds and established relations among different curvatures. H.G.Nagraja et al.[6] have studied (ε, δ)-trans-Sasakian structures which generalizes both (ε)-Sasakian manifolds and (E)-Kenmotsu manifolds.

PRELIMINARIES

Let (M, g) be an almost contact metric manifold of dimension (2n+1) equipped with an almost contact metric structure (ϕ, ξ, η, g) consisting of a (1,1) tensor field ϕ , a vector field ξ , a 1-form η and a Riemannian metric g satisfying

$$\phi^2 = -I + \eta \otimes \xi, \tag{2}$$

$$\eta(\xi) = 1,\tag{3}$$

$$\phi_{5}^{\varepsilon} = 0, \eta \circ \phi = 0. \tag{4}$$

An almost contact metric manifold M is called an (\mathcal{E}) -almost contact metric manifold if

$$g(\xi,\xi) = \varepsilon,\tag{5}$$

$$\eta(X) = \varepsilon g(X, \xi), \tag{6}$$

$$g(\phi X, \phi Y) = g(X, Y) - \varepsilon \eta(X) \eta(Y), \forall X, Y \in TM,$$
(7)

where $\varepsilon = g(\xi, \xi) = \pm 1$. An (ε) -almost contact metric manifold M is called an (ε, δ) -trans-Sasakian manifold if

Somashekhara G et al.; Sch. J. Phys. Math. Stat., 2015; Vol-2; Issue-2B (Mar-May); pp-191-195

$$(\nabla_X \phi)Y = \alpha[g(X,Y)\xi - \varepsilon\eta(Y)X] + \beta[g(\phi X,Y)\xi - \delta\eta(Y)\phi X],$$
(8)

holds for some smooth functions α and β on M and $\varepsilon = \pm 1$, $\delta = \pm 1$. For $\beta = 0$, $\alpha = 1$, an (ε, δ) -trans-Sasakian manifold reduces to an (ε) -Sasakian and for $\alpha = 0$, $\beta = 1$ it reduces to a (δ) -Kenmotsu manifold.

Let (M, g) be a (ε, δ) -trans-Sasakian manifold. Then from (8), it is easy to see that

$$(\nabla_X \xi) = -\omega \phi X - \beta \delta \phi^2 X, \qquad (9)$$

$$(\overline{\nabla}_X \eta)Y = -\alpha g(Y, \phi X) + \mathfrak{B} g(\phi X, \phi Y).$$
⁽¹⁰⁾

In an (ε, δ) -trans-Sasakian manifold \overline{M} , the curvature R Ricci tensor S satisfies [6]

$$R(X,Y)\xi = \varepsilon((Y\alpha)\phi X - (X\alpha)\phi Y) + (\beta^2 - \alpha^2)(\eta(X)Y - \eta(Y)X) -\delta((X\beta)\phi^2 Y - (Y\beta)\phi^2 X) + 2\varepsilon\delta\alpha\beta(\eta(Y)\phi X) -\eta(X)\phi Y) + 2\alpha\beta(\delta - \varepsilon)g(\phi X, Y)\xi.$$
(11)

$$S(X,\xi) = -(\phi X)\alpha + ((n-1)(\alpha \alpha^2 - \beta^2 \delta) - (\xi \beta))\eta(X) - (2n-1)(X\beta)$$
⁽¹²⁾

SUBMANIFOLDS OF AN ALMOST CONTACT METRIC MANIFOLD

Let M be a submanifold of a contact manifold \overline{M} . We denote ∇ and ∇ the Levi-Civita connections of M and \overline{M} respectively, and $T^{\perp}(M)$ the normal bundle of M. Then Gauss and Weingarten formulas are given by

$$\nabla_X Y = \nabla_X Y + h(X, Y) \tag{13}$$

$$\overline{\nabla}_X N = \nabla_X^{\perp} N - A_N X \tag{14}$$

for any $X, Y \in TM$. ∇^{\perp} is the connection in the normal bundle, h is the second fundamental form of M and A_N is the Weingarten endomorphism associated with N. The second fundamental form h and the shape operator A related by

$$g(h(X,Y),N) = g(A_N X,Y).$$
⁽¹⁵⁾

From (13) we have

$$\overline{\nabla}_X \xi = \nabla_X \xi + h(X, \xi). \tag{16}$$

Lemma 1. Let M be a invariant submanifold of (ε, δ) trans-Sasakian manifold \overline{M} then we have

$$h(X,\xi) = 0 \tag{17}$$

$$h(\phi X, Y) = \phi(h(X, Y)) = h(X, \phi Y)$$
(18)

$$h(\phi X, \phi Y) = -h(X, Y) \tag{19}$$

$$(\nabla_X h)(Y,\xi) = -h(Y,\nabla_X \xi)$$
⁽²⁰⁾

Proof. By straight forward calculations we will get the above results.

