On the Existence of Solutions to BSDES under Sublinear Grown Condition
 Mingming Liu, Zhi Li* ${ }^{\text {, Fan Cao, Gang Li, Kai Zhou }}$
 School of Information and Mathematics, Yangtze University, Jingzhou 434023, China.

*Corresponding Author:

Zhi Li
Email: csu@126.com

Abstract

In this paper, we study one-dimensional BSDE's whose coefficient gis sublinear growth in z. We obtain a general existence result and a comparison theorem when g is linear growth in y and sublinear growth in z. Some known results are extended and generalized.

Keywords: one-dimensional BSDE, sublinear growth

1. Introduction

In this paper, we consider the following one-dimensional backward stochastic differential equation(BSDE for short in the remaining):

$$
\begin{equation*}
y_{t}=\xi+\int_{t}^{T} g\left(s, y_{s}, z_{s}\right) d s-\int_{t}^{T} z_{s} \cdot d B_{s}, t \in[0, T] \tag{1.1}
\end{equation*}
$$

Where ξ is a random variable called the terminal condition, the random function $g(w, t, y, z): \Omega \times[0, T] \times R \times R^{d} \rightarrow R$ is progressively measurable for each (y, z), called the generator of the $\operatorname{BSDE}(1.1)$, and B is a d-dimensional Brownian motion. The solution $(y ., z$.$) is a pair of adapted processes. The triple (\xi, T, g)$ is called the parameters of the $\operatorname{BSDE}(1.1)$.

It is by now well known that under standard assumptions where g is of linear growth and Lipschitz continuous with respect to (y, z), for any random variable $\xi \in L^{2}\left(\Omega, F_{T}, P ; R^{n}\right)$, the $\operatorname{BSDE}(1)$ has a unique square integrable, adapted solution(see Pardoux and Peng [1]). Since then, there are many works attempting to relax the Lipschitz condition for getting the existence and uniqueness of solution, for instance Lepeltier and Martin [2], Bahlali [3], Kobylanski [4], Lepeltier and Martin [5], Briand and Hu [6], Briand et al. [7], and Fan and Liu [8] etc. In particular, in the case where $(g(t, O, O))_{t \in[0, T]}$ is a bounded process, and g is continuousand of linear growth in (y, z), Lepeltier and Martin [2] proved that there is atleast one solution to the $\operatorname{BSDE}(1.1)$. Furthermore, under the conditions that gis monotonic in y, has at most quadratic growth in z and ξ is bounded, Briand etal. [7] obtained some existence results on the solution to the BSDE(1.1).

Enlightened by these results, this paper generalizes the result in Lepeltier and Martin [2] and Kobylanski [4]. We prove that if g is linear growth in y and sublinear growth in z , and $(g(t, O, O))_{t \in[0, T]}$ is integrable, then for each integrable terminal condition ξ. the $\operatorname{BSDE}(1.1)$ has at least one solution. The content of this paper may be regarded as an extension and generalization of the corresponding result in Lepeltier and Martin [2], Kobylanski [4].

The rest of this paper is organized as follows. In Section 2, we present some necessary preliminaries and assumptions. In Section 3, we obtain an existence theorem and a comparison theorem of solution for $\operatorname{BSDE}(1.1)$ when g is linear growth in y and sublinear growth in z .

2. Preliminaries

Let (Ω, F, P) be a complete probability space with a d-dimensional standard Brownian motion $\left\{B_{t}\right\}_{t \geq 0}$. The filtration $F=\left\{F_{s}, 0 \leq s \leq T\right\}$ is generated by $\left\{B_{s}\right\}_{0 \leq s \leq T}$ and augmented by all P-null sets, i.e.,

$$
F_{s}=\sigma\left\{B_{r}, r \leq s\right\} \vee N_{p}, s \in[0, T]
$$

where N_{p} is the set of all $P-$ null subsets and $T>0$ is a fixed real time horizon. For every positive integer n, we use $|\cdot|$ to denote the norm of Euclidean space R^{n}. For each real $p>0, \delta^{p}$ denotes the set of real-valued, adapted and continuous processes $\left(Y_{t}\right)_{t \in[0, T]}$ such that

$$
\|Y\|_{\delta^{p}}:=\left(E\left[\sup _{t \in[0, T]}\left|Y_{t}\right|^{p}\right]\right)^{1 \wedge 1 / p}<+\infty
$$

