Scholars Journal of Physics，Mathematics and Statistics

Generalized Likelihood Ratio Test for Normal Population Variance
 LI Wenhe
 College of Mathematics and Statistics，Northeast Petroleum University，Daqing 163318，China

＊Corresponding Author：

LI Wenhe
Email：xiongdi163＠163．com

Abstract

Generalized likelihood ratio test（GLRT）is a very important method of hypothesis testing in mathematical statistics，which is widely applied．In this paper，GLRT is used to deduce the rejection region of hypothesis testing for the single normal population variance，with both known and unknown mean value．

Keywords：Normal distribution，Mean value，Hypothesis test，generalized likelihood ratio test

INTRODUCTION

Given the probability density function of the population as $f(x, \theta)$ ，where $\theta \in \Theta$ ．For the testing issue： $H_{0}: \theta \in \Theta_{0} \leftrightarrow H_{1}: \theta \in \Theta_{1}, \lambda(x)=\sup _{\theta \in \Theta} L(\underset{\sim}{x}, \theta) / \sup _{\theta \in \Theta_{。}} L(\underset{\sim}{x}, \theta)$ is defined as the generalized likelihood ratio（GLR） of the sample $\left(x_{1}, x_{2}, \cdots x_{n}\right)$ ．

The definition indicates that $\lambda(x) \geq 1$ ．Assuming that $\hat{\theta}$ and $\hat{\theta}_{0}$ represent the maximum likelihood estimation of θ at Θ and Θ 。respectively，we have：

$$
\lambda(x)=\sup L(\underset{\sim}{x}, \hat{\theta}) / \sup L\left(\underset{\sim}{x}, \hat{\theta}_{0}\right)
$$

If the original hypothesis H_{0} is true，i．e．the truth value of θ is surely in Θ_{0} ，then $\hat{\theta}$ is also in Θ_{0} or very close to Θ_{0} ，leading to $\sup _{\theta \in \Theta_{\circ}} L(\underset{\sim}{x}, \theta)=L(\underset{\sim}{x}, \underset{\theta}{\theta}) \approx \sup _{\theta \in \Theta} L(\underset{\sim}{x}, \theta)$ ，and therefore $\lambda(x) \approx 1$ ．When $\lambda(x)$ is significantly larger than 1，there is $\sup f(\underset{\sim}{x}, \theta)<f(\underset{\sim}{x}, \hat{\theta})$ ，namely，$\hat{\theta}$ is far away from Θ_{\circ} ．The truth value of $\hat{\theta}$ is quite close to that of θ ，so $\theta \in \Theta$ 。
it is highly possible that the truth value of θ is not in Θ_{\circ} ，i．e．the hypothesis H_{0} is very possible invalid．As a result， the rejection region shall be $W_{0}=\left\{\underset{\sim}{x} \mid \lambda(\underset{\sim}{x})>\lambda_{0}\right\}$ ，in which，λ_{0} satisfies：

$$
\sup _{\theta \in \Theta_{0}} P\left(\underset{\sim}{X} \in W_{0} \mid \theta\right)=\alpha(0<\alpha<1)
$$

In this study，GLRT was used to deduce，in detail，the rejection region of the one－sided hypothesis testing for the single normal population variance in different cases．

For the case with known mean value

Theorem 1
Suppose $X \sim N\left(\mu, \sigma^{2}\right)$ With $\mu=\mu_{0}$ known，the GLRT rejection region for the testing issue

$$
\begin{align*}
& H_{0}: \sigma^{2}=\sigma_{0}^{2} \leftrightarrow H_{0}: \sigma^{2} \neq \sigma_{0}^{2} \text { is: } \\
& \qquad W_{0}=\left\{\left(x_{1}, x_{2}, \cdots, x_{n}\right) \mid \lambda(x)>\lambda_{0}\right\}=\left\{\left(x_{1}, x_{2} \cdots x_{n}\right) \mid m>c_{1} \text { or } m<c_{2}\right\} \tag{1}
\end{align*}
$$

Where c_{1} and c_{2} satisfy：

$$
\int_{0}^{c_{2}} \chi_{n}^{2}(y) d y+\int_{c_{1}}^{+\infty} \chi_{n}^{2}(y) d y=\alpha
$$

Where, $\chi_{n}^{2}(y)$ is a density function of the χ^{2} distribution with n degrees of freedom.

