Scholars Journal of Physics, Mathematics and Statistics

Sch. J. Phys. Math. Stat. 2015; 2(2B):217-220 ©Scholars Academic and Scientific Publishers (SAS Publishers) (An International Publisher for Academic and Scientific Resources)

Discussion on a Kind of Sequence Limit

Zhongkui Zhao

College of Mathematics and Statistics, Northeast Petroleum University, Daqing 163318, China

***Corresponding Author:** Zhongkui Zhao Email: <u>zzk600920@163.com</u>

Abstract: In this paper, we give four theorems and proved them. According to these four theorems, we deduce the solver method for the limit of a class of sequence $\{x_n\}$ by recursive relation $x_n = f(x_{n-1})$.

Keywords: limit of a sequence, recursion formula, mathematical induction limit of sequence limit of sequence

PROBLEM POSING

For a special class of infinite series (n = 1, 2, L), If sequence of $\{x_n\}$ satisfies the recursive formula of

 $x_n = f(x_{n-1})$, we can discuss the limit of $\{x_n\}$ (n = 1, 2, L) according to the property of f'(x) [1]. So we give four theorems as follows.

FOUR THEOREMS

Theorem 1 If in [a,b] equation x = f(x) has a unique root ξ , and

 $|f'(x)| \le q < 1$, x_0 is any real number in $|\xi - x_0| \le \min\{(\xi - a), (b - \xi)\}|$,

then sequence :

$$x_1 = f(x_0), x_2 = f(x_1), L, x_n = f(x_{n-1})L$$

convergence to ξ .

Proof According to $x_1 - f(x_0) = \xi - f(\xi)$ and Lagrange Mean Value Theorem[2]

 $|\xi - x_1| = |\xi - x_0| |f'(c)| \le |\xi - x_0| |q < |\xi - x_0| |(\xi < c < x_0),$

so x_1 is closer to ξ than x_0 , moreover, as $|\xi - x_0| \le \min\{(\xi - a), (b - \xi)\}$, so $x_1 \in [a, b]$.

By mathematical induction[3], we can deduce $x_n \in [a,b]$ (n = 1, 2, L). According to

$$x_{n+1} - f(x_n) = x_n - f(x_{n-1})$$

and Lagrange Mean Value Theorem :

$$|x_{n+1} - x_n| = |x_n - x_{n-1}|| f'(c_n)|.$$

Since $x_n \in [a,b]$, c_n is between x_n and x_{n-1} , so $c_n \in [a,b]$, $|f'(c_n)| \le q < 1$. Therefore

$$|x_{n+1} - x_n| \le |x_n - x_{n-1}| q$$

And then

$$|x_{n+1} - x_n| \le q^n |x_1 - x_0|, |x_{n+p} - x_n| \le |x_1 - x_0| \le \frac{q^n}{1 - q} |x_1 - x_0|.$$

When $n \to \infty$, $q^n \to 0$, so $\lim_{n \to \infty} x_n$ is extant. By the continuity of f(x), $\lim_{n \to \infty} x_n = f(\lim_{n \to \infty} x_{n-1})$, and by the uniqueness of ξ in [a,b], $\lim_{n \to \infty} x_n = \xi$.

Available Online: http://saspjournals.com/sjpms

ISSN 2393-8056 (Print) ISSN 2393-8064 (Online) **Theorem 2** If x = f(x) has real root ξ_i (i = 1, 2, 3L m), f(x) has derivative in every point. And $|f'(\xi_i)| > 1$, for any real number x_0 , the follow sequence is diverging:

 $x_1 = f(x_0), x_2 = f(x_1), \dots, x_n = f(x_{n-1}), \dots$ (If $i \neq j$, then $x_i \neq x_j$)

Proof If $x_n = f(x_{n-1})$, sequence $\{x_n\}$ must converge to some real number ξ_N $(1 \le N \le m)$.

By $x_n - f(x_{n-1}) = \xi_N - f(\xi_N)$ and Lagrange Mean Value Theorem, we can derive $\left| \frac{\xi_N - x_n}{\xi_N - x_{n-1}} \right| = |f'(c)|$.

Since c is between ξ_N and x_{n-1} , $x_n \to \xi_N(n \to \infty)$, so $\left| \frac{\xi_N - x_n}{\xi_N - x_{n-1}} \right| \to |f'(\xi_N)| \quad (n \to \infty)$.