If $p \geq 1,\|\cdot\|_{\delta^{p}}$ is a norm on δ^{p} and if $p \in(0,1),\left(X, X^{\prime}\right) \rightarrow\left\|X-X^{\prime}\right\|_{\delta^{p}}$ defines adistance on δ^{p}. Under this metric, δ^{p} is complete. Moreover, let M^{p} denote the set of (equivalent classes of) (F_{t})-progressively measurable, R^{n}-valued processes $\left\{Z_{t}, t \in[0, T]\right\}$ such that

$$
\|Z\|_{M^{p}}=\left\{E\left[\left(\int_{0}^{T}\left|Z_{t}\right|^{2} d t\right)^{p / 2}\right]\right\}^{1 \wedge 1 / p}<+\infty
$$

For $p \geq 1, M^{p}$ is a Banach space endowed with this norm and for $\left.p \in(0,1)\right), M^{p}$ is a complete metric space with the resulting distance. We set $\delta=U_{p>1} \delta^{p}$ and letus recall that a continuous process $\left(Y_{t}\right)_{t \in[0, T]}$ belongs to the class (D) if the family $\left\{Y_{\tau}: \tau\right.$ is stopping time bounded by T$\}$ is uniformly integrable. For a process Y in the class (D), we put

$$
\|Y\|_{1}=\sup \left\{E\left[Y_{\tau}\right], \tau \text { is stopping time bounded byT }\right\}
$$

The space of $\left(F_{t}\right)$-progressively measurable continuous processes which belong to theclass (D) is complete under this norm.

Now, let terminal condition ξ is F_{t}-measurable and satisfies $E|\xi|<+\infty$, g be the F_{t})-progressively measurable generator of the $\operatorname{BSDE}(1)$. In this paper, by a solution to the $\operatorname{BSDE}(1)$ we mean a pair of $\left(F_{t}\right)$-adapted processes (y.,z.) with values in $R \times R^{d}$ such that $d P-a . s ., t \rightarrow y_{t}$ is continuous, $t \rightarrow z_{t}$ belongs to $L^{2}(0, L), t \rightarrow g\left(t, y_{t}, z_{t}\right)$ belongs to $L^{1}(0, L)$ and $d P-a . S .$, the $\operatorname{BSDE}(1)$ holds true for each $t \in[0, T]$.
The generator g of $\mathrm{BSDE}(1)$ is a random function $\mathrm{g} g(w, t, y, z): \Omega \times[0, T] \times R \times R^{d} \rightarrow R$ which is progressively measurable for each (y, z) and satisfies the following assumptions:
(H1) $E\left[|\xi|+\int_{0}^{T}|g(s, 0,0)| d s\right]<+\infty ;$
(H2) There exist two constants $\mu>0,0<\alpha<1$ such that $d P \times d t-a . s$. ,

$$
\forall y_{1}, y_{2}, z_{1}, z_{2},\left|g\left(w, t, y_{1}, z_{1}\right)-g\left(w, t, y_{2}, z_{2}\right)\right| \leq \mu\left|y_{1}-y_{2}\right|+\mu\left|z_{1}-z_{2}\right|^{\alpha}
$$

The following result on $\operatorname{BSDE}(1)$ is referred to Fan and Liu [8].
Lemma 2.1. Under the assumptions (H1) and (H2), the $\operatorname{BSDE}(1.1)$ has a unique solution $(y ., z$.) such that y. is of class (D) and $z . \in M^{\beta}$ for some $\beta>\alpha$. Moreover, $(y ., z$.$) belongs to \delta^{\beta} \times M^{\beta}$ for all $\beta \in(0,1)$.

3. The linear increasing case in y

First, we obtain a generalized comparison theorem of $\operatorname{BSDE}(1.1)$ which plays an important role in this paper.
Theorem3.1. Let g and g^{\prime} be two generators of BSDEs and let $(y ., z$.$) and \left(y^{\prime} ., z^{\prime}.\right)$ be respectively a solution for the BSDEs with parameters (ξ, T, g) and $\left(\xi^{\prime}, T, g^{\prime}\right)$ such that both y. and y^{\prime}. are of class (D), and both z. and z^{\prime}. belong to M^{β} for some $\beta>\alpha$. If $d P-a . s ., \xi<\xi^{\prime}$, g satisfies (H2) with $\alpha \in(0,1]$ and
$d P \times d t-a . s . g\left(t, y_{t}{ }^{\prime}, z_{t}{ }^{\prime}\right)<g^{\prime}\left(t, y_{t}{ }^{\prime}, z_{t}{ }^{\prime}\right)$ (resp. g^{\prime} satisfies (H2) with $\alpha \in(0,1]$ and $d P \times d t-a . S .$, $g\left(t, y_{t}, z_{t}\right)<g^{\prime}\left(t, y_{t}, z_{t}\right)$, then for each $t \in[0, T]$, we have

$$
d P-a . s ., y_{t} \leq y_{t}^{\prime}
$$

Proof. We only prove the first case, the other case can be proved similarly. Let us fix $n \in N$ and denote τ_{n} the stopping time

$$
\tau_{n}=\inf \left\{t \in[0, T]: \int_{0}^{T}\left|z_{s}\right|^{2}+\left|z_{s}^{\prime}\right|^{2} d s \geq n\right\} \wedge T
$$