Available Online: http://saspjournals.com/sjpms

Theorem 1. Let M be a invariant submanifold of (ε, δ) -trans-Sasakian manifold \overline{M} then

$$(\nabla_X h)(Y,\xi) = h(Y,\xi) = h(Y, \varkappa \phi X) + h(Y, \beta \delta \phi^2 X)$$
(21)

for any $X, Y \in TM$.

Proof. By using (20), we get

$$(\nabla_X h)(Y,\xi) = -h(Y,\nabla_X\xi) = -h(Y,-\alpha\alpha\phi X - \beta\delta\phi^2 X)$$

= h(Y, \approx \approx \approx X) + h(Y, \beta\delta\delta^2 X). (22)

Corollary 1. Let M be a invariant submanifold of (ε, δ) -trans-Sasakian manifold \overline{M} then

$$(\nabla_X h)(Y,\xi) = \operatorname{ach}(Y,\phi X) - \beta \delta h(Y,X)$$
(23)

for any $X, Y \in TM$.

Proof. By using (21), we get

$$(\nabla_{X}h)(Y,\xi) = h(Y, \alpha\alpha\phi X) + h(Y, \beta\delta\phi^{2}X)$$

= $\alpha h(Y, \phi X) + \beta\delta h(Y, -X + \eta(X)\xi)$
= $\alpha h(Y, \phi X) - \beta\delta h(Y, X).$ (24)

Theorem 2. Let M be a invariant submanifold of (ε, δ) - trans-Sasakian manifold \overline{M} then h is parallel if and only if *M* is totally geodesic.

Proof. Suppose that h is parallel. For each $X, Y \in TM$ and using (20) we get

$$(\nabla_X h)(Y,\xi) = 0 \Longrightarrow h(Y,\nabla_X \xi) = 0$$
⁽²⁵⁾

or

$$h(Y, -\alpha\phi X - \beta\delta\phi^2 X) = 0.$$
⁽²⁶⁾

Hence

$$-\varkappa h(Y,\phi X) - \beta \partial h(Y,\phi^2 X) = 0.$$
⁽²⁷⁾

Since M is an invariant submanifold of \overline{M} , we have,

$$\phi(h(X,Y)) = 0. \tag{28}$$

From (18) it follows that

$$\phi(h(X,Y)) = h(Y,\phi X) = 0.$$
 (29)

Then we get

$$\beta \partial h(Y, \phi^2 X) = 0. \tag{30}$$

Hence it follows that

$$h(Y, -X + \eta(X)\xi) = 0.$$
 (31)

So

$$h(Y,X) = 0. \tag{32}$$

Vice versa, let
$$M$$
 is totally geodesic. Then $h = 0$. For all $X, Y, Z \in TM$,
 $(\nabla_X h)(Y, Z) = \nabla_X h(Y, Z) - h(\nabla_X Y, Z) - h(Y, \nabla_X Z) = 0.$
(33)

Thus we have $\nabla h = 0$.

Available Online: <u>http://saspjournals.com/sjpms</u>

Theorem 3. An invariant submanifold of (ε, δ) -trans-Sasakian manifold \overline{M} is totally geodesic if and only if its second fundamental form is Ricci generalized pseudo-parallel, provided $[(\alpha^2 - \beta^2) + 2nf(\alpha^2 - \delta\beta^2)] \neq 0$.

Proof. Since the submanifold is Ricci generalized pseudo-parallel, we have

$$(R(X,Y).h)(U,V) = fQ(S,h)(X,Y,U,V).$$
(34)

So,

$$R(X,Y)h(U,V) - h(R(X,Y)U,V) - h(U,R(X,Y)V)$$
(35)

$$= f(-S(V,X)h(U,Y) - S(V,Y)h(X,U) + S(U,Y)h(X,V)).$$
(33)

Putting $Y = V = \xi$ and applying (17) we obtain

$$-h(U, R(X, \xi)\xi) = -fS(\xi, \xi)h(X, U)$$
(36)

By using (11) and (12), we obtain

$$[(\alpha^2 - \beta^2) + 2nf(\alpha^2 - \delta\beta^2)]h(X, U) = 0$$
(37)

Hence the submanifold is totally geodesic. The converse holds trivially.

