Discussion on a Kind of Sequence Limit

College of Mathematics and Statistics, Northeast Petroleum University, Daqing 163318, China

*Corresponding Author:

Zhongkui Zhao
Email: zzk600920@163.com

Abstract: In this paper, we give four theorems and proved them. According to these four theorems, we deduce the solver method for the limit of a class of sequence $\left\{x_{n}\right\}$ by recursive relation $x_{n}=f\left(x_{n-1}\right)$.

Keywords: limit of a sequence, recursion formula, mathematical induction limit of sequence limit of sequence

PROBLEM POSING

For a special class of infinite series $(n=1,2, \mathrm{~L})$, If sequence of $\left\{x_{n}\right\}$ satisfies the recursive formula of $x_{n}=f\left(x_{n-1}\right)$, we can discuss the limit of $\left\{x_{n}\right\}(n=1,2, \mathrm{~L})$ according to the property of $f^{\prime}(x)$ [1]. So we give four theorems as follows.

FOUR THEOREMS

Theorem 1 If in $[a, b]$ equation $x=f(x)$ has a unique root ξ, and
$\left|f^{\prime}(x)\right| \leq q<1, \quad x_{0}$ is any real number in $\left|\xi-x_{0}\right| \leq \min \{(\xi-a),(b-\xi)\} \mid$,
then sequence :

$$
x_{1}=f\left(x_{0}\right), x_{2}=f\left(x_{1}\right), \mathrm{L}, x_{n}=f\left(x_{n-1}\right) \mathrm{L}
$$

convergence to ξ.
Proof According to $x_{1}-f\left(x_{0}\right)=\xi-f(\xi)$ and Lagrange Mean Value
Theorem[2]

$$
\left|\xi-x_{1}\right|=\left|\xi-x_{0} \| f^{\prime}(c)\right| \leq\left|\xi-x_{0}\right| q<\left|\xi-x_{0}\right|\left(\xi<c<x_{0}\right),
$$

so x_{1} is closer to ξ than x_{0}, moreover, as $\left|\xi-x_{0}\right| \leq \min \{(\xi-a),(b-\xi)\}$, so $x_{1} \in[a, b]$.
By mathematical induction[3], we can deduce $x_{n} \in[a, b](n=1,2, \mathrm{~L})$. According to

$$
x_{n+1}-f\left(x_{n}\right)=x_{n}-f\left(x_{n-1}\right)
$$

and Lagrange Mean Value Theorem :

$$
\left|x_{n+1}-x_{n}\right|=\left|x_{n}-x_{n-1} \| f^{\prime}\left(c_{n}\right)\right|
$$

Since $x_{n} \in[a, b], \quad c_{n}$ is between x_{n} and x_{n-1}, so $c_{n} \in[a, b],\left|f^{\prime}\left(c_{n}\right)\right| \leq q<1$. Therefore

$$
\left|x_{n+1}-x_{n}\right| \leq\left|x_{n}-x_{n-1}\right| q
$$

And then

$$
\left|x_{n+1}-x_{n}\right| \leq q^{n}\left|x_{1}-x_{0}\right|,\left|x_{n+p}-x_{n}\right| \leq\left|x_{1}-x_{0}\right| \leq \frac{q^{n}}{1-q}\left|x_{1}-x_{0}\right|
$$

When $n \rightarrow \infty, q^{n} \rightarrow 0$, so $\lim _{n \rightarrow \infty} x_{n}$ is extant. By the continuity of $f(x), \lim _{n \rightarrow \infty} x_{n}=f\left(\lim _{n \rightarrow \infty} x_{n-1}\right)$, and by the uniqueness of ξ in $[a, b], \lim _{n \rightarrow \infty} x_{n}=\xi$.