Tanaka's formula leads to the equation, setting $\hat{y}_{t}=y_{t}-y_{t}^{\prime}, \hat{z}_{t}=z_{t}-z_{t}^{\prime}$,

$$
e^{\mu\left(t \wedge \tau_{n}\right)} \hat{y}_{t \wedge \tau_{n}}^{+} \leq e^{\mu \tau_{n}} \hat{y}_{\tau_{n}}^{+}-\int_{t \wedge \tau_{n}}^{\tau_{n}} e^{\mu_{s}} I_{\hat{y}_{s}>0} \hat{z}_{s} \cdot d B_{s}+\int_{t \wedge \tau_{n}}^{\tau_{n}} e^{\mu_{s}}\left\{I_{\hat{y}_{s}>0}\left[g\left(s, y_{s}, z_{s}\right)-g^{\prime}\left(s, y_{s}^{\prime}, z_{s}^{\prime}\right)\right]-\mu \hat{y}_{s}^{+}\right\} d s \text { Since }
$$ $g\left(s, y_{s}, z_{s}\right)-g^{\prime}\left(s, y_{s}^{\prime}, z_{s}^{\prime}\right)$ is non-positive, we have

$$
g\left(s, y_{s}, z_{s}\right)-g^{\prime}\left(s, y_{s}^{\prime}, z_{s}^{\prime}\right)=g\left(s, y_{s}, z_{s}\right)-g\left(s, y_{s}^{\prime}, z_{s}\right)+g\left(s, y_{s}^{\prime}, z_{s}\right)-g^{\prime}\left(s, y_{s}^{\prime}, z_{s}^{\prime}\right)
$$

and we deduce, using the assumptions (H 2) of g, that

$$
I_{\hat{y}_{s}>0}\left[g\left(s, y_{s}, z_{s}\right)-g^{\prime}\left(s, y_{s}^{\prime}, z_{s}^{\prime}\right)\right] \leq \mu \hat{y}_{s}^{+}+\mu I_{\hat{y}_{s}>0}\left|z_{s}\right|^{\alpha}
$$

Thus, we get that for each $t \in[0, T]$,

$$
\begin{equation*}
e^{\mu\left(t \wedge \tau_{n}\right)} \hat{y}_{t \wedge \tau_{n}}^{+} \leq e^{\mu \tau_{n}} \hat{y}_{\tau_{n}}^{+}-\int_{t \wedge \tau_{n}}^{\tau_{n}} e^{\mu_{s}} I_{\hat{y}_{s}>0} \hat{z}_{s} \cdot d B_{s}+\int_{t \wedge \tau_{n}}^{\tau_{n}} \mu e^{\mu_{s}} I_{\hat{y}_{s}>0}\left|z_{s}\right|^{\alpha} d s \tag{3.1}
\end{equation*}
$$

Note that \hat{y}. is of the class (D) and \hat{z}. belongs to M^{β} for some $\beta>\alpha$. By taking the conditional expectation with respect to F_{t} for two sides of inequality (3.1), sending into infinity and then using Jensens inequality, Doobs inequality and Hölders inequality, we can deduce that $\hat{y}^{+} \in \delta$.
Furthermore, since $|x|^{\alpha} \leq m|x|+1 / m^{\alpha}$ for each $m \geq 1$, by (3.1) we get that for each $m \geq 1$,

$$
\begin{align*}
e^{\mu\left(t \wedge \tau_{n}\right)} \hat{y}_{t \wedge \tau_{n}}^{+} & \leq e^{\mu \tau_{n}} \hat{y}_{\tau_{n}}^{+}-\int_{t \wedge \tau_{n}}^{\tau_{n}} e^{\mu_{s}} I_{\hat{y}_{s}>0} \hat{z}_{s} \cdot d B_{s}+\int_{t \wedge \tau_{n}}^{\tau_{n}} \mu e^{\mu_{s}} I_{\hat{y}_{s}>0}\left(m\left|\hat{z}_{s}\right|+\frac{1}{m^{\alpha}}\right) d s \\
& \leq e^{\mu \tau_{n}} \hat{y}_{\tau_{n}}^{+}+T e^{\mu T} \frac{\mu}{m^{\alpha}}-\int_{t \wedge \tau_{n}}^{\tau_{n}} e^{\mu_{s}} I_{\hat{y}_{s}>0} \hat{z}_{s} \cdot\left[-\frac{m \mu \hat{z}_{s}}{\left|\hat{z}_{s}\right|} I_{\left|\hat{z}_{s}\right| \neq 0} d s+d B_{s}\right] \tag{3.2}
\end{align*}
$$