Proof:

The likelihood function is:

$$
L\left(x ; \sigma^{2}\right)=\left(\frac{1}{\sqrt{2 \pi \sigma}}\right)^{n} \exp \left\{-\sum_{i=1}^{n}\left(x_{i}-\mu_{0}\right) / 2 \sigma^{2}\right\}
$$

When $\sigma^{2} \in \Theta$, the maximum likelihood estimation of σ^{2} is:

$$
\begin{gathered}
\hat{\sigma}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\mu_{0}\right)^{2} \\
\sup _{\sigma^{2} \in \Theta} L\left(\underset{\sim}{x}, \sigma^{2}\right)=\left[1 / 2 \pi \frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\mu_{0}\right)^{2}\right]^{-\frac{n}{2}} e^{-\frac{n}{2}}
\end{gathered}
$$

When $\sigma^{2} \in \Theta_{0}, \quad \sigma^{2}=\sigma_{0}^{2}$, we have

$$
\sup _{\sigma^{2} \in \Theta_{0}} L\left(\underset{\sim}{x} ; \sigma^{2}\right)=\left(\frac{1}{\sqrt{2 \pi} \sigma_{0}}\right)^{n} \exp \left\{-\sum_{i=1}^{n}\left(x_{i}-\mu_{0}\right)^{2} / 2 \sigma_{0}^{2}\right\} .
$$

So we have

$$
\lambda(x)=\sup _{\sigma^{2} \in \Theta} L\left(\underset{\sim}{x} ; \sigma^{2}\right) / \sup _{\sigma^{2} \in \Theta_{0}} L\left(\underset{\sim}{x} ; \sigma^{2}\right)=\left(\sum_{i=1}^{n}\left(x_{i}-\mu_{0}\right)^{2} / n \sigma_{0}^{2}\right)^{\frac{n}{2}} \exp \left\{\frac{\sum_{i=1}^{n}\left(x_{i}-\mu_{0}\right)^{2}}{2 \sigma_{0}^{2}}-\frac{n}{2}\right\}
$$

Let

$$
m=\sum_{i=1}^{n}\left(x_{i}-\mu_{0}\right)^{2} / \sigma_{0}^{2}
$$

Then

$$
\lambda(x)=\left(\frac{n}{m}\right)^{n / 2} e^{\frac{m}{2}-\frac{n}{2}}
$$

When $m>n, \lambda(x)$ is increasing, while decreasing when $m<n$.
If H_{0} is true, then:

$$
m \sim \chi^{2}(n-1)
$$

The rejection region therefore is:

$$
W_{0}=\left\{\left(x_{1}, x_{2}, \cdots, x_{n}\right) \mid \lambda(x)>\lambda_{0}\right\}=\left\{\left(x_{1}, x_{2} \cdots x_{n}\right) \mid m>c_{1} \text { or } m<c_{2}\right\}
$$

By the following formula

$$
P\left\{\left(x_{1}, x_{2}, \cdots x_{n}\right) \in W \mid \sigma=\sigma_{0}\right\}=\alpha
$$

We can get

$$
\int_{0}^{c_{2}} \chi_{n}^{2}(y) d y+\int_{c_{1}}^{+\infty} \chi_{n}^{2}(y) d y=\alpha
$$

Where $\chi_{n}^{2}(y)$ is a density function of the χ^{2} distribution with n degrees of freedom

Theorem 2

Suppose $X \sim N\left(\mu, \sigma^{2}\right)$ With $\mu=\mu_{0}$ known, the GLRT rejection region for the testing issue $H_{0}: \sigma^{2} \leq \sigma_{0}{ }^{2} \leftrightarrow H_{1}: \sigma^{2}>\sigma_{0}{ }^{2}$ is:

$$
\begin{equation*}
W_{0}=\left\{\left(x_{1}, x_{2}, \cdots, x_{n}\right) \mid m>\chi_{\alpha}^{2}(n)\right\} \tag{2}
\end{equation*}
$$