For any real number ε in $(0, +\infty)$, when *n* is large enough

$$|\xi_N - x_n| > |\xi_N - x_{n-1}| (|f'(\xi_N)| - \varepsilon)$$

is tenable.

As positive real number ε is arbitrarily small, $|f'(\xi_N)| \le 1$. it is contradict with $|f'(\xi_N)| > 1$, so $\{x_n\}$ must be diverging.

If $|f'(\xi_N)| > 1$, then $|f'(\xi_N)| - \varepsilon > 1$. But by

$$|\xi_N - x_n| > |\xi_N - x_{n-1}| (|f'(\xi_N)| - \varepsilon),$$

we can know $|\xi_N - x_n| > |\xi_N - x_{n-1}|$, the result is contradict with $x_n \to \xi_N$.

Theorem 3 If in [a,b] equation x = f(x) has a unique root ξ , f'(x) < 0, and $f(a) \in [a,b]$, $f(b) \in [a,b]$, $x_0 \in [a,b]$, then sequence :

$$x_1 = f(x_0), x_3 = f(x_2), L, x_{2m+1} = f(x_{2m}), L$$

and $x_2 = f(x_1), x_4 = f(x_3), L, x_{2m} = f(x_{2m-1}), L$ are both convergent.

Proof We might as well let $x_0 = b$ (x_0 is any value in [a,b], the proof is same as this.) . According to $x_1 - f(b) = \xi - f(\xi)$ and f'(x) < 0, $\xi < b$, we can derive $x_1 < \xi$. By $x_2 - f(x_1) = \xi - f(\xi)$ and f'(x) < 0, $x_1 < \xi$, we can know $x_2 > \xi$. $x_{2m} > \xi > x_{2m+1}$ (m = 0, 1, 2, L) can be proved by mathematical induction.

Set $x_1^* = f(a)$, by $x_2 - f(x_1) = x_1^* - f(a)$ and f'(x) < 0, $x_1 \ge a$, we can deduce $x_2 \le x_1^*$, we have known $x_1^* \le b$ $(x_1^* \in [a,b])$, so $x_2 \le b$.

As $x_3 - f(x_2) = x_1 - f(b)$ and f'(x) < 0, $x_2 \le b$, then $x_1 \le x_3$.

By $x_2 - f(x_1) = x_4 - f(x_3)$ and f'(x) < 0, $x_1 \le x_3$, we can know $x_4 \le x_2$.

So $x_{2m-1} \le x_{2m+1}$, $x_{2m} \le x_{2m-2}$ (m = 0, 1, 2, L) might be proved by mathematical induction. In conclusion. then

$$x_{2m-1} \le x_{2m+1} \le \xi < x_{2m} \le x_{2m-2}$$
 (*m* = 0,1,2,L)[3]

so we can see $\lim_{m \to \infty} x_{2m+1}$ and $\lim_{m \to \infty} x_{2m}$ are both existent[4].

Theorem 4 If in [a,b] equation x = f(x) has a unique root ξ , and 0 < f'(x) < 1, $x_0 \in [a,b]$, then sequence: $x_1 = f(x_0), x_2 = f(x_1), L, x_n = f(x_{n-1}), L$ converge to ξ .

Available Online: http://saspjournals.com/sjpms

Zhao Z.; Sch. J. Phys. Math. Stat., 2015; Vol-2; Issue-2B (Mar-May); pp-217-220 Proof We might as well let $x_0 = b$. According to 0 < f'(x) < 1, we can derive 1 - f'(x) > 0. So x - f(x) is monotone increasing, so that b - f(b) > 0, a - f(a) < 0. By f'(x) > 0, we can know a - f(b) < a - f(a) < 0. So monotone continuous function x - f(b) in the two endpoints of [a,b] has opposite signs. So that $x_1 = f(b) \in [a,b]$. As $x_1 - f(b) = \xi - f(\xi)$ and f'(x) > 0, $b > \xi$, then $x_1 > \xi$. So $x_n > \xi$ (n = 0, 1, 2, L) might be proved by mathematical induction. By $x_1 - f(b) = x_2 - f(x_1)$, f'(x) > 0, $b > x_1$, we can know $x_1 > x_2$. By mathematical induction we can prove $x_n > x_{n+1}$ (n = 0, 1, 2, L), so that $\xi < x_{n+1} < x_n$ (n = 0, 1, 2, L). So $\lim_{n \to \infty} x_n$ is existent. By $x_n = f(x_{n-1})$ we can infer

$$\lim_{n\to\infty} x_n = f(\lim_{n\to\infty} x_{n-1}).$$

Since ξ is unique in [a,b], we can infer $\lim_{n \to \infty} x_n = \xi$.

