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Abstract: Generalized likelihood ratio test (GLRT) is a very important method of hypothesis testing in mathematical 

statistics, which is widely applied. In this paper, GLRT is used to deduce the rejection region of hypothesis testing for the 

single normal population variance, with both known and unknown mean value. 
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INTRODUCTION 

Given the probability density function of the population as ),( xf , where   .For the testing issue:
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 is defined as the generalized likelihood ratio (GLR) 

of the sample ( 1 2, , nx x x ). 

The definition indicates that 1)( x . Assuming that 0 and 


  represent the maximum likelihood estimation of 

  at   and 。  respectively, we have: 
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If the original hypothesis 0H  is true, i.e. the truth value of   is surely in 0 , then 


  is also in 0 or very close to 0

, leading to sup ( , ) ( , ) sup ( , )L x L x L x
 

  


 

 
  。
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 。

, namely, 


  is far away from 。 . The truth value of 


  is quite close to that of  , so 

it is highly possible that the truth value of   is not in 。 , i.e. the hypothesis 0H  is very possible invalid. As a result, 

the rejection region shall be 0 0{ | ( ) }W x x  
 

, in which, 0  satisfies:  
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(0 1)   

In this study, GLRT was used to deduce, in detail, the rejection region of the one-sided hypothesis testing for the 

single normal population variance in different cases. 

 

For the case with known mean value  

Theorem 1 

Suppose 
2~ ( , )X N    With 0   known, the GLRT rejection region for the testing issue 
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Where, 
2 ( )n y  is a density function of the 

2  distribution with n degrees of freedom.  

 

Proof:  
The likelihood function is: 
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When m n , ( )x  is increasing, while decreasing when m n . 

If 0H  is true, then: 

2~ ( 1)m n   

The rejection region therefore is:  

0 1 2 0 1, 2 1 2{( , , , ) | ( ) } {( ) | }n nW x x x x x x x m c or m c        

By the following formula               
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Where 
2 ( )n y  is a density function of the 

2  distribution with n degrees of freedom 

 

Theorem 2 

Suppose 
2~ ( , )X N    With  = 0  known, the GLRT rejection region for the testing issue 
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Proof: The likelihood function is:  
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Therefore, the rejection region is:  
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For the case with known variance 

Theorem 3 

Suppose 
2~ ( , )X N    With   unknown, the GLRT rejection region for the testing issue 
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m n . If 0H  is true, there is: 
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As a result, the rejection region can be defined as: 
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Suppose 
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Therefore, the rejection region is:  
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CONCLUSIONS 

In this paper, by using the generalized likelihood ratio test, four conclusions are obtained: 

 The rejection region of the two-sided hypothesis testing for normal population variance with the known mean 

value(1);  

 The rejection region of the one-sided hypothesis testing(2);  

 The rejection region of the two-sided hypothesis testing for normal population variance with the unknown mean 

value(3);  

 The rejection region of the one-sided hypothesis testing (4). 
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