Let P_{m} be the probability on (Ω, F) which is equivalent to P and defined by

$$
\frac{d P_{m}}{d P}:=\exp \left\{m \mu \int_{0}^{\mathrm{T}} \frac{\hat{z}_{s}}{\left|\hat{z}_{s}\right|} I_{\left|\hat{z}_{s}\right| \neq 0} \cdot d B_{s}-\frac{1}{2} m^{2} \mu^{2} \int_{0}^{T} I_{\left|\hat{z}_{s}\right| \neq 0} d s\right\}
$$

By taking the conditional expectation with respect to F_{t} under P_{m} for the two sides of the previous inequality, using Girsanovs theorem and then sending n to infinity, in view of $\hat{y}^{+} \in \delta$ and $\xi \leq \xi^{\prime}$, we can deduce that for each $t \in[0, T]$ and $m \geq 1, e^{\mu t} \hat{y}_{t}^{+} \leq T e^{\mu T} \mu / m$. Then letting $m \rightarrow \infty$ yields that $d P-a . s ., y_{t} \leq y_{t}^{\prime}$. The proof is complete.

Remark 3.1. Obviously, Theorem 3.1 generalize the Proposition 1 in Fan and Liu [9].
Let us now consider the generator $g(\omega, t, y, z): \Omega \times[0, T] \times R \times R^{d} \rightarrow R$ which isprogressively measurable for each (y, z) and satisfies the following assumptions:
(A1) For all (ω, t) the $g(\omega, t, \cdot \cdot)$ is continuous;
(A2) There exist two constants $C \geq 0$ and $0<\alpha<1$ such that $d P \times d t-a . s$.

$$
\forall y, z,|g(\omega, t, y, z)| \leq C\left(1+|y|+|z|^{\alpha}\right)
$$

Before we prove our main results in this section we introduce a technical lemma.
Lemma 3.1. Assume that the generator g of the $\operatorname{BSDE}(1.1)$ satisfies (A1) and (A2). Then the sequence of functions

$$
g_{n}(\omega, t, y, z):=\sup _{(u, v) \in R^{1+d}}\left\{g(\omega, t, u, v)-n\left(|y-u|+|z-v|^{\alpha}\right)\right\}
$$

is well defined for $n \geq C$ and it satisfies
(i) Linear growth in y and sublinear growth in $z:\left|g_{n}(\omega, t, y, z)\right| \leq C\left(1+|y|+|z|^{\alpha}\right)$;
(ii) Monotonicity in $n: \forall y, z, g_{n}(\omega, t, y, z) \downarrow$;
(iii) Lipschitz in y and Hölders continuous in z: $\forall y, y^{\prime}, z, z^{\prime}$,

$$
\left|g_{n}(\omega, t, y, z)-g_{n}\left(\omega, t, y^{\prime}, z^{\prime}\right)\right| \leq n\left(\left|y-y^{\prime}\right|+\left|z-z^{\prime}\right|^{\alpha}\right)
$$

(iv)Strong convergence: if $\left(y_{n}, z_{n}\right) \rightarrow(y, z), n \rightarrow \infty$, then

$$
g_{n}\left(\omega, t, y_{n}, z_{n}\right) \rightarrow g(\omega, t, y, z), n \rightarrow \infty
$$

Proof. It is easy to see that, due to the assumption (A2) on g, g_{n} is well defined when $n \geq C$. And it's obvious that $g_{n} \geq g \geq-C\left(1+|y|+|z|^{\alpha}\right)$. For $n \geq C$, we have from the assumption (A2)

$$
g_{n}(\omega, t, y, z) \leq \sup _{(u, v) \in R^{1+d}}\left\{C\left(1+|u|+|v|^{\alpha}\right)-C\left(|y-u|+|z-v|^{\alpha}\right)\right\}
$$

For $\forall x, y, 0<\alpha \leq 1$, using the fact that $|x+y|^{\alpha} \leq|x|^{\alpha}+|y|^{\alpha}$, we have

$$
g_{n}(\omega, t, y, z) \leq \sup _{(u, v) \in R^{1+d}}\left\{C\left(1+|y|+|z|^{\alpha}\right)\right\}=C\left(1+|y|+|z|^{\alpha}\right)
$$

From above (i)holds.
(ii) is obvious.

