Scholars Journal of Physics, Mathematics and Statistics

Sch. J. Phys. Math. Stat. 2015; 2(3A):323-324 ©Scholars Academic and Scientific Publishers (SAS Publishers) (An International Publisher for Academic and Scientific Resources)

The Digital Features of the Function of Order Statistics

LI Wenhe

College of Mathematics and Statistics, Northeast Petroleum University, Daqing 163318, China

*Corresponding Author: LI Wenhe Email: <u>xiongdi163@163.com</u>

Abstract: In this paper, we deduce the digital features of the function of order statistics by the probability density function of order statistics and the properties of the Euler integral. **Keywords:** Order statistics, Distribution function, Expectation, The variance.

The probability density function of order statistics

By the literature [1] [2], we have the following lemma.

Lemma

Let the distribution function of population X is F(x) and the corresponding probability density function is f(x). Thus the probability density function of $X_{(k)}$ is

$$g_{k}(x) = \frac{n!}{(k-1)!(n-k)!} [F(x)]^{k-1} [1-F(x)]^{n-k} f(x)$$
(1)

Theorem Let X_1, X_2, \dots, X_n independent and identically distribution and their common distribution function is F(x). The order statistics of X_1, X_2, \dots, X_n is $X_{(1)} \le X_{(2)} \le \dots \le X_{(n)}$. If F(x) is continuous function, then

$$E[F(X_i)] = \frac{i}{n+1}, \quad D[F(X_{(i)})] = \frac{i[n-i+1]}{(n+1)^2(n+2)}$$
(2)

Proof $E[F(X_i)] = \int_{-\infty}^{+\infty} F[x_{(i)}] \cdot g_k(x) dx$

$$= \int_{-\infty}^{+\infty} F(x) \cdot \frac{n!}{(i-1)!(n-i)!} F(x)^{i-1} [1-F(x)]^{n-i} f(x) dx$$

$$= \int_{0}^{1} F(x) \cdot \frac{n!}{(i-1)!(n-i)!} F(x)^{i-1} [1-F(x)]^{n-i} dF(x)$$

$$= \frac{n!}{(i-1)!(n-i)!} \cdot B(i+1, n-i+1)$$

$$= \frac{n!}{(i-1)!(n-i)!} \frac{\Gamma(i+1)\Gamma(n-i+1)}{\Gamma(n+2)}$$

$$= \frac{n!}{(i-1)!(n-i)!} \frac{i!(n-i)!}{(n+1)!}$$

$$= \frac{i}{n+1}$$

$$E[F^{2}(X_{i})] = \int_{-\infty}^{+\infty} F^{2}(x) \cdot g_{k}(x) dx$$

$$= \int_{-\infty}^{+\infty} \frac{n!}{(i-1)!(n-i)!} F^{2}(x) \cdot F(x)^{i-1} [1-F(x)]^{n-i} f(x) dx$$

Available Online: http://saspjournals.com/sjpms

ISSN 2393-8056 (Print) ISSN 2393-8064 (Online)

$$= \frac{n!}{(i-1)!(n-i)!} \int_{0}^{1} F(x)^{i+1} [1 - F(x)]^{n-i} d[F(x)]$$

$$= \frac{n!}{(i-1)!(n-i)!} B(i+2, n-i+1)$$

$$= \frac{n!}{(i-1)!(n-i)!} \frac{\Gamma(i+2)\Gamma(n-i+1)}{\Gamma(n+3)}$$

$$= \frac{n!}{(i-1)!(n-i)!} \frac{(i+1)!(n-i)!}{(n+2)!}$$

$$= \frac{i(i+1)!}{(n+1)(n+2)}$$

$$D[F(X_{(i)})] = E[F^{2}(x_{(i)})] - \{E[F(x_{(i)}))]\}^{2}$$

$$= \frac{i(i+1)}{(n+1)(n+2)} - \frac{i^{2}}{(n+1)^{2}}$$

$$= \frac{i[n-i+1]}{(n+1)^{2}(n+2)}$$

CONCLUSIONS

Using the probability density function of order statistics and the nature of the euler integral, we deduced the digital characteristics of the function of order statistic.

$$E[F(X_i)] = \frac{i}{n+1}, \quad D[F(X_{(i)})] = \frac{i[n-i+1]}{(n+1)^2(n+2)}$$

ACKNOWLEDGEMENTS

I would like to thank the referees and the editor for their valuable suggestions.

REFERENCES

- 1. CHEN Xiru. An introduction to mathematical statistics. Science press, 1981.
- 2. CHEN Jiading. The notes of mathematical statistics. Higher education press, 1993.