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Abstract: The location and the stability of the triangular points of the planar restricted three body problem have been 
discussed  when both the primaries are triaxial rigid bodies considering the case of stationary rotational motion of the 

bigger primary  and of the  smaller primary are  22 2 2, 0      and  21 1 1, 0       respectively. 
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INTRODUCTION 
The problem of stability conditions of triangular libration points was assumed by Gascheau [2] and then by 

Routh[5].   

 

In recent times many perturbing forces i.e., oblateness and radiation forces of the primaries, Coriolis and 

centrifugal forces etc., have been included in the study of the restricted three body problem. Bhatnagar and Gupta[1] 

show  the existence of 36 stationary motions each corresponding to the constant values of the non-cyclic generalized 

coordinates and thus depending on the Eulerian angles of both the bodies.  Khanna and Bhatnagar [3] have studied the 

problem when the smaller primary is a triaxial rigid body. Also Sharma et.al.[5] have studied the problem when both the 

primaries are triaxial rigid bodies in the case of stationary rotational motion  , andi i i   are small quantities. 

  

In this paper we consider the restricted three body problem when both the primaries are triaxial rigid bodies with 

the stationary rotational motion  21 1 1, 0      of the bigger primary, and  22 2 2, 0     of the 

smaller primary. 

 

EQUATIONS OF MOTION 

 We shall adopt the notation and terminology of Szebehly [7]. As a consequence, the distance between the 
primaries does not change and is taken equal to one; the sum of masses of the primaries is also taken one. The unit of 

time is chosen so as to make the gravitational constant unity. Besides this the principle axes of the primaries are oriented 

to the synodic axes by Euler's angels   , , , 1,2i i i i    . Since the axes are supposed to rotate with the same 

angular velocity as that of the rigid bodies and the bodies are moving around their center of mass without rotation, the 

Euler's angles remain constant throughout the motion. Using dimensionless variables,  
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Fig-1: Left:  the circular restricted three body problem in the synodical reference system with a dimensional units. 

Right: the five equilibrium points associated with the problem. 

  

the equations of motion of the infinitesimal mass 
3m  in a synodic coordinate system  ,x y  are 
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 Here   is the ratio of mass of the smaller primary to the total mass of primaries and 10
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 with 1 2m m  being the masses of the primaries.  

  

1 2 3, ,I I I  are the principal moments of inertia of the triaxial rigid body of mass 1m  at its center of mass, with , ,a b c  

as its axes. I is the moment of inertia about a line joining the center of the rigid body of mass 1m  and the infinitesimal 

body of mass 3m  and is given by  

 
'2 '2 '2

1 1 2 1 3 1 ,I I I m I n  l  

where 
' ' '

1 1 1,m and nl are the directional cosines of the line respect to its principal axes. 
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1 2 3' , ' , 'I I I  are the principal moments of inertia of the triaxial rigid body of mass 
2m  at its center of mass, 

with ', ', 'a b c  as its axes. I' is the moment of inertia about a line joining the center of the rigid body of mass 
2m  and the 

infinitesimal body of mass 
3m  and is given by 

  
' ' '2 ' '2 ' '2

1 2 2 2 3 2I I I m I n  l  

where
' ' '

2 2 2,m and nl are the directional cosines of the line respect to its principal axes. 

  

We denote the unit vectors along the principle axes at  1 2p or p  by i, j,k and the unit vectors parallel to the 

synodic axes by I,J,K  with the help of Euler's angles   , , , 1,2i i i i    . They are connected by Synge and 

Griffith(7) (1959), 

 
1 1 1i i ia b c  I i j k  

 
2 2 2i i ia b c  J i j k  

and 

 
3 3 3 ,i i ia b c  K i j k  

 1,2i  , 

where 

1 ,i i i i i ia Sin Sin Cos Cos Cos        

2 ,i i i i i ia Cos Sin Cos Sin Cos       

3 ,i i ia Sin Cos    

1 ,i i i i i ib Sin Cos Cos Cos Sin        

2 ,i i i i i ib Cos Cos Cos Sin Sin        

3 ,i i ib Sin Sin   

1 ,i i ic Sin Cos   

2 ,i i ic Sin Sin   

and  

3 ,i ic Cos  1,2i  . 

The axes  O xyz  have been defined by Szebehely [7]. Now,   in equation (2) can be written as 
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and R is the distance between the primaries. The mean motion, n is given by  
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Equation (1) permit an integral analogous to Jacobi integral 
2 2 2 0.x y C   & &  

The liberation points are the singularities of the manifold 

  2 2, , , 2 0.f x y x y x y C    && & &  

Therefore, these points are the solutions of the equations 

0 , 0x y    . 

We have 
x yand  are established by Sharma [4].  Let  21 1 1, 0      of the bigger primary, in this case 

21 31 11 1a b c    and the other elements are equal to zero;  22 2 2, 0     of the smaller primary 

32 12 221, 1a b c     and the other elements are equal to zero,  
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where 
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3 2 1 2 1 3
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TRIANGULAR LIBERATION POINTS 

 

 The triangular liberation points are the solutions of the equation (7). 

If the values of   , ' 1,2,3i iA A i   are equal to zero we simply get 
1 2 1r r  . When  , ' 1,2,3i iA A i   aren’t equal to 

zero we suppose that 

 
1 21 1r and r        where  , 1  = .                              (8) 

Putting the values of 
1 2r and r  from equation (8) in equation (3), we get  
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x        
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3 2

1
2 3

y  
 

    
 

                      (9) 

Putting the values of 
1 2r and r  from equation (8) and x, y from equation (7), rejecting higher order terms, we 

get  
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STABILITY ANALYSIS 

Assuming and  denote small displacement of the infinitesimal particle from the equilibrium points. 

                                       ,o oX X Y Y                                                     (11) 

Now  

   0 0, ,x x xx y x y       

Expanding by taylor’s expansion and considering only first orders, we have 
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Where 
0

x  is the value of 
x  at the point (x0 , y0)  and similarly the other values  

0 0 0 0 0, , , andxx xy y yx yy      are 

the respective values at the points (x0 , y0). 

At the equilibrium points we have  
0 0 0x y    

Hence the equation of motion of the infinitesimal particle is 
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In order to solve equation (16) substitute   

                                           ,t tAe Be                                                            (14) 

Where A,B and λ are parameters. This gives that  
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The set of equation (15) has nontrivial solution if 

                         
2

4 2 0 0 2 0 0 04 0xx yy xx yy xyn                                 (16) 

Where ,o o o

xx yy xyand    is defined at L4 when the primaries are triaxial rigid bodies as  
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We can rewrite equation (16) as 

                                    
2 0P Q                                                                          (20) 
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The stability of the triangular points requires that 
2= must be negative to obtain pure imaginary roots, i.e. the 

discirninant of equation (17) is 
2 4 0P Q  that is the condition for stability implies that: 
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If iA , iA  (i = 1, 2, 3) are equal to zero, then the stability condition is   0 0.0385208965   Szebehly [7]. And if  

iA , iA  (i = 1, 2, 3) are not equal to zero, we suppose that 
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And the stability condition for the triangular points is 
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CONCLUSION 
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 We construct the location and the stability condition of the triangular points of the restricted three body problem 

with triaxial primaries considering a stationary rotational motion  21 1 1, 0      of the bigger primary and  

 22 2 2, 0     of the smaller primary and we conclude that the stability condition is depend on that 

orientations. Also we found the stability condition in our particular case. 
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