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a binary linear substitution. It serves as a quadratic transformation of the elliptic integral of Friedmann equations. For 
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Dirichlet L-function in form of a two-dimensional Poisson equation. 
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1. INTRODUCTION 
A fractal information universe with 

dimensionless coupling constants is capable to grasp 

hundreds of orders of magnitude while experiments only 
can capture about 10 orders of magnitude. Period 

doubling of a regular chaotic one-dimensional complex 

map is set in context to doubly-periodic iterated complex 

curvature. In two dimensions curvature is a complex 
generation rate. Complex curvature is a cubic invariant 

of hyperelliptic/elliptic curves generating algebraic units 

[1-3]. Zoomed bulbs and cardioids superimposed by 

optimal regulator conditions constitute a 3-parameter 
Huygen-Fresnel principle. Iterated quadratic maps of 

complex curvature has significance for unified physical 

fields and surrounds matter as an eternal binary process 

within a fractal zeta universe (FZU) [4, 5]. Besides 
periods νSh due to the theorem of Sharkovskii vanishing 

Gaussian periods describe a self-consistent optimal 

regulator in the L- function (see Section 2 and Appendix 

1). Mass m is defined as a tower of generators as roots of 
unity within periods of the interval. Bifurcation lines 

map line bundles moving in a lattice of algebraic units. 

Inflection tangents of elliptic curves are the stability axis 

in a Feigenbaum analysis. Iterates of units of a bicubic 
subfield cause fluctuating invariants and periods in 

elliptic theta. Topological entropy is discussed for 

algebraic units and power integral bases of optimal units 

related to a time-thermal rate. Nontrivial zeros of the 
Riemann zeta function and a Dirichlet L-function for a 

given iterated field yield a two-dimensional Poisson 

equation giving a definition of charge. The origin of 
charge and mass in the universe is explained by 

Feigenbaum renormalization extending Hieb’s 

hypothesis within FZU [6, 7]. FZU uses Hieb’ conjecture 

2πδF
2≃αf

-1 with Feigenbaum constant δF, fine structure 

constant αf giving already an accuracy of 9.12∙10-4. 

Similarly, the fine structure constant αf can be refined by 
optimizing the information density on a surface of area 

4𝜋R2 ≃ 𝑔1
⋮𝑔𝑛

of a sphere of radius R for a constant sum 

g1+g2+…+ gn of generators which is in accord with FZU 

[8, 9]. Exactly solvable chaos consists in mapping of 

universal covering space [10, 11]. Elliptic curves are 
attractors in a Lattés map on a two-sphere [12]. However, 

iterated functions of a Lattés map have higher degree and 

do not exhibit νSh. In distinction, a Hermite-

Tschirnhausen map γ(ϕ3) of a cubic invariant ϕ3 is a 
linear and quadratic conjugate with 2-power bases. γ(ϕ3) 

forces complex multiplication (CM) by addition on 

elliptic curves. Periods νSh may be γ(ϕ3) fixpoints. A 

Riemann zeta function ζ(z) scanned by γ(ϕ3) for 

extensions z of a cubic field 𝕂[∂] allows to start from 

holomorphic ξ(z) and holomorphic Dirichlet L-function 
[13]. 

 
𝜁(𝑧,𝕂 )

𝜁(𝑧)
=

𝛤(𝑧/2)𝑧(𝑧−1)𝜁(𝑧,𝕂 )

2𝜋𝑧/2𝜉(𝑧)
= L(z, χ).    (1.1) 

 

The z→1 limit L(1,χ)≃HΔRΔ is proportional to 

a regulator RΔ=lnbE with fundamental unit E, base b of 

extensions of 𝕂[∂] and to class number HΔ of a cubic 

normal field with discriminant Δ. Optimal units are 
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feasible solutions Subsequent optimal solutions (2.1) for 
the regulator RΔ=l=lnbE=Ωw-ℒ with 

ℒ=μ2E
2ζ(ls,ms,l)+½μ2Nm(E)ζ’(ls,ms,l) yield an eternal 

clock rate Rk,qq’ on complex plane. The binary process 

consists in surrounding zeta zeros on irreducible four-
component elliptic curves λμ. Accordingly, the complex 