Theorem 2 If $x=f(x)$ has real root $\xi_{i}(i=1,2,3 \mathrm{~L} m), f(x)$ has derivative in every point. And $\left|f^{\prime}\left(\xi_{i}\right)\right|>1$, for any real number x_{0}, the follow sequence is diverging:

$$
x_{1}=f\left(x_{0}\right), x_{2}=f\left(x_{1}\right), \ldots, x_{n}=f\left(x_{n-1}\right), \ldots\left(\text { If } i \neq j, \text { then } x_{i} \neq x_{j}\right)
$$

Proof If $x_{n}=f\left(x_{n-1}\right)$, sequence $\left\{x_{n}\right\}$ must converge to some real number $\xi_{N}(1 \leq N \leq m)$.
By $x_{n}-f\left(x_{n-1}\right)=\xi_{N}-f\left(\xi_{N}\right)$ and Lagrange Mean Value Theorem, we can derive $\left|\frac{\xi_{N}-x_{n}}{\xi_{N}-x_{n-1}}\right|=\left|f^{\prime}(c)\right|$.
Since c is between ξ_{N} and $x_{n-1}, x_{n} \rightarrow \xi_{N}(n \rightarrow \infty)$, so $\left|\frac{\xi_{N}-x_{n}}{\xi_{N}-x_{n-1}}\right| \rightarrow\left|f^{\prime}\left(\xi_{N}\right)\right|(n \rightarrow \infty)$.
For any real number ε in $(0,+\infty)$, when n is large enough

$$
\left|\xi_{N}-x_{n}\right|>\left|\xi_{N}-x_{n-1}\right|\left(\left|f^{\prime}\left(\xi_{N}\right)\right|-\varepsilon\right)
$$

is tenable.
As positive real number ε is arbitrarily small, $\left|f^{\prime}\left(\xi_{N}\right)\right| \leq 1$. it is contradict with $\left|f^{\prime}\left(\xi_{N}\right)\right|>1$, so $\left\{x_{n}\right\}$ must be diverging.

If $\left|f^{\prime}\left(\xi_{N}\right)\right|>1$, then $\left|f^{\prime}\left(\xi_{N}\right)\right|-\varepsilon>1$. But by

$$
\left|\xi_{N}-x_{n}\right|>\left|\xi_{N}-x_{n-1}\right|\left(\left|f^{\prime}\left(\xi_{N}\right)\right|-\varepsilon\right)
$$

we can know $\left|\xi_{N}-x_{n}\right|>\left|\xi_{N}-x_{n-1}\right|$, the result is contradict with $x_{n} \rightarrow \xi_{N}$.
Theorem 3 If in $[a, b]$ equation $x=f(x)$ has a unique root $\xi, f^{\prime}(x)<0$, and $f(a) \in[a, b], f(b) \in[a, b]$, $x_{0} \in[a, b]$, then sequence :

$$
x_{1}=f\left(x_{0}\right), x_{3}=f\left(x_{2}\right), \mathrm{L}, x_{2 m+1}=f\left(x_{2 m}\right), \mathrm{L}
$$

and $\quad x_{2}=f\left(x_{1}\right), x_{4}=f\left(x_{3}\right), \mathrm{L}, x_{2 m}=f\left(x_{2 m-1}\right), \mathrm{L} \quad$ are both convergent.
Proof We might as well let $x_{0}=b \quad\left(x_{0}\right.$ is any value in $[a, b]$, the proof is same as this.) . According to $x_{1}-f(b)=\xi-f(\xi)$ and $f^{\prime}(x)<0, \xi<b$, we can derive $x_{1}<\xi$. By $x_{2}-f\left(x_{1}\right)=\xi-f(\xi)$ and $f^{\prime}(x)<0, x_{1}<\xi$, we can know $x_{2}>\xi . x_{2 m}>\xi>x_{2 m+1}(m=0,1,2, \mathrm{~L})$ can be proved by mathematical induction.
Set $x_{1}^{*}=f(a)$, by $x_{2}-f\left(x_{1}\right)=x_{1}^{*}-f(a)$ and $f^{\prime}(x)<0, x_{1} \geq a$, we can deduce $x_{2} \leq x_{1}^{*}$, we have known $x_{1}^{*} \leq b\left(x_{1}^{*} \in[a, b]\right)$, so $x_{2} \leq b$.
As $x_{3}-f\left(x_{2}\right)=x_{1}-f(b)$ and $f^{\prime}(x)<0, x_{2} \leq b$, then $x_{1} \leq x_{3}$.
By $x_{2}-f\left(x_{1}\right)=x_{4}-f\left(x_{3}\right)$ and $f^{\prime}(x)<0, \quad x_{1} \leq x_{3}$, we can know $x_{4} \leq x_{2}$.
So $x_{2 m-1} \leq x_{2 m+1}, \quad x_{2 m} \leq x_{2 m-2}(m=0,1,2, \mathrm{~L})$ might be proved by mathematical induction. In conclusion. then

