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Abstract: The location and the stability of the triangular points of the planar restricted three body problem have been
discussed when both the primaries are triaxial rigid bodies considering the case of stationary rotational motion of the

bigger primary and of the smaller primary are (02 =0, =% W, = 0) and (6, =y, =%, =0) respectively.
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INTRODUCTION
The problem of stability conditions of triangular libration points was assumed by Gascheau [2] and then by
Routh[5].

In recent times many perturbing forces i.e., oblateness and radiation forces of the primaries, Coriolis and
centrifugal forces etc., have been included in the study of the restricted three body problem. Bhatnagar and Gupta[1]
show the existence of 36 stationary motions each corresponding to the constant values of the non-cyclic generalized
coordinates and thus depending on the Eulerian angles of both the bodies. Khanna and Bhatnagar [3] have studied the
problem when the smaller primary is a triaxial rigid body. Also Sharma et.al.[5] have studied the problem when both the

primaries are triaxial rigid bodies in the case of stationary rotational motion (6?, W, and @, ) are small quantities.

In this paper we consider the restricted three body problem when both the primaries are triaxial rigid bodies with
the stationary rotational motion (&, =y, =%,¢, =0) of the bigger primary, and (6, =@, =% ,i, =0)of the
smaller primary.

EQUATIONS OF MOTION

We shall adopt the notation and terminology of Szebehly [7]. As a consequence, the distance between the
primaries does not change and is taken equal to one; the sum of masses of the primaries is also taken one. The unit of
time is chosen so as to make the gravitational constant unity. Besides this the principle axes of the primaries are oriented

to the synodic axes by Euler's angels (6’, Y Wi @ ,(i =1 2)) Since the axes are supposed to rotate with the same

angular velocity as that of the rigid bodies and the bodies are moving around their center of mass without rotation, the
Euler's angles remain constant throughout the motion. Using dimensionless variables,
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Fig-1: Left: the circular restricted three body problem in the synodical reference system with a dimensional units.
Right: the five equilibrium points associated with the problem.

the equations of motion of the infinitesimal mass M, in a synodic coordinate system (x,y) are

.9
X—=2ny=—
OX
and
RPN 0)
y+2nX=— 1)
where
2
n 1- 1-
Q:—[(l—y)rl2+yr22]+( ﬂ)+ﬁ+( ﬂs)[ll+ I, +1,-31]
r1 r2 2mlrl (2)
/’l 1 1 1 1
+—1"+1+1",-3l
2m,r? (1 Pt 1531 ]
R =(x—u) +y’
and
2 =(x+1-p) +y? ®)
Here 4 is the ratio of mass of the smaller primary to the total mass of primaries and 0 < i < % , e,
m, 1 . I
M =——"=—<— with m; = m, being the masses of the primaries.
m+m, 2

Il, I2 , I3 are the principal moments of inertia of the triaxial rigid body of mass m, at its center of mass, with a,b,c
as its axes. | is the moment of inertia about a line joining the center of the rigid body of mass m, and the infinitesimal
body of mass m, and is given by

I =1 '12+I2m1'2+l3nl'2,

where |;,m, and n, are the directional cosines of the line respect to its principal axes.
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I°,,1",, 1", are the principal moments of inertia of the triaxial rigid body of mass m, at its center of mass,

with a',b',c " as its axes. I' is the moment of inertia about a line joining the center of the rigid body of mass m, and the

infinitesimal body of mass m, and is given by

R N ! ‘2 "2
I =117 +1,m; +1;n,

where | '2, m'2 and nlzare the directional cosines of the line respect to its principal axes.