Proof: The likelihood function is:

$$
L\left(x ; \sigma^{2}\right)=\left(\frac{1}{\sqrt{2 \pi} \sigma}\right)^{n} \exp \left\{-\sum_{i=1}^{n}\left(x_{i}-\mu_{0}\right)^{2} / 2 \sigma^{2}\right\}
$$

When $\sigma^{2} \in \Theta$, the maximum likelihood estimation of σ^{2} is:

$$
\begin{gathered}
\hat{\sigma}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\mu_{0}\right)^{2}=S_{n}^{2} \\
\sup _{\sigma^{2} \in \Theta} L\left(\underset{\sim}{x} ; \sigma^{2}\right)=\left[1 / 2 \pi \frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\mu_{0}\right)^{2}\right]^{-\frac{n}{2}} e^{-\frac{n}{2}}
\end{gathered}
$$

When $\sigma^{2} \in \Theta_{0}$, we have

$$
\sup _{\sigma^{2} \in \Theta_{0}} L\left(\underset{\sim}{x} ; \sigma^{2}\right)= \begin{cases}{\left[1 / 2 \pi \frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\mu_{0}\right)^{2}\right]^{-\frac{n}{2}} e^{-\frac{n}{2}}} & \sigma_{0}^{2} \geq S_{n}^{2} \\ L\left(\underset{\sim}{x} ; \sigma_{0}^{2}\right) & \sigma_{0}^{2}<S_{n}^{2}\end{cases}
$$

When $\sigma_{0}{ }^{2}>S_{n}^{2}$, we have

$$
\lambda(x) \equiv 1
$$

When $\sigma_{0}{ }^{2}<S_{n}^{2}$, we have

$$
\lambda(x)=\left(\sum_{i=1}^{n}\left(x_{i}-\mu_{0}\right)^{2} / n \sigma_{0}{ }^{2}\right)^{\frac{n}{2}} \exp \left\{\frac{\sum_{i=1}^{n}\left(x_{i}-\mu_{0}\right)^{2}}{2 \sigma_{0}^{2}}-\frac{n}{2}\right\}
$$

Because of $\frac{n S_{n}^{2}}{\sigma_{0}{ }^{2}}>1, \lambda(x)$ is an increasing function about:

$$
m=\frac{\sum_{i=1}^{n}\left(x_{i}-\mu_{0}\right)^{2}}{\sigma_{0}^{2}}
$$

Therefore, the rejection region is:

$$
W_{0}=\left\{\left(x_{1}, x_{2}, \cdots, x_{n}\right) \mid \lambda(x)>\lambda_{0}\right\}=\left\{\left(x_{1}, x_{2}, \cdots, x_{n}\right) \mid m>C\right\}
$$

and

$$
P\left\{\text { reject } \mathrm{H}_{0} \mid H_{0}\right\}=\mathrm{P}\left\{m>C \mid \sigma^{2} \leq \sigma_{0}^{2}\right\}=\alpha
$$

If H_{0} is true, there is:

$$
m=\frac{\sum_{i=1}^{n}\left(x_{i}-\mu_{0}\right)^{2}}{\sigma_{0}^{2}} \sim \chi^{2}(n)
$$

Hence

$$
C=\chi_{\alpha}^{2}(n)
$$

So we have

$$
W_{0}=\left\{\left(x_{1}, x_{2}, \cdots, x_{n}\right) \mid m>\chi_{\alpha}^{2}(n)\right\}
$$