L-function behaves as an action functional. Cardioid-like 
oscillations around centers on complex plane z yield a 

Dirichlet L- function as a candidate for a Lovelock-like 

action functional in ℂw. Then a quadratic map γ(ϕ3) is 

capable to link nontrivial zeros znt and the pole at z=1. 
This map can be written as a mass operator 

 

F(t, z) = ϕ3(t)/(t − z) − ⅓ϕ′3(t)  = γ(ϕ3(t)) ◦ z ≃ 𝑉𝜇𝐺ss’’γs’’s’’’
𝜇 𝐺s’’’s’ − ⅓

δ𝑉𝜇

δ(𝐺ss’’γs’’s’’’
𝜇

𝐺s’’’s’)
 (1.2) 

 
 

Within space of quartic roots Gss’ is equivalent 

to a Green’s function with indices s=1,2,3,4 relating 
cubic roots to quartic roots. One quartic root is shifted to 

±∞,±i∞ in a quadruple of steps q={k,k+1,k+2, k+3} for 

a simplest cycle quadruples q: {k+3∊{k,k+1,k+2}} [14, 

15]. The complex map generates a general Riemann 

surface as layers of bifurcating cardioids and bulbs. In 

Section 2 a three-parameter superposition of z and lnz is 
called a feasible solution in eq. (2.1) which yields 

w=1,2,3,4,5 layer. The Hermite map is discussed in 

Section 3. For fluctuating lattice periods modular units 

are discussed as invariants for an iterated lattice of 
algebraic units in Section 4. Inflection tangents of curves 

are set in context to stability axes needed for a 

Feigenbaum diagram technique in Section 4. Whereas 

the Lebesgue measure is discussed in Section 6 invariant 
relations for the Legendre module are discussed on 

Section 7. Feigenbaum renormalization for simplest 

cycles in Section 8 is used for the definition of charged 

states in Section 9. 
 

2. COMPLEX GYRO-TWIST 

HYPERSURFACE 
N Mandelbrot cardioid z- planes yield N 

distinguishable spheres. But only up to five spheres are 

independent in space: a w-dimensional complex space 
offers w(w+1)/2 -3w+3 independent parameter [16]. 

Division of N>w cardioids into w balls yields 

indistinguishable permutations of identical particles. 

This generalized Riemann surface with (
𝑤 − 2

2
) 

independent complex parameter is w spheres centered 

around poles driven by a clock rate Φ2
k(z). The 

generalized Riemann surface denoted by ℂw is like an 

organic constantly changing plant embedded into five 
atmospheric layer as nested spheres. On interval [0,1] a 

non-wandering set around the point ½ yields a black hole 

entropy ht=ln2 [17]. On interval [0,1] w unit spheres for 

extremal ht and optimal units have a non-wandering set 
of the quadratic map γ(ϕ3) with topological entropy 

ht=HCS or H(ls,ms) in [0,1] [18]. Maximum information 

probability expected at a critical point F’(t,z)=0 at ½ is 
shifted to a circle of radius H(l𝑠,𝑚𝑠) = 𝑙nl𝑠m𝑠. A non-

wandering set of k-components in ζ(ls,ms,zk) has poles on 

𝑧 = H(l𝑠,𝑚𝑠) (1 + 2𝜋𝑖𝑛

lnm𝑠
). Around the pole e.g. of the 

Cantor set 𝑧 = 𝐻𝐶𝑆 (1 + 2𝜋𝑖𝑛

ln2
) ∉ ℚ𝕃𝑤 on unit sphere in 

Cw[𝕃w] iterates zk perform doubly-periodic (atmospheric) 

waves of world points X(zk) realizing vibrations of 
fractal strings [19]. The number of zk- clouds in w- 