APPLICATION EXAMPLE

Example 1 Sequence $\{x_n\}$ is as follows.

$$x_1 = \sqrt{2}, x_2 = \sqrt{2 + \sqrt{2}}, L, x_n = \sqrt{2 + \sqrt{2 + ... + \sqrt{2}}}, L$$

Solving $\lim_{n \to \infty} x_n$ [5].

Solving $x = \sqrt{x+2}$, the solution is 2. In [0,4], the equation has a unique solution 2, and $\left|\left(\sqrt{x+2}\right)'\right| = \left|\frac{1}{2\sqrt{x+2}}\right| < \frac{1}{2} < 1$, let $x_0 = 0$, it meets qualifications of Theorem 1, so $\lim_{n \to \infty} x_n = 2$.

Example 2 Solving $\lim_{n\to\infty} (a+a^2+\ldots+a^n)$ (|a|<1).

Solving
$$x = ax + a$$
, the solution is $\frac{a}{1-a}$. In $\begin{bmatrix} 0, \frac{2a}{1-a} \end{bmatrix}$ it has a unique solution $\frac{a}{1-a}$ (we might as well set

a > 0), and |(ax + a)'| = |a| < 1. Let $x_0 = 0$, we can know it meets qualifications of Theorem 1, so

$$\lim_{n \to \infty} (a + a^2 + \dots + a^n) = \frac{a}{1 - a}. \text{ If } a \le 0 (|a| < 1), \lim_{n \to \infty} (a + a^2 + \dots + a^n) = \frac{a}{1 - a}.$$

When $|a| < 1$,

$$\lim_{n\to\infty}(a+a^2+\ldots+a^n)=\frac{a}{1-a}.$$

When |a| > 1, we can infer $|(ax + a)'| \equiv |a| > 1$. Using theorem 2 we can know sequence:

 $x_1 = a, x_2 = a + a^2, ..., x_n = a + a^2 + ... + a^n, ...$ ($i \neq j$ H, $x_i \neq x_j$) is divergent.

CONCLUSION

In general, through the four theorems we can deduce the solver method for the limit of a class of sequence $\{x_n\}$ by recursive relation $x_n = f(x_{n-1})$.

Zhao Z.; Sch. J. Phys. Math. Stat., 2015; Vol-2; Issue-2B (Mar-May); pp-217-220

First, solving x = f(x) we got all the real number solutions ξ_i (i = 1, 2, L m). Sequence $\{x_n\}$ converge to and can only converge to some ξ_i . And according to the features of sequence $\{x_n\}$, we set a range [a,b] which include a ξ_i , by theorem 1, if we can find a x_0 that satisfied $|\xi_i - x_0| \le \min\{(\xi_i - a), (b - \xi_i)\}$, let $x_n = f(x_{n-1})$ (n = 0, 1, 2, L) be tenable, then we can conclude $\lim_{n \to \infty} x_n = \xi_i$. By the theorem 4, if we can find a x_0 in [a,b], let $x_n = f(x_{n-1})$ (n = 0, 1, 2, L) be tenable, then we can conclude $\lim_{n \to \infty} x_n = \xi_i$. If $|f'(\xi_i)| > 1$ (i = 1, 2, L), we can know sequence is divergent by theorem 4. If theorem 1, theorem 2, theorem 4 can not solve the question, we can use

theorem 3 solve it. And when $|f'(\xi_i)|=1$, the convergence of sequence $\{x_n\}$ is uncertain.

REFERENCES

- 1. Jia Jianhua, Wang Kefen; Preliminary analysis of calculus proof method.Nankai University Press, 1989.
- 2. Department of mathematics of East China Normal University. Mathematical Analysis. Higher Education Press, 2010.
- 3. Tian M; Several methods of recursive convergence for sequences of judgment. Journal of Sichuan College of Education, 2007;7: 54-57.
- 4. Zheng Q; A Direct Proof on the Theorem of the Convergence of Bounded Monotonic Sequences. University Mathematics, 2014; 30(2):104-105.
- 5. Yu Shaoquan, Li Hongwei; A method for recursive sequence. Studies In College Mathematics, 2011;11(5):47-48.