Take $\varepsilon>0$ and consider $\left(u_{\varepsilon}, v_{\varepsilon}\right) \in R^{1+d}$ such that

$$
\begin{aligned}
g_{n}(\omega, t, y, z) & <g\left(\omega, t, u_{\varepsilon}, v_{\varepsilon}\right)-n\left(\left|y-u_{\varepsilon}\right|+\left|z-v_{\varepsilon}\right|^{\alpha}\right)+\varepsilon \\
& =g\left(\omega, t, u_{\varepsilon}, v_{\varepsilon}\right)-n\left(\left|y^{\prime}-u_{\varepsilon}\right|+\left|z^{\prime}-v_{\varepsilon}\right|\right)+n\left(\left|y^{\prime}-u_{\varepsilon}\right|+\left|z^{\prime}-v_{\varepsilon}\right|\right)-n\left(\left|y-u_{\varepsilon}\right|+\left|z-v_{\varepsilon}\right|^{\alpha}\right)+\varepsilon \\
& \leq g_{n}\left(\omega, t, y^{\prime}, z^{\prime}\right)+n\left(\left|y-y^{\prime}\right|+\left|z-z^{\prime}\right|^{\alpha}\right)+\varepsilon
\end{aligned}
$$

Theorem, interchanging the place of $(y, z))$ and $\left(y^{\prime}, z^{\prime}\right)$, and because \mathcal{E} is arbitrary we deduce that (iii) holds. $\operatorname{Assume}\left(y_{n}, z_{n}\right) \rightarrow(y, z), n \rightarrow \infty$. For every n , we take $\left(u_{n}, v_{n}\right) \in R^{1+d}$ such that

$$
\begin{equation*}
g\left(\omega, t, y_{n}, z_{n}\right) \leq g_{n}\left(\omega, t, y_{n}, z_{n}\right) \leq g\left(\omega, t, u_{n}, v_{n}\right)-n\left(\left|y_{n}-u_{n}\right|+\left|z_{n}-v_{n}\right|^{\alpha}\right)+1 / n \tag{3.3}
\end{equation*}
$$

Since $g\left(\omega, t, y_{n}, z_{n}\right)$ is bounded, we get that $\left(u_{n}\right)$ and $\left(v_{n}\right)$ are bounded. Since gsatisfies (A2), $g\left(\omega, t, u_{n}, v_{n}\right)$ is also bounded. Therefore, $\lim \sup _{n \rightarrow \infty} n\left|y_{n}-u_{n}\right|<\infty, \limsup _{n \rightarrow \infty} n\left|z_{n}-v_{n}\right|<\infty$, then we can get $u_{n} \rightarrow y, v_{n} \rightarrow z, n \rightarrow \infty$. Thus, from (3.3) we deduce that (iv) holds. The proof is complete.

We now give the following existence theorem for BSDE (1.1), which generalizes the corresponding result in Lepeltier and Martin [2] and Kobylanski [4].

Theorem 3.2. Assume that g satisfies the assumptions (A1) and (A2). Then, if $E|\xi|<\infty$, BSDE (1.1) has a solution ($y ., z$.) such that y. is of class (D) and $z . \in M^{\beta}$ for some $\beta>\alpha$. Moreover, there is a maximal solution $(\bar{y} ., \bar{z}$. of BSDE (1.1) insense that, for any other solution ($y ., z$.) of Eq. (1.1), we have $y . \leq \bar{y}$. .

Proof. Let g_{n} be defined as in Lemma 3.1, and also consider $h(\omega, t, y, z)=-C\left(f_{t}(\omega)+|y|+|z|^{\alpha}\right)$, where C and $f_{t}(\omega)$ are taken from (A2). Then, it is easy to check that g_{n} and h are progressively measurable functions, satisfying (H1) and (H2). So, we get from Lemma 2.1 that, for $n \geq C$, the following BSDEs have a unique adapted solution $\left(y^{n}, z^{n}{ }^{n}\right)$ and (U.,V.) in $\delta^{\beta} \times M^{\beta}$, respectively:

$$
\begin{gathered}
y_{t}^{n}=\xi+\int_{t}^{T} g_{n}\left(s, y_{s}^{n}, z_{s}^{n}\right) d s-\int_{t}^{T} z_{s}^{n} \cdot d B_{s}, t \in[0, T] \\
U_{t}=\xi+\int_{t}^{T} h\left(s, U_{s}, V_{s}\right) d s-\int_{t}^{T} V_{s} \cdot d B_{s}, t \in[0, T]
\end{gathered}
$$

From the comparison theorem (Theorem 3.1) we obtain that

$$
\begin{equation*}
\forall n \geq m \geq C, \quad \forall n \geq m \geq C, y .^{m} \geq y .^{n} \geq U, \text { a.s. }, t \in[0, T] \tag{3.5}
\end{equation*}
$$