spheres performs non-dissipative independent regular 

complex fluctuations resolvable by nested spheres 

Cw[𝕃w] w=1,2,3,4,5. The theory is understandable 

superposing z and l=lnz as an optimal complex curvature 

Rμυ. Stable orbits zk encircling with radius H(ls,ms) are 

complex 𝜙(𝑔1) = ∑ 𝑎𝑖𝑔1
𝑔2

𝑖
 𝑖=0,...,𝑔∞−2  [20] [21]. Highest 

information densities correspond to two or three 

exponentiation levels in 𝑔1
....𝑔𝑙 ≃ 𝑔1

𝑔2
𝑔3

 which is optimal 

as a feasible solution [8, 22]. The Kepler singularity is 

treated as a ζ(z)- pole, Coulomb singularities are 
complex-conjugated poles in f(ω). A thin layer of a 

sphere of diameter 2H(ls,ms) has an altitude temperature 

gradient (pressure) and lateral waves. If 1+H(ls,ms) is a 

root of unity combinations w!Hw(ls,ms) can be regarded 
as Gaussian periods of complex roots ϕ(g1) see §112 in 

[21]. The coupling constant Gw can be given the 

following explanation in terms of rates. First the 

logarithm of a unit l=lnE is equivalent to curvature 
eR=exp(Rμυ[γμ,γν]-). In two dimensions curvature and 

stress-energy is a count rate which as a current 

proportional to a coupling constant. A scaling by H(ls,ms) 

requires projective spheres which are invariant with 
quadratic birational transformations. In homogenous 

coordinates a sphere 𝕊2(ai, pi) =Si is five-component and 

depends on position ai and a power of origin pi with 

respect to sphere. Maximal five independent spheres 

𝕊2(ai, pi) i=1,,..,5, at ai ∈ℝ3 correspond to 

stereographically projected five Gaussian planes. The 

minimum of a quadratic form ∑(μ1l
2+ μ2l) is written as a 

map lw→lw+1 of logarithms. 

 
∏ ∑ (2μ1l𝑤+1 + μ2 + 2μ2𝑒

−2l𝑤ζ(l𝑠,m𝑠, l𝑤) + μ3(∑(q)E𝑞
−2)ζ’(l𝑠,m𝑠,𝑖𝑞 l𝑤))𝑤 = 0   (2.1) 

 
of curvatures l=logEq≃Rμυ in sphere w. For 

ζ’→0, μ2→0, μ3→1 and ∮ ζ(l𝑠,m𝑠, l𝑤) = H(l𝑠,𝑚𝑠) as a 

mean over a tower of roots of unity the map reads 

lw+1←2wH(ls,ms)lw with a w-fold rate for w spheres. 

Then lw=w!2wHw which gives lw+1=2μ3Gw
2ζ(ls,ms,lw) 

with a coupling constant Gw=exp(w!2wHw(ls,ms)). 

Topological entropy h𝑡(f)  =  lim
𝑛→∞

1

𝑛
 ln l𝜔(f𝑛) as a mean 

over laps 𝛿𝑘∏𝛿𝑙𝜔
is the product of generators. The total 

count rate of onion-shaped shells is the product of partial 
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count rate probabilities. As a result, inner shells have 
higher periods which are proportional to masses. The 

most general Riemann surface within ℂw implies pseudo-

congruence which reads 22k
= 𝐺𝑤

−1 which is an image of 

an infinite set on a finite set of possible points in ℂw. At 
the same time the number of crossing points of νSh lines 

of the logistic map windows is of the order 101
 as shown 

in the Figure 1. 

 

 
Figure 1: High resolution subsection of the bifurcation diagram of the logistic map From [Wikipedia ‘logistic map] 

 

General relativistic coordinates result from a 

one-to-one relation between the Hermite map γ(ϕ3), a 
Moebius map γM and a two-by-two Lorentz-

transformation γL in the special case of a vanishing 

discriminant of a quadratic field Δ2. A cubic behavior of 

f(ω) is a presupposition for a regular chaotic map. The 

invariant 𝑓(𝜔) = 1
−1

48
𝜂(

𝜔+1

2
)

𝜂(𝜔)
 depends on the Dedekind 

eta function η(ω)=⅓ϑ1 (⅓, ⅓ω) and the Jacobi zeta 

function ζ1(u,ω) giving 

 

𝑓(𝜔) = √1
−48

exp (⅓ ∫ 𝑑𝑣 (𝜁1  (⅓ 𝑣 , 
𝜔+3

6
) − 𝜁1  (⅓ 𝑣 , 

𝜔

3
))