For the case with known variance

Theorem 3

Suppose $X \sim N\left(\mu, \sigma^{2}\right)$ With μ unknown, the GLRT rejection region for the testing issue $H_{0}: \sigma^{2}=\sigma_{0}^{2} \leftrightarrow H_{0}: \sigma^{2} \neq \sigma_{0}^{2}$ is:

$$
\begin{equation*}
W_{0}=\left\{\left(x_{1}, x_{2}, \cdots, x_{n}\right) \mid \lambda(x)>\lambda_{0}\right\}=\left\{\left(x_{1}, x_{2} \cdots x_{n}\right) \mid m>c_{1} \text { or } m<c_{2}\right\} \tag{3}
\end{equation*}
$$

Where c_{1} and c_{2} satisfy:

$$
\int_{0}^{c_{2}} \chi_{n-1}^{2}(y) d y+\int_{c_{1}}^{+\infty} \chi_{n-1}^{2}(y) d y=\alpha
$$

Where $\chi_{n-1}^{2}(y)$ is a density function of the χ^{2} distribution with $n-1$ degrees of freedom.

Proof

The likelihood function is:

$$
L\left(\underset{\sim}{x} ; \mu, \sigma^{2}\right)=\left(\frac{1}{\sqrt{2 \pi \sigma}}\right)^{n} \exp \left\{-\sum_{i=1}^{n}\left(x_{i}-\mu\right) / 2 \sigma^{2}\right\}
$$

When $\left(\mu, \sigma^{2}\right) \in \Theta, \quad \mu=\bar{x}, \quad \hat{\sigma}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}$

$$
\sup _{\left(\mu, \sigma^{2}\right) \in \Theta} L\left(\underset{\sim}{x} ; \mu, \sigma^{2}\right)=\left[1 / 2 \pi \frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}\right]^{-\frac{n}{2}} e^{-\frac{n}{2}}
$$

When $\left(\mu, \sigma^{2}\right) \in \Theta_{0}, \quad \mu=\bar{x}, \quad \sigma_{0}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}$

$$
\sup _{\left(\mu, \sigma^{2}\right) \in \Theta_{0}} L\left(\underset{\sim}{x} ; \mu, \sigma^{2}\right)=\left(\frac{1}{\sqrt{2 \pi} \sigma_{0}}\right)^{n} \exp \left\{-\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} / 2 \sigma_{0}^{2}\right\} .
$$

Hence

$$
\begin{aligned}
\lambda(x) & =\sup _{\left(\mu, \sigma^{2}\right) \in \Theta} L\left(\underset{\sim}{x} ; \mu, \sigma^{2}\right) / \sup _{\left(\mu, \sigma^{2}\right) \in \Theta_{0}} L\left(\underset{\sim}{x} ; \mu, \sigma^{2}\right) \\
& =\left(\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} / n \sigma_{0}^{2}\right)^{\frac{n}{2}} \exp \left\{\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)}{2 \sigma_{0}^{2}}-\frac{n}{2}\right\}
\end{aligned}
$$

Let $m=\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} / \sigma_{0}^{2}$, then $\lambda(x)=\left(\frac{m}{n}\right)^{\frac{n}{2}} e^{\frac{m}{2}-\frac{n}{2}}$. when $m>n, \lambda(x)$ is increasing, while decreasing when $m<n$. If H_{0} is true, there is: $m \sim \chi^{2}(n-1)$.
As a result, the rejection region can be defined as:

$$
W_{0}=\left\{\left(x_{1}, x_{2}, \cdots, x_{n}\right) \mid \lambda(x)>\lambda_{0}\right\}=\left\{\left(x_{1,} x_{2} \cdots x_{n}\right) \mid m>c_{1} \text { or } m<c_{2}\right\}
$$

where c_{1} and c_{2} satisfy:

$$
P\left\{\text { reject } H_{0} \mid H_{0}\right\}=P\left\{m>c_{1} \text { or } m<c_{2} \mid \sigma^{2}=\sigma_{0}^{2}\right\}=\alpha
$$

Therefore,

$$
\int_{0}^{c_{2}} \chi_{n-1}^{2}(y) d y+\int_{c_{1}}^{+\infty} \chi_{n-1}^{2}(y) d y=\alpha
$$

where $\chi_{n-1}^{2}(y)$ is the density function of the χ^{2} distribution with $n-1$ degrees of freedom.