We denote the unit vectors along the principle axes at P, (or pz) by 1, J, K and the unit vectors parallel to the

synodic axes by I,J, K with the help of Euler's angles (0 Vi, @ ,( =1 2)) They are connected by Synge and
Griffith® (1959),

I =a,i+b;j+c;K

J=a,i+b,j+c,k

and
K=a;i+b;j+cyk,
(i=12),

where
a,;, =-Sing Siny, +Cos g Cos¢g, Cosy,,
a,, =Cos ¢ Siny, +Cos ¢, Sing, Cosy, ,
a; =-Sing, Cosy;,
b, =-Sin¢ Cos y, —Cos g, Cos¢g, Siny,,
b,, =Cos ¢ Cos i, —Cos & Sing, Siny,,
b, =Siné Siny,,
¢, =Siné Cos ¢,
c, =Siné Sing,,

and

¢y =Cos g , (i =1,2).
The axes O (xyz ) have been defined by Szebehely [7]. Now, €2 in equation (2) can be written as
2 2 1 n2r2
2

Q:(l—y)(r1+n i +u —+

1

A2+A3 a11 X ﬂ)+321y) 4
(12 3) (A1+A2+A3 + A1+ (bu X ﬂ)+b21y)

A2+A1 (Cll X—= /1 +C21y)

+

(A+AY) (8, (x+1-u +a22y)
C At L A 1
+% 2(A1+A2+A3)—37 A+ AL (b (x+1- +b22y) ,
2 2
+(A,+ A’ )( o (X1 +022y)
where
2 2 2
a b c
A=—F A =— A =—
5R 5R 5R
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12 12 12
a b c
Al=— A, =— A, =— (5)
' BR?" ? B5R?T ° BR?
and R is the distance between the primaries. The mean motion, n is given by
3
n? :1+§[2(A1+A2 +A,)—-3af (A, +Ay) -] (A +A,) -3 (A, +A,) | o

E[2(A A LHAYL) =B8] (A +A L) =30) (AL +A L) -3 (A +AY) .

Equation (1) permit an integral analogous to Jacobi integral
¥+ -20+C=0.
The liberation points are the singularities of the manifold

f(xy, &®)="%+&-20+C=0.
Therefore, these points are the solutions of the equations
Q,=0,Q, =0.
We have QQ, and Q, are established by Sharma [4]. Let(6?1 =y, =%,Q,= 0) of the bigger primary, in this case
a, =h,, =C, =1 and the other elements are equal to zero; (&, =¢, =% ,y, =0)of the smaller primary
=D, =—1,¢,, =1 and the other elements are equal to zero,

Q, :(1—ﬂ)(;21+ nzrleW(;_zlmzrzjw

2 If-2

SO (an s 2m)- (A0 A (A A) )

_3(”)(;r;1_ﬂ){(4A'1+4A'3+ 2A'2)—%((A'1+ A (x+1-p) + (A Alz)yz):| =0,
Qy=(1—,u)[%+n2rlJ%+y(;?l+n%]%

SO on an, o) (A ) 55 2) )| )

3(,u)y 5

_—[(4A'1+4A'2+ 2A'3)__2((A'1+ AL)(x+1- )’ +(A'1+A'2)y2)}20,

o

= +§[(2A3 - A, —A)]+§[(2A‘2—A'1—A'3)].

TRIANGULAR LIBERATION POINTS

The triangular liberation points are the solutions of the equation (7).
If the values of A, A", (i=1,2,3) are equal to zero we simply get r, =r,=1. When A, A', (i=1,2,3) aren’t equal to

zero we suppose that
=1+« and r,=1+p4 where o, =1. (8)
Putting the values of r, and r, from equation (8) in equation (3), we get

1
X=pu—-—+p-«a
ﬂzﬂ
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y =i§[1+§(ﬁ+a)} 9)

Putting the values of r, and r, from equation (8) and x, y from equation (7), rejecting higher order terms, we

get
( ~9u) (T+u) 4
(9A1 2A, —TA+4A) - 16(1- )Az 16(1_ﬂ)A3
and
ﬂ=(1::)Az (1- 3;1)Al A3(15+7;¢)(A3 A) (10)

STABILITY ANALYSIS
Assuming & and 77 denote small displacement of the infinitesimal particle from the equilibrium points.