1

𝜀
)      (2.2) 

 

laps of ωk iterates tend to differentials vk+1-
vk=a(ωk+1-ωk)→dv around zλ. Due to asymmetry of γ(ϕ3) 

in eq. (3.2) around ½ highest probabilities and critical 

points with zero first F(t,z)- derivative are expected at 

inflection tangents of the pencil μ1ϕ3+ μ2H(ϕ3)=0 of ϕ3 

with its Hessian , i.e. zero second derivative [23]. A 

geometric zeta function ζ(ls,ms,lk) is a fractal vibration of 

lk at zλ. A line dv ≃aγ(ϕ3)ωk ≃G⋅G ωk splits within a 

bicubic Kummer extension field 𝕂 [∂,𝑔1
....𝑔𝑙 ] as a fourth-

order product in ψs. Second and first order shifts δkδk and 

δk of k-components are finite generation terms. 

 

∑ 𝛿𝑘
2 ∫ 𝑑𝑡𝜁(𝑡 𝑣 , 𝕃𝑘)

1

0
=𝑘,𝑤 ∑ ∫ 𝑑𝑡(𝛿𝑘

 𝑣)𝑅𝑘,𝑞𝑞′𝜁(𝑙, 𝑚, 𝑅𝑘,𝑞𝑞′)(𝛿𝑘
 𝜁  (𝑡 𝑣 , 𝕃𝑘))

1

0𝑘,𝑞𝑞′ .    (2.3) 

A time-thermal rate Rk,qq’≃lnEk,qq’ at zλ of lines F(C) in eq. (A3.7) 

𝑅𝑘,𝑞𝑞′(𝑣 , 𝕃𝑘) = 𝜀(𝜔)𝜀̅(𝜔)𝜒(𝑣 , 𝜁  (𝑣 , 𝕃𝑘))𝜒
−1(𝑣 , 𝜁  (𝑣 , 𝕃𝑘))𝜃(𝛿𝑘

 ℎ𝑡)   (2.4) 

 
is set with susceptibility 𝜒(𝑣 , 𝜁  (𝑣 , 𝕃𝑘)) = 1 +

𝛿𝑘ln𝛿𝑘𝑣

𝛿𝑘ln𝜁(𝑣  , 𝕃𝑘)
 ,a pair of complex-conjugated units ε and ε̄ of 

the normal field ℕ[√Δ], 𝜀𝜀̅ = ½𝑓3(√𝛥),Eεε̄=1. The step 

function Θ(x) where λ=1-δkht denotes a non-ergodic time 
arrow in a time-thermal rate Rk,qq’ of Δk fluctuations 

where Rk,qq’≃lk,qq’≃lnlm yields a root of unity 𝑒𝛿𝑘ℎ𝑡. 

Expression 𝜒(𝑣 , 𝜁  (𝑣 , 𝕃𝑘))𝜒
−1(𝑣 , 𝜁  (𝑣 , 𝕃𝑘)) is a generator 

gl in a cyclic polynomial ϕ(g1). Susceptibility χ has a 

superconducting part of space as non-intersecting lines 
governed by the map γ(ϕ3). The geometric zeta function 

ζ(ls,ms,R) for a circular rate R ≃l with k-component 

generator 𝑔1
....𝑔𝑙 ≃ 𝑔1

𝑔2
𝑔3

 on a circle area 𝑑𝑘 ∧ 𝑑𝑘̅ on ℂw 

is viewed as an zλ-point occupation number. Shells Cw 

scale to unit circles by ln𝑙𝑚 which justifies a 

normalization to ω=1 used in [24]. In the spirit of ω- 

fluctuations the rational factor a⋴ℚ2 in modular units 

g(u=aγω) is inert and Lorentz-invariant for γ≃γM≃γL. 

Periods νSh contain cyclotomic units in modular units on. 