Thus, since for each $n \geq 1, y .^{n}$ belongs to the class (D) and the space δ^{β} for each $\beta \in(0,1)$, there exists a process y. which belongs also to the class (D) and the space δ^{β} for each $\beta \in(0,1)$ such that $\lim _{n \rightarrow \infty}\left\|y_{t}^{n}-y_{t}\right\|_{1}=0$ and

$$
\forall \beta \in(0,1), \lim _{n \rightarrow \infty} E\left[\sup _{t \in[0, T]}\left|y_{t}^{n}-y_{t}\right|^{\beta}\right]=0 .
$$

Obviously, from ($U ., V$.) in $\delta^{\beta} \times M^{\beta}$, there is a constant B depending on C, T, α, and $E|\xi|$ such that $\|U\|<B$ and $\|V\|<B$. From (3.5), we have $\sup _{n \geq C}\left\|y^{n}\right\| \leq B$.Applying Itô's formula to $\left(y_{t}{ }^{n}\right)^{2}$, we have

$$
\left|y_{0}^{n}\right|^{2}+\int_{0}^{\tau_{k}^{\prime}}\left|z_{s}^{n}\right|^{2} d s=\left|y_{\tau_{k}^{\prime}}\right|^{2}+2 \int_{0}^{\tau_{k}^{\prime}} y_{s}^{n} g_{n}\left(s, y_{s}^{n}, z_{s}^{n}\right) d s-2 \int_{0}^{\tau_{k}^{\prime}} y_{s}^{n} z_{s}^{n} \cdot d B_{s} .
$$

Therefore, from the (i) in Lemma 3.1, we have

$$
\begin{aligned}
\int_{0}^{T_{k}^{\prime}}\left|z_{s}^{n}\right|^{2} d s & \leq\left|y_{T_{k}^{\prime}}^{n}\right|^{2}+2 C \int_{0}^{T_{k}^{\prime}}\left|y_{s}^{n}\right|\left(1+\left|\mathrm{y}_{s}^{n}\right|+\left|\mathrm{z}_{s}^{n}\right|^{\alpha}\right) \mathrm{ds}-2 \int_{0}^{T_{k}^{\prime}} y_{s}^{n} z_{s}^{n} \cdot d B_{s} \\
& \leq\left|y_{T_{k}^{\prime}}^{n}\right|^{2}+2 C \int_{0}^{T_{k}^{\prime}}\left|y_{s}^{n}\right|\left(1+\left|\mathrm{y}_{s}^{n}\right|+\left|\mathrm{z}_{s}^{n}\right|+1\right) \mathrm{ds}+2\left|\int_{0}^{T_{k}^{\prime}} y_{s}^{n} z_{s}^{n} \cdot d B_{s}\right| \\
& \leq \frac{2 T C}{\lambda^{2}}+\left(2 C T+2 \mathrm{C} \lambda^{2} T+1\right) \sup _{s \in[0, \mathrm{~T}]}\left|y_{s}^{n}\right|^{2}+\frac{C}{\lambda^{2}} \int_{0}^{T_{k}^{\prime}}\left|z_{s}^{n}\right|^{2} d s+2\left|\int_{0}^{T_{k}^{\prime}} y_{s}^{n} z_{s}^{n} \cdot d B_{s}\right|
\end{aligned}
$$

Choosing $\lambda^{2}=2 C$, we have

$$
\left.\int_{0}^{T_{k}^{\prime}}\left|z_{s}^{n}\right|^{2} d s \leq \frac{4 T C}{\lambda^{2}}+4 C T+4 \mathrm{C} \lambda^{2} T+2\right) \sup _{s \in[0, \mathrm{~T}]}\left|y_{s}^{n}\right|^{2}+4\left|\int_{0}^{T_{k}^{\prime}} y_{s}^{n} z_{s}^{n} \cdot d B_{s}\right| .
$$

Thus, since $\mathrm{y}^{n} \in \sigma^{\beta}$ for each $\beta \in(0,1)$, we have

$$
\begin{aligned}
\mathrm{E}\left[\left(\int_{0}^{T_{k}^{\prime}}\left|z_{s}^{n}\right|^{2} d s\right)^{\frac{\beta}{2}}\right] \leq & c_{\beta}\left(4 C T+4 C \lambda^{2} T+2\right)^{\frac{\beta}{2}} \mathrm{E}\left[\sup _{s \in[0, \mathrm{~T}]}\left|y_{s}^{n}\right|^{\beta}\right] \\
& +c_{\beta}\left(\frac{4 T C}{\lambda^{2}}\right)^{\frac{\beta}{2}}+2^{\beta} c_{\beta} \mathrm{E}\left[\left|\int_{0}^{T_{k}^{\prime}} y_{s}^{n} z_{s}^{n} \cdot d B_{s}\right|^{\frac{\beta}{2}}\right]
\end{aligned}
$$