X =X,+&,Y =Y, +7 (11)
Now
Qx :QX(X’ y):Qx(X0+é:1 y0+77)

Expanding by taylor’s expansion and considering only first orders, we have

Q, =Q0 (X, y)+EQ +n QY
Q, =Q§(x, y)+§Q§x+nQ‘;y

Where Qg is the value of € at the point (X , o) and similarly the other values Q° QO QO QO and QO are

XX 1

(12)

the respective values at the points (Xo , Yo).
At the equilibrium points we have

Q) =Q) =0
Hence the equation of motion of the infinitesimal particle is

d? d
_é: 77 §Q +ﬂQxy'

2
e
un 0 0
+2n—==5Q, +nQ,
gz TN g T
In order to solve equation (16) substitute
E=Ae", n=Be" (14)
Where A,B and / are parameters. This gives that
A(A*-Q) )" +B(-2n1-Qf )e* =0,
(15)
A(2n2-05 )e +B(A* -0 e =0.
The set of equation (15) has nontrivial solution if
2
At +(4n7 -0 -0 Y47+ 0005 —(QF)) =0 (16)
Where Q) , QO and € is defined at L, when the primaries are triaxial rigid bodies as
— - 3(1-
o =t ()| 24 2a-3p e p] 242530 |+ ( “)(41A1 4A,-37A,)
4 4 4 4 32 a7

3u ' : ,
+§(41A3—4A&—37A2)
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Q) =n’ +(1—y)(%—2—la+3ﬁj+y(%+3a— 21 ﬂj+—(1— )(—27A +268A, +143A,)

4 4 32 (18)
+2—§(268AA+143AA2—27AA3),
and
o 3 3 15
Q,, = {(1 ,u)( 3+7a+4ﬂ)—§,u( 3+4a +7ﬂ)——\/_(1— )(3A1—8A2—7A3)
(19)
15
55 o 742K
We can rewrlte equation (16) as
A*+PA+Q=0 (20)

Where

P=(4n"-0f - ),
Q=050 —(,),
and

A=2?
The stability of the triangular points requires that A=A%must be negative to obtain pure imaginary roots, i.e. the
discirninant of equation (17) is P —4Q < O'that is the condition for stability implies that:

(=27 u+271) +g(48—265/1+ 225.%) A +%(293—649,u+360,u2)A2
+§(386—537,u+135,u2)A3+§(2—52,u+213/12)A1' (21)

+%(—207— 265, +1788u°) A, —%(479—983y+ 276.4°)A, <0

If Ai , A{ (i =1, 2, 3) are equal to zero, then the stability condition is 24, <0.0385208965 Szebehly [7]. And if

Ai : A{ (i = 1, 2, 3) are not equal to Zero, we suppose that
Mo, = Ho + DA + P,A + DA+ DA + DA + P Ay where Py, Py, Pyy Py, Psand Py are to be

determined therefore we have

482654, + 2251 _ 293-649 4, +360.,
P = 72(-1+2u,) P2 = 36(~1+2u,)

_ 386-537 1, +1354; _ 2-52p,+ 21344
Pa= 72(-1+2,) T 18(—1+24,)

207 — 2654, +17884 479+ 983, — 27647
Ps = 144(-1+2,) Pe = 144(=1+ 21,

And the stability condition for the triangular points is

M <0.0385208965+0.5737263333A +8.0819275078A, +5.5003483611A,

22
+0.0188389082 A —1.61433589314 A) —3.3222244623 A, (22

CONCLUSION
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We construct the location and the stability condition of the triangular points of the restricted three body problem

with triaxial primaries considering a stationary rotational motion (6’1 =y, = %,gol = O) of the bigger primary and

(02 =0, =% W, =0) of the smaller primary and we conclude that the stability condition is depend on that
orientations. Also we found the stability condition in our particular case.
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