Multiplicity ms and string length ls of the geometric zeta 
function ζ(ls,ms,z) in eq. (2.1) correspond to a pseudo-

congruent minimum of eq. (2.1) for Fermat number 

transform Ft having base 2 and base 3 for the first prime 

Ft. In distinction to a hyperbolic tessellation γ are 
superposed pseudo-random bulb-cardioid lines on 

spheres like a Huygens-Fresnel principle. Diffusive 

paths u=aω create a thermal conductivity σT≃ω and a 
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Gaussian kernel with standard deviation 1/ω. Chaotic 

period changes δkω≃δF yield a standard deviation of the 

Gaussian kernel if 2πδF
2 ≃αf

-1. Thus, a chaotic map 

around znt is capable to describe charges. Time standard 

as the number of completed orbits is independent on the 

actual value of variable ω. Simplest cycles of X(f(ω)), 
Y(f(ω))- iterates are embedded into two hyperelliptic 

Riemann surfaces of universal covering u±, u’±→ u± 

bifurcating into two tori with universal covering u±. The 

regular fluctuation of X(f(ω)) and Y(f(ω)) leaves the 

differential |γ|2(ch)4Dh
2 with c=(c+,c-),h=(h+,h-)≃(fk,fk+1) 

and Dh=D+h++D-h-, D± =
∂

∂u±
−

∂

∂𝑢±
′  invariant [25]. Then 

𝐷ℎ𝜎(𝑢)𝜎(𝑢 ′) = 𝜁(𝑎𝝎)𝜎(𝑢)𝜎(𝑢 ′) giving in the limit 

u’→u a vector potential equivalent to ∑ζ(aωk,ωk). A 
Lattés map u→au + b for a Hurwitz automorphism 
∑ 1 − ri

−1r
i=1 = 2 between sphere and torus implies four 

modular units aω with ω = 1
1

𝑟𝑖⁄ . The solution 

prescribes four branch point sets ri= {2,2,2,2}, {2,3,6}, 
{2,4,4}, {3,3,3} [26]. This branched covering covers a 

quadruple q of simplest cycles on iterated tori. The 

complex z-plane ℂ(n) of normal vector n projects to a 

sphere 𝕊2(ai, pi) in space. A Mandelbrot zoom cardioid 

can be embedded into planes in space without 

intersections. The Weber- Schottky problem 𝕃w allows 

for genus w=4 or w=5 one or three independent 

parameter e.g. 3w-3 rotation angles of w-1 nested 

spheres. The difference (
𝑤 − 2

2
) = (

𝑤 + 1
2

) − 3𝑤 + 3 

yields 1 or 3 complex parameters for genus surfaces w=4 

and 5. These parameters are identified with the number 

of physical units in measurement systems, necessary for 

measurement (e.g., CGS or Planck system). A simple 
geometric explanation is in terms of arbitrary spheres 

𝕊2{x2+xi ai=pi}. Maximal five spheres 𝕊2(ai, pi) are 

independent if det (ai, pi,1)=0 which yields a determinant 

of fourth order 

 
det𝐴[𝛿 𝑎 , 𝛿  𝑝] = ∏ 𝑑𝑒𝑡(𝑎𝑖 − 𝑎𝑗 , 𝑝𝑖 − 𝑝𝑗)𝑖≠𝑗

𝜋(𝑖  , 𝑗)
= 0   (2.5) 

with permutation π(i,j). The number w of 

different paths connecting spheres 𝕊2(ai, pi) is identified 

with interaction w of nested spheres with faster inner 

rotating gyro-twist shells where cyclotomic fields in 

{2,2,2,2}, {2,3,6}, {2,4,4}, {3,3,3} are consistent with 

22𝑘
 congruences of iterated Weber invariant 𝑓(√Δ). Here 

a base b=2 and b=3 in a number transform 

𝑒ℎ𝑡𝑚𝑜𝑑 (22𝑘  − 1) for topological entropy ℎ𝑡 = 22𝑘
ln2 

contains the generator 𝑏2𝑘
= 1𝑚𝑜𝑑 (22𝑘  − 1) [27] 

 

3. HERMITE SUBSTITUTION 
Hermite substitutions relate power integral 

bases (PIB) xi, ti in polynomial 𝐹(𝑡, 𝑧) =
𝛷𝑛(𝑡)

𝑡−𝑧
−

1

𝑛
𝛷𝑛

′(𝑡)
 

rational to polynomial roots t,z of 𝛷𝑛(𝑧) =

∑ (
𝑛
𝑖 )

𝑎𝑖𝑖=0,...,𝑛 𝑧𝑛−𝑖 = 0. PIB ti→ti is regarded as 

symbolic n+1 dimensional vector. Iterated fractional 

substitutions 𝑧𝑘+1 ← ∏ (𝑧𝑖
 − 𝑧𝑖+)𝑖=0,...,𝑘 (𝑧𝑖

 − 𝑧𝑖−) are 

binary invariant in homogeneous variables 𝑧 =
𝑧1

𝑧2
. 

