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INTRODUCTION 

Let nH  denote the class of functions of the form  

 
1

( ) ( {1 2 })k

k

k n

f z z a z n p N


 

         L  (1) 

which are analytic in the open unit disk { 1}U z C z    .  

 

A function nf H  is said to be in the class ( )S 
 of starlike functions of order   in U  if it satisfies the 

following inequality:  

 
( )

( ) 0 1
( )

zf z
Re p N z U

f z
 


          (2) 

 

Further, a function nf H  is said to be in the class ( )N   in U  (see[8][9]),if it satisfies the following 

inequality:  

 
(( ( )( ) 1 )) 0 0 1

( )

z
Re f z z U

f z
           (3) 

 

Recently Obradovic and Owa introduced and studied the following class of analytic functions defined as follows 

(see[1- 3]).  

 

DEFINITION 

A function nf H  is said to be a member of the class ( )B      if and only if  
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(1 )( ) ( ) 1 1 ( )
( ) ( ) ( )

z zf z z
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   


           (4) 

for some 0 0 1 C            

Note that condition (4) implies that  
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The class (1 )B     is the class which has been introduced and studied by Obradovic [1] (see also [4][5][6]).  

 

To prove our main result, we need the following Lemma:  

LEMMA 
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(see [7]). Let the function ( )w z  be(nonconstant) analytic in U  with (0) 0w  . If ( )w z   attains its 

maximum value on the circle 1z r    at a point 0z U , then  

 0 0 0( ) ( )z w z kw z    (6) 

where 1k   is a real number.   

 

MAIN RESULTS AND THEIR CONSEQUENCES 

Theorem  

Let {0} 0 0 1nf H w C          ‚  and also let the function H  be defined by  
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 (7) 

If ( )H z  satisfies one of the following conditions:  
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or  
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then  
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where the value of complex power in (10) is taken to be as its principal value.   

 

Proof   

 We define the function   by  
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where {0} 0 0 1 nw C z U f H          ‚ .  

 

We see clearly that the function   is regular in U  and (0) 0  .Making use of the logarithmic 

differentiation of both sides of (11) with respect to the known complex variable z , and if we make use of equality (11) 

once again, then we find that  

 

1( )
((1 )( ) ( ) 1)

( ) ( ) ( )

( ) ( )
((1 )( ) ( ) 1)

( ) ( ) ( ) ( )

z zf z z
wz

f z f z f z

z zf z z z z

f z f z f z z

 

 

 

 


  

     


 (16) 

which yields  
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Assume that there exists a point 0z U  such that  

http://saspjournals.com/sjpms


 
 
Jing Wang et al.; Sch. J. Phys. Math. Stat., 2015; Vol-2; Issue-3A (Jun-Aug); pp-325-328 

Available Online:  http://saspjournals.com/sjpms   327 

 

 
0

0max ( ) ( ) 1
z z
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Applying Lemma 1.1, we can then write  

 0 0 0( ) ( ) 1z z c z c       (19) 

Then (13) yields  

 
20 0

0 2

0

( )
{ ( )} { } { }

( )

z zw
Re H z Re Re cw w

w z


    

  
 (20) 

so that  
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But the inequalities in (17) and (18) contradict, respectively, the inequalities in (8) and (9). Hence, we conclude 

that ( ) 1z    for all z U . Consequently, it follows from (11) that  
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Therefore, the desired proof is completed.  

This theorem has many interesting and important consequences in analytic function theory and geometric 

function theory. We give some of these with their corresponding geometric properties.  

 

First, if we choose the value of the parameter w  as a real number with {0}w R  ‚  in the theorem, then 

we obtain the following corollary.  

 

Corollary 

Let {0} 0 0 1nf H R          ‚  and let the function H  be defined by (7). Also, if ( )H z  

satisfies the following conditions:  
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then  
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Putting 1w   in the theorem, we get the following corollary.  

 

Corollary 

Let ( 0 1nf H z U        and let the function H  be defined by (7). Also, if ( )H z  satisfies the 

following conditions:  
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 { ( )} 1 { ( )} 0Re H z orIm H z    (31) 

 

then ( )f B      .   

Setting 1 1w     and 0   in the theorem, we have the following corollary.  

 

Corollary  

Let 0 1nf H z U        and let the function H  be defined by  

 
( ) ( ) ( )

( ) ( )(1 )
( ) ( ) ( ) ( )

zf z zf z zf z
H z

zf z f z f z f z
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 
 (32) 

If ( )H z  satisfies the following conditions:  

 { ( )} 1 { ( )} 0Re H z orIm H z    (33) 

 

then { ( ) ( )}Re zf z f z    , that is, f  is starlike of order   in U .   

Setting 1 1w     and 1   in the theorem, we have the following corollary.  

 

Corollary 

Let 0 1nf H z U        and let the function H  be defined by  
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 
 (34) 

If ( )H z  satisfies the following conditions:  

 { ( )} 1 { ( )} 0Re H z orIm H z    (35) 

 

then 
2

( )
{ ( )( ) }z

f z
Re f z   , that is, f  is in ( )N   .   
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