where c_{β} is a constant depending only on β. Furthermore, it follows from BDG^{\prime} 's inequality that

$$
\begin{aligned}
2^{\beta} c_{\beta} \mathrm{E}\left[\left|\int_{0}^{T_{k}^{\prime}} y_{s}^{n} z_{s}^{n} \cdot d B_{s}\right|^{\frac{\beta}{2}}\right] & \leq d_{\beta} \mathrm{E}\left[\left.\left.\left|\int_{0}^{T_{k}^{\prime}}\right| y_{s}^{n}\right|^{2}\left|z_{s}^{n}\right|^{2} d s\right|^{\frac{\beta}{4}}\right] \\
& \leq \frac{d_{\beta}^{2}}{2} \mathrm{E}\left[\sup _{s \in[0, \mathrm{~T}]}\left|y_{s}^{n}\right|^{\beta}\right]+\frac{1}{2} \mathrm{E}\left[\left(\int_{0}^{T_{k}^{\prime}}\left|z_{s}^{n}\right|^{2} d s\right)^{\frac{\beta}{2}}\right]
\end{aligned}
$$

where d_{β} is a constant depending only on c_{β} and β. Thus, combining the above two inequality one knows

Mingming Liu et al.; Sch. J. Phys. Math. Stat., 2015; Vol-2; Issue-3A (Jun-Aug); pp-276-282

$$
\mathrm{E}\left[\left(\int_{0}^{T_{k}^{\prime}}\left|z_{s}^{n}\right|^{2} d s\right)^{\frac{\beta}{2}}\right] \leq\left[2 c_{\beta}\left(4 C T+4 C \lambda^{2} T+2\right)^{\frac{\beta}{2}}+d_{\beta}^{2}\right] \mathrm{E}\left[\sup _{s \in[0, \mathrm{~T}]}\left|y_{s}^{n}\right|^{\beta}\right]+2 c_{\beta}\left(\frac{4 T C}{\lambda^{2}}\right)^{\frac{\beta}{2}} .
$$

Letting $k \rightarrow \infty_{\text {in above inequality, we have }}\left\|z^{n}\right\| \leq M$, where M depends only β, T, C. For each $n, m \geq C$, applying Itô s formula to $\left|y^{n}-y^{m}\right|^{2}$ leads to the inequality

$$
\begin{aligned}
\int_{0}^{T_{k}}\left|z_{s}^{n}-z_{s}^{m}\right|^{2} d s & =\left|y_{T_{k}}^{n}-y_{T_{k}}^{m}\right|^{2}+2 \int_{0}^{T_{k}}\left(y_{s}^{n}-y_{s}^{m}\right)\left(g_{n}\left(s, y_{s}^{n}, z_{s}^{m}\right)-\mathrm{g}_{m}\left(s, y_{s}^{n}, z_{s}^{m}\right)\right) d s \\
& -2 \int_{0}^{T}\left(y_{s}^{n}-y_{s}^{m}\right)\left(z_{s}^{n}-z_{s}^{m}\right) \cdot d B_{s}
\end{aligned}
$$

On the other hand, it follows form (i) in Lemma 3.1 and H^{*} older inequality that

$$
\begin{aligned}
& \int_{0}^{T}\left(y_{s}^{n}-y_{s}^{m}\right)\left(g_{n}\left(s, y_{s}^{n}, z_{s}^{m}\right)-\mathrm{g}_{m}\left(s, y_{s}^{m}, z_{s}^{m}\right)\right) d s \\
& \leq 2\left(\int_{0}^{T}\left|y_{s}^{n}-y_{s}^{m}\right|^{2} d s\right)^{1 / 2}\left(\int_{0}^{T}\left(\left|g_{n}\left(s, y_{s}^{n}, z_{s}^{m}\right)\right|^{2}+\left|g_{m}\left(s, y_{s}^{m}, z_{s}^{m}\right)\right|^{2}\right) d s\right)^{1 / 2} \\
& \leq 4 T \sup _{s \in[0, \mathrm{~T}]}\left|y_{s}^{n}-y_{s}^{m}\right|\left(\int_{0}^{T}\left(4+\left|y_{s}^{m}\right|^{2}+\left|y_{s}^{n}\right|^{2}+\left|z_{s}^{n}\right|^{2}+\left|z_{s}^{m}\right|^{2}\right) d s\right)^{1 / 2}
\end{aligned}
$$