$$
x_{2 m-1} \leq x_{2 m+1} \leq \xi<x_{2 m} \leq x_{2 m-2} \quad(m=0,1,2, \mathrm{~L})[3]
$$

so we can see $\lim _{m \rightarrow \infty} x_{2 m+1}$ and $\lim _{m \rightarrow \infty} x_{2 m}$ are both existent[4].

Theorem 4 If in $[a, b]$ equation $x=f(x)$ has a unique root ξ, and $0<f^{\prime}(x)<1, x_{0} \in[a, b]$, then sequence:

$$
x_{1}=f\left(x_{0}\right), x_{2}=f\left(x_{1}\right), \mathrm{L}, x_{n}=f\left(x_{n-1}\right), \mathrm{L} \quad \text { converge to } \xi
$$

Proof We might as well let $x_{0}=b$. According to $0<f^{\prime}(x)<1$, we can derive $1-f^{\prime}(x)>0$. So $x-f(x)$ is monotone increasing, so that $b-f(b)>0, \quad a-f(a)<0$. By $f^{\prime}(x)>0$, we can know
$a-f(b)<a-f(a)<0$. So monotone continuous function $x-f(b)$ in the two endpoints of $[a, b]$ has opposite signs. So that $x_{1}=f(b) \in[a, b]$. As $x_{1}-f(b)=\xi-f(\xi)$ and $f^{\prime}(x)>0, b>\xi$, then $x_{1}>\xi$. So $x_{n}>\xi$ ($n=0,1,2, \mathrm{~L}$) might be proved by mathematical induction. By $x_{1}-f(b)=x_{2}-f\left(x_{1}\right), f^{\prime}(x)>0, b>x_{1}$, we can know $x_{1}>x_{2}$. By mathematical induction we can prove $x_{n}>x_{n+1}(n=0,1,2, \mathrm{~L})$, so that $\xi<x_{n+1}<x_{n}$ ($n=0,1,2, \mathrm{~L}$). So $\lim _{n \rightarrow \infty} x_{n}$ is existent. By $x_{n}=f\left(x_{n-1}\right)$ we can infer

$$
\lim _{n \rightarrow \infty} x_{n}=f\left(\lim _{n \rightarrow \infty} x_{n-1}\right)
$$

Since ξ is unique in $[a, b]$, we can infer $\lim _{n \rightarrow \infty} x_{n}=\xi$.

APPLICATION EXAMPLE

Example 1 Sequence $\left\{x_{n}\right\}$ is as follows.

$$
x_{1}=\sqrt{2}, x_{2}=\sqrt{2+\sqrt{2}}, \mathrm{~L}, x_{n}=\sqrt{2+\sqrt{2+\ldots+\sqrt{2}}}, \mathrm{~L}
$$