Theorem 4

Suppose $X \sim N\left(\mu, \sigma^{2}\right)$ With μ unknown, the GLRT rejection region for the testing issue

$$
\begin{align*}
& H_{0}: \sigma^{2} \leq \sigma_{0}^{2} \leftrightarrow H_{1}: \sigma^{2}>\sigma_{0}^{2} \text { is: } \\
& \qquad W_{0}=\left\{\left(x_{1}, x_{2}, \cdots, x_{n}\right) \mid m>\chi_{\alpha}^{2}(n-1)\right\} \tag{4}
\end{align*}
$$

Proof: The likelihood function is:

$$
L\left(\underset{\sim}{x} ; \sigma^{2}\right)=\left(\frac{1}{\sqrt{2 \pi} \sigma}\right)^{n} \exp \left\{-\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} / 2 \sigma^{2}\right\}
$$

When $\sigma^{2} \in \Theta$, the maximum likelihood estimation of σ^{2} is:

$$
\begin{aligned}
& \hat{\sigma}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}=S^{2} \\
& \sup _{\sigma^{2} \in \Theta} L\left(\underset{\sim}{x} ; \sigma^{2}\right)=\left[1 / 2 \pi \frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}\right]^{-\frac{n}{2}} e^{-\frac{n}{2}}
\end{aligned}
$$

When $\sigma^{2} \in \Theta_{0}$, we have

$$
\sup _{\sigma^{2} \in \Theta_{0}} L\left(\underset{\sim}{x} ; \sigma^{2}\right)= \begin{cases}{\left[1 / 2 \pi \frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}\right]^{-\frac{n}{2}} e^{-\frac{n}{2}},} & \sigma_{0}{ }^{2} \geq S^{2} \\ L\left(\underset{\sim}{x} ; \sigma_{0}{ }^{2}\right), & \sigma_{0}{ }^{2}<S^{2}\end{cases}
$$

When $\sigma_{0}{ }^{2}>S^{2}$, we have

$$
\lambda(x) \equiv 1
$$

When $\sigma_{0}{ }^{2}<S^{2}$, we have

$$
\lambda(x)=\left(\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} / n \sigma_{0}^{2}\right)^{\frac{n}{2}} \exp \left\{\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{2 \sigma_{0}^{2}}-\frac{n}{2}\right\}
$$

Because of $\frac{n S^{2}}{\sigma_{0}{ }^{2}}>1, \lambda(x)$ is an increasing function about:

$$
m=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{\sigma_{0}^{2}}
$$

Therefore, the rejection region is:

$$
W_{0}=\left\{\left(x_{1}, x_{2}, \cdots, x_{n}\right) \mid \lambda(x)>\lambda_{0}\right\}=\left\{\left(x_{1}, x_{2}, \cdots, x_{n}\right) \mid m>C\right\}
$$

and

$$
P\left\{\text { reject } \mathrm{H}_{0} \mid \mathrm{H}_{0}\right\}=\mathrm{P}\left\{m>C \mid \sigma^{2} \leq \sigma_{0}^{2}\right\}=\alpha
$$

Hence

$$
C=\chi_{\alpha}^{2}(n-1)
$$

So we have

$$
W_{0}=\left\{\left(x_{1}, x_{2}, \cdots, x_{n}\right) \mid m>\chi_{\alpha}^{2}(n-1)\right\}
$$

CONCLUSIONS

In this paper, by using the generalized likelihood ratio test, four conclusions are obtained:

- The rejection region of the two-sided hypothesis testing for normal population variance with the known mean value(1);
- The rejection region of the one-sided hypothesis testing(2);
- The rejection region of the two-sided hypothesis testing for normal population variance with the unknown mean value(3);
- The rejection region of the one-sided hypothesis testing (4).

ACKNOWLEDGEMENTS

I would like to thank the referees and the editor for their valuable suggestions.

REFERENCES

1. CHEN Xiru. An introduction to mathematical statistics. Science press, 1981.
2. CHEN Jiading. The notes of mathematical statistics. Higher education press, 1993.