Theorem 4. An invariant submanifold of (ε, δ) -trans-Sasakian manifold \overline{M} is totally geodesic if and only if its second fundamental form is 2-semi-parallel, provided $[(\alpha^2 - \beta^2)(\alpha^2 + \beta^2)] \neq 0$.

Proof. Since, the second fundamental form is 2-semi-parallel, we have

$$(R(X,Y) \cdot (\nabla_{U}h)(Z,W) = 0, \tag{38}$$

which implies

$$(R^{\perp}(X,Y)(\nabla_{U}h)(Z,W) - (\nabla_{U}h)(R(X,Y)Z,W) - (\nabla_{U}h)(Z,R(X,Y)W) = 0.$$
(39)

Now,

$$R^{\perp}(X,Y)(\nabla_{U}h)(\xi,\xi) = 0 \tag{40}$$

Therefore,

$$(\nabla_{U}h)(R(X,\xi)\xi,\xi) = (\nabla_{U}h)((\alpha^{2}-\beta^{2})(X-\eta(X)\xi),\xi)$$

$$= -h((\alpha^{2}-\beta^{2})(X-\eta(X)\xi),\nabla_{U}\xi)$$

$$= \varkappa (\alpha^{2}-\beta^{2})h(X,\phi U) + (\alpha^{2}-\beta^{2})\beta\delta h(X,U).$$
(41)

Similarly,

$$(\nabla_U h)(\xi, R(X,\xi)\xi) = \operatorname{ax}(\alpha^2 - \beta^2)h(X,\phi U) + (\alpha^2 - \beta^2)\beta\partial h(X,U).$$
(42)

Therefore, we have

$$\boldsymbol{\alpha}(\alpha^2 - \beta^2)\boldsymbol{\phi}h(X, U) + (\alpha^2 - \beta^2)\boldsymbol{\beta}\boldsymbol{\delta}h(X, U) = 0.$$
(43)

Applying ϕ on both sides of (43) we get

$$(\alpha^2 - \beta^2)\beta\delta\phi h(X,U) = \delta\alpha (\alpha^2 - \beta^2)h(X,U)$$
(44)

From (43) and (44), we have

$$[(\alpha^2 - \beta^2)(\alpha^2 + \beta^2)]h(X, U) = 0.$$
(45)

Hence the submanifold is totally geodesic. The converse holds trivially.

Available Online: <u>http://saspjournals.com/sjpms</u>

Somashekhara G et al.; Sch. J. Phys. Math. Stat., 2015; Vol-2; Issue-2B (Mar-May); pp-191-195

REFERENCES

- 1. Guojing Z, Jianguo W; Invariant submanifolds and modes of non-linear autonomous system, Appl.Math,1998;19:587-693.
- 2. Bejancu A, Duggal KL; Real hypersurfaces of idefinite Kahler manifolds. Int. J. Math. Math. sci., 1993; 16(3):545-556.
- 3. Xufeng X, Xiaoli C; Two theorems on *E*-Sasakian manifolds, Int. J. Math. Math. sci., 1998; 21(2):249-254
- Kumar R, Rani R, Nagaich RK; On sectional curvature of (ε)-Sasakian manifolds, Int. J. Math. Math. sci., 2007;93562.
- 5. De UC, Sarkar A; On (ε) -Kenmotsu manifolds. Hadronic journal, 2009;32:231-242.
- 6. Nagaraja HG, Premalatha RC, Somashekara G; On an (ε, δ) -trans-Sasakian structure, Proceedings of the Estonian Academy of sciences, 2012; 61(1):20-28.
- 7. Nagaraja HG, Somashekhara; Special Trans-Sasakian manifolds and curvature conditions, International journal of pure and applied Mathematics, 2012; 81(3):411-420.
- Sarkar A, Sen M; On invariant submanifolds of trans-Sasakian manifolds, Proc.Estonian Acad.Sci., 2012; 61:29-37.
- 9. De UC, Guha N, Kamilya D; On generalized Ricci-recurrent manifolds, Tensor, N.S., 1995; 56:312-317.