Solving $\lim _{n \rightarrow \infty} x_{n}[5]$.
Solving $x=\sqrt{x+2}$, the solution is 2 . In [0,4], the equation has a unique solution 2 , and
$\left|(\sqrt{x+2})^{\prime}\right|=\left|\frac{1}{2 \sqrt{x+2}}\right|<\frac{1}{2}<1$, let $x_{0}=0$, it meets qualifications of Theorem 1, so $\lim _{n \rightarrow \infty} x_{n}=2$.
Example 2 Solving $\lim _{n \rightarrow \infty}\left(a+a^{2}+\ldots+a^{n}\right) \quad(|a|<1)$.
Solving $x=a x+a$, the solution is $\frac{a}{1-a}$. In $\left[0, \frac{2 a}{1-a}\right]$ it has a unique solution $\frac{a}{1-a}$ (we might as well set $a>0)$, and $\left|(a x+a)^{\prime}\right|=|a|<1$. Let $x_{0}=0$, we can know it meets qualifications of Theorem 1 , so
$\lim _{n \rightarrow \infty}\left(a+a^{2}+\ldots+a^{n}\right)=\frac{a}{1-a}$. If $a \leq 0(|a|<1), \lim _{n \rightarrow \infty}\left(a+a^{2}+\ldots+a^{n}\right)=\frac{a}{1-a}$.
When $|a|<1$,

$$
\lim _{n \rightarrow \infty}\left(a+a^{2}+\ldots+a^{n}\right)=\frac{a}{1-a}
$$

When $|a|>1$, we can infer $\left|(a x+a)^{\prime}\right| \equiv|a|>1$. Using theorem 2 we can know sequence:

$$
x_{1}=a, x_{2}=a+a^{2}, \ldots, x_{n}=a+a^{2}+\ldots+a^{n}, \ldots . \quad\left(i \neq j \text { 时, } x_{i} \neq x_{j}\right) \text { is divergent. }
$$

CONCLUSION

In general, through the four theorems we can deduce the solver method for the limit of a class of sequence $\left\{x_{n}\right\}$ by recursive relation $x_{n}=f\left(x_{n-1}\right)$.

Zhao Z.; Sch. J. Phys. Math. Stat., 2015; Vol-2; Issue-2B (Mar-May); pp-217-220
First, solving $x=f(x)$ we got all the real number solutions $\xi_{i}(i=1,2, \mathrm{~L} m)$. Sequence $\left\{x_{n}\right\}$ converge to and can only converge to some ξ_{i}. And according to the features of sequence $\left\{x_{n}\right\}$, we set a range $[a, b]$ which include a ξ_{i}, by theorem 1, if we can find a x_{0} that satisfied $\left|\xi_{i}-x_{0}\right| \leq \min \left\{\left(\xi_{i}-a\right),\left(b-\xi_{i}\right)\right\}$, let $x_{n}=f\left(x_{n-1}\right)$ ($n=0,1,2$, L $)$ be tenable, then we can conclude $\lim _{n \rightarrow \infty} x_{n}=\xi_{i}$. By the theorem 4, if we can find a x_{0} in $[a, b]$, let $x_{n}=f\left(x_{n-1}\right)(n=0,1,2, \mathrm{~L})$ be tenable, then we can conclude $\lim _{n \rightarrow \infty} x_{n}=\xi_{i}$. If $\left|f^{\prime}\left(\xi_{i}\right)\right|>1(i=1,2, \mathrm{~L})$, we can know sequence is divergent by theorem 4. If theorem 1 , theorem 2 , theorem 4 can not solve the question, we can use theorem 3 solve it. And when $\left|f^{\prime}\left(\xi_{i}\right)\right|=1$, the convergence of sequence $\left\{x_{n}\right\}$ is uncertain.

REFERENCES

1. Jia Jianhua, Wang Kefen; Preliminary analysis of calculus proof method.Nankai University Press, 1989.
2. Department of mathematics of East China Normal University. Mathematical Analysis. Higher Education Press, 2010.
3. Tian M; Several methods of recursive convergence for sequences of judgment. Journal of Sichuan College of Education, 2007;7: 54-57.
4. Zheng Q; A Direct Proof on the Theorem of the Convergence of Bounded Monotonic Sequences.University Mathematics, 2014; 30(2):104-105.
5. Yu Shaoquan, Li Hongwei; A method for recursive sequence. Studies In College Mathematics, 2011;11(5):4748.