Hyperelliptic details of 𝜙2𝑘  are 

∏ (𝑧𝑖
 − 𝑧𝑖+)𝑖=𝑘,𝑘+1,𝑘+2 (𝑧𝑖

 − 𝑧𝑖−) as simplest cycles. The 

fundamental hyperelliptic addition theorem on Kummer 
surface K(X) and Weddle surface W(Y) reads [28].  

s+[gh](u,v)s-[gh](u,v)=X(u)jX(v)           (3.1) 

                 where               s+[gh](u,v)=ϑ[gh](u+v)/ϑ[gh]
2(u), 

s- [gh](u,v)=ϑ[gh](u-v)/ϑ[gh]
2(v), j2=-1. For a quadruple q of 

steps k variable z→f(ω) relates X(f)=(℘±±,1)=(1,-f,f2,1) 

and Y(f)= ℘±±±=(1,-f,f2,-f3) to four points u± and u’± on 

the universal covering of K(X) and W(Y). Quartic roots 

xi capture K(X) and W(Y) and correspond to cubic roots 

ei as follows (𝑥𝑖
 𝑥𝑗)(𝑥𝑘

 𝑥𝑙) = 𝑒𝑘 − 𝑒𝑙  ∀ i, j, k, l= 

{1,2,3,4}. For Φ3(xl)= ml=(lj)(lk)(li), ∑ei=0, 

(ze1e2e3±∞±i∞) ⇾ (xxixjxkxl) for root xl →±∞±i∞ one 

gets the Hermite substitution (1.2) where 𝜙3(𝑧) =
𝑚𝑙

2

(𝑥  −  𝑥𝑙)
4 𝛷4(𝑥) where [29]. The 1:2 relation √(Δe)∽Δx is 

written in terms of quadruples q≃s and spin indices 

relates a linear map to a bi spinor ψs in which γ(ϕ3) is 
quadratic in fermion Greens functions 

 

𝛾(𝜙3(𝑡)) = |
1

3
𝜙3′(𝑡) 𝜙3(𝑡) −

𝑡

3
𝜙3′(𝑡)

−1 𝑡
|. (3.2) 

 

F(t, z) yield 𝑧 ← F(t, z) = 𝑡0𝐹1 + 𝑡1𝐹0 where (𝐹0
 , 𝐹1) = (𝑎0

 𝑧 + 𝑎1
 ,  𝑎0

 𝑧2  + 𝑎1
 𝑧  + 2 𝑎2).  

For t- dependent 𝑎(𝑡) = 𝑡0𝑎0, 𝑏(𝑡) = 𝑡0𝑎1 + 𝑡1𝑎0, 𝑐(𝑡) = 2𝑡0𝑎2 + 𝑡1𝑎1 

 

𝑧𝑘+1 ← 𝐹(𝑡, 𝑧𝑘) = 𝑎(𝑡)𝑧𝑘
2 + 𝑏(𝑡)𝑧𝑘 + 𝑐(𝑡)  (3.3) 

 

with peculiarity 

(1) if Φ3(zk+1)=0 then degzk+1=3 

(2) if Φ3(zk+1) ≠0 deg zk+1=2k 
or in terms of elliptic units g(aω) 

(1) if zk+1-zk ∊ g(aω) then deg zk+1=3 

(2) if zk+1-zk ∉ g(aω) then deg zk+1=2k
. 
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Chaotic period-doubling on hyperelliptic ϕn(z) 

is that z is a doubly-periodic polynomial invariant f(ω). 