Thus, for each $\beta \in(0,1)$, we have

$$
\begin{aligned}
& \mathrm{E}\left[\left(\int_{0}^{T_{k}}\left|z_{s}^{n}-z_{s}^{m}\right|^{2} d s\right)^{\frac{\beta}{2}}\right] \leq c_{\beta}\left(8 T\left[(4 T)^{\frac{\beta}{4}}+(2 T B)^{\frac{1}{2}}+(2 M)^{\frac{1}{2}}\right]\right)^{\frac{\beta}{2}} \mathrm{E} \sup _{s \in[0, \mathrm{~T}]}\left|y_{s}^{n}-y_{s}^{m}\right|^{\frac{\beta}{2}} \\
&++2^{\beta} c_{\beta} \mathrm{E}\left[\left|\int_{0}^{T_{k}}\left(y_{s}^{n}-y_{s}^{m}\right)\left(z_{s}^{n}-z_{s}^{m}\right) d B_{s}\right|^{\frac{\beta}{2}}\right]+c_{\beta} \mathrm{E} \sup _{s \in[0, \mathrm{~T}]}\left|y_{s}^{n}-y_{s}^{m}\right|^{\beta} . \text { Furthermore, it }
\end{aligned}
$$

follows from BDG's inequality that

$$
\begin{aligned}
2^{\beta} c_{\beta} \mathrm{E}\left[\mid \int_{0}^{T_{k}}\left(y_{s}^{n}-y_{s}^{m}\right)\right. & \left.\left.\left(z_{s}^{n}-z_{s}^{m}\right) d B_{s}\right|^{\frac{\beta}{2}}\right] \leq d_{\beta} \mathrm{E}\left[\left|\int_{0}^{T_{k}}\right| \mathrm{y}_{s}^{n}-\left.\left.y_{s}^{m}\right|^{2}\left|z_{s}^{n}-z_{s}^{m}\right|^{2} d s\right|^{\frac{\beta}{4}}\right] \\
& \leq \frac{d_{\beta}^{2}}{2} \mathrm{E}\left[\sup _{s \in[0, \mathrm{~T}]}\left|y_{s}^{n}-y_{s}^{m}\right|^{\beta}\right]+\frac{1}{2} \mathrm{E}\left[\left(\int_{0}^{T_{k}}\left|z_{s}^{n}-z_{s}^{m}\right|^{2} d s\right)^{\frac{\beta}{2}}\right]
\end{aligned}
$$

Thus, combining the above inequality and letting $k \rightarrow \infty$ one knows that there exist two constants C_{1}, C_{2} depending only on C, T, α, β, and $\mathrm{E}|\varepsilon|$ such that for all $n, m \geq C$

$$
\mid \mathrm{z}^{n}-z^{m}\left\|\leq C_{1}\right\| y^{n}-y^{m}\left\|+C_{2}\right\| y^{n}-y^{m} \|^{1 / 2}
$$

which means that, in view of the fact that Z^{n} belongs to M^{β} for each $\beta \in(0,1)$ and
$n \geq 1$, there exists a process Z. which belongs to also M^{β} such that

$$
\lim _{n \rightarrow \infty} \mathrm{E}\left[\left(\int_{0}^{T}\left|\mathrm{z}_{s}^{n}-z_{\mathrm{s}}\right|^{2} d s\right)^{\beta / 2}\right]=0
$$

Therefore, we complete our proof.

REFERENCES

1. Pardoux E, Peng S; Backward doubly stochastic differential equations and systems of quasilinear SPDEs. Probab. Theory Relat. Fields, 1994; 98:209-227.
2. Lepeltier JP, Martin J; Backward stochastic differential equations with continuous coefficient. Statistics and Probability Letters, 1997; 32:425-430.
3. Bahlahi B; Backward stochastic differential equations with locally Lipschitz coefficient. Comptes Rendus de l'Académie des Sciences - Series I - Mathematics, 2001; 33: 481-486.

Mingming Liu et al.; Sch. J. Phys. Math. Stat., 2015; Vol-2; Issue-3A (Jun-Aug); pp-276-282
4. Kobylanski M; Backward stochastic differential equations and partial differential equations with quadratic growth. The Annals of Probability, 2000; 28:558-602.
5. Lepeltier JP, Martin J; Existence for BSDE with superlinear-quadratic coefficient. Stochastics and Stochastic Reports, 1998; 63:277-240.
6. Briand P, Hu Y; Quadratic BSDEs with convex generators and unbounded terminal conditions. Probability Theory and Related Fields, 2008;141:543-567.
7. Briand P, Relepeltier JP, Martin J; One-dimensional backward stochastic differential equations whose coefficient is monotonic in yand non-Lipschitz in z. Bernoulli, 2007; 13: 80-91.
8. Fan SJ, Liu DQ; A class of BSDE with integrable parameters. Statistics and Probability Letters, 2010; 80:20242031.