Modular units g(aω) depend on f(ω) and periods ω are 

are self-consistently connected with periods νSh. 
Conjugates of linear- quadratic γ(ϕ3) is a Mandelbrot 

map Mc : 𝑧𝑘+1 ← 𝑧𝑘
2 + 𝑐 which results from (3.3) for 

parameter a0=1, a1= t1=0 , 2a2 =c , t0=1,∀a3 leading a 

harmonic cross-ratio λ=-1 and 𝑥𝑘+1 ←
𝑥𝑘+1

𝑎
 , 𝑥𝑘 ← 𝑥𝑘 +

𝑏

2𝑎
 and 𝑐 ← −

∆(𝑡)

4𝑎2(𝑡)
 where ∆(𝑡) ← 𝑏2(𝑡) − 4𝑎(𝑡)𝑐(𝑡). 

The logistic map 𝑥𝑘+1 ← 𝑡0𝑥𝑘(1 − 𝑥𝑘) results from (3.3) 

for parameter a0=-1, a1= a2 =0,∀a3 on a line t1=--t0 for an 

equianharmonic cross-ratio λ =1⅓. Logistic map 𝑥𝑘 ←

𝑡0 (
1

2
 − 𝑥𝑘) and Mandelbrot map 𝑐 =

𝑡0

2
(1 − 𝑡0

2
) are 

conjugate to equianharmonic and harmonic elliptic 

curves. Hermite substitutions γ(Φ3(t)) hold for a finite 

region t0, t1 on complex plane with axes t0 and t1 with 

Hessian H(ϕ3)=H(t0, t1) ≃ γ2(ω) which vanishes 

quadratically. A Hermite- transform- solution of cubic 

roots is equivalent to Cardano’s method [29]. γ(Φ3(t)) 

enforces CM as endomorphism of bundle 𝕃[Eλ] over a 

subfield 𝕂[∂]. A Hermite substitution γ(ϕ3) induces a 

conductor detγ(ϕ3) =ϕ3(t) for discriminant Δ3. For cubic 

residues [
𝛾(𝜙3(𝑡))

𝑝
]
3
= 1 γ(ϕ3)∊ SL(2, ℤ) yields equivalent 

periods. γ(ϕ3) generates the Tschirnhausen resolvent of 

the elliptic invariant j(ω) ←j(γ(ϕ3(t))∘ω). For class 

number one hΔ=1 the linear j- resolvent reduces the 

degree of polynomial j(f(ω)) from 72 to 3. One addition 
step yields a quartic polynomial (Appendix 3) reduced to 

ϕ3. This defines (
4
3
) =4 layers from torus to sphere 𝕊2 up 

to a choice of normalization or calibration known as the 

Weierstrass ℘-function. For a definite fractional 
substitution γ[ϕ3(ei)] of second order one has ei = ℘(ωi) 

and 

 
℘(𝑢,𝜔) = 𝛾[𝜙3(𝑒𝑖)]𝜗[

𝑔
ℎ
]

2 (𝑢 , 𝜔)  (3.4) 

A more general theta function s(u) is a substituted Jacobi function sn(u,√λ) for a quartic polynomial ϕ4 

𝑠2(𝑢) = (
1 0

1 + 𝑒3 − 𝑒1 𝑒1 − 𝑒3
) 𝑠𝑛2 (√𝑒1 − 𝑒3

 𝑢 ,  √
𝑒2−𝑒3

𝑒1−𝑒3
) (3.5) 

which depends on the Weierstrass ℘-function [11] [10], e.g. 

𝑠2(𝑢) = (
−1 −⅓(𝑒2

 − 𝑒3)

1 ⅓(𝑒3
 − 𝑒2) − (𝑒3

 − 𝑒1)(𝑒1  − 𝑒2)
) ℘(𝑢) (3.6) 

 
Homogeneous projective coordinates and 

Lorentz-coordinates enter as an eternal reduction 

process. The complicated problem to reduce a 

hyperelliptic theta function ϑ[gh](u)=ϑ[gh](u±) is treated on 
four world-points on K(Xμ

[gh](f))=(℘[gh](u±),1)=(1,-f,f2,1) 

as a function of the invariant f=f(ω). A quadruple of four 

elliptic ℘-functions belongs to quartic roots shifted to 

s≃q≃±∞,±i∞ which yields ℘q≃℘s. This four-component 

quantity is set equal to 

℘s≃γμM(a)Xμ
[gh](f)=eS(A,a)Xμ

[gh](f) on four points 

μ=1,2,3,4. Accordingly, a reduced hyperelliptic function 

yields four points Xμ, μ=1,2,3,4 as an irreducible tidal 
point. Hyperelliptic 

 ϑ[gh](u±)→ϑμ
[gh](u±) 

℘μ
[gh](u±)=℘μ

[gh](u+,u-)=γ(ϕ3(f))℘
μ(u) 

substituted elliptic ℘- functions have components μ and 

s≃q as SE(3) parameter. A chaotic map γ(ϕ3(f)) has 

simplest cycles fq≃fs. Thus, a theory of a point is self-

similar where a complex plane ℂ is an envelope of up to 

five planes ℂw.  
 

4. MODULAR UNITS 
Modular units (4.1) are Lorentz-invariant 

g(aγω) for a subset γ≃γL despite fluctuating periods ω. 

Cyclotomic-like units 𝜀𝑖𝑗(𝜔) = 𝜀(𝜔𝑖)𝜀̅(𝜔𝑗) =
𝜂(𝜔𝑖)𝜂̅(𝜔𝑖)

𝜂(𝜔𝑗)𝜂̅(𝜔𝑗)
 depend on modular units 𝑔(𝑎 𝜔) =

𝑘̃𝑎(𝜔)𝜂2(𝜔) for ωi, ωj -congruences [30] [31] [32] [33]. 

Klein functions ka(ω) are normalized sigma functions. 
For fluctuating periods ω generalized Klein functions 

kã(ω)=exp(-½aη̃[ζ]aω)σ(aω)) differ by independent 

periods η̃[ζ] where η̃[ζ]= ζ(u+ω,ω)-ζ(u,ω)→ η[ζ] and 

kã(ω)→ka(ω) of Weierstrass zeta functions ζ(u,ω). Then 

g(aω) depend on two Lorentz-invariant points 

γ(ϕ3(fk+1))≃γL,k+1 and γ(ϕ3(fk))≃γL,k.. A simplest cycle 

quadruple q≃s imposes lattices ω[𝕂 [∂,𝑔1
....𝑔𝑙 ]] and νSh 

as congruences in ωk. A cubic fundamental unit εij with 

conjugates 𝑒𝑖𝜑/√𝜀𝑖𝑗(𝜔), 𝑒−𝑖𝜑/√𝜀𝑖̅𝑗(𝜔) changes into 

one of a cyclotomic fields 1-1z with class number →∞. 

For simplest cycles Euclidean norms (∑(q)Eq
-2)=ψsψ̄s are 

accepted quantum statistical ones tending to a unified 

thermodynamic one ≃b2Ω-2ℒ. In distinction to quantum 

statistics, low values of the real algebraic unit εij→0 and 
a vanishing regulator index RΔ for developing 

cyclotomic extensions question ψsψs̄=1 which is only 

valid if εij≃1. The correct unified bi spinor ψs depends 

via εij on a coupling constant Gw. Whereas Feynman 

diagram series remain valid non-radiative exchange 

scattering contains the factor 10-167. The quantum 
statistical expectation value is about 10-167 lower, i.e. the 

entropy current 10167 higher which solves the 

cosmological constant problem. Replacing the Dedekind 

eta function η(ω) in εij(ω) by 1-1z one gets eqs. (1.2-4). 
Hyperelliptic points X[gh] on K(X) with s+[gh](u,v)s-

[gh](u,v)=X(fk)jX(fk) in Section 3 suffering simplest cycle 

quadruples q are written near iterated Legendre modules 

λk and nontrivial zeros zntk≃λk≃λmk/mk+½. The cubic 

congruence yields eq. (7.6) where ψs contains iterated 

quadruples γ,γ◦γ,γ◦γ◦γ,γ◦γ◦γ◦γ. Shifting subsequently 
cubic/quartic roots ={ek, ek+1, ek+2,±∞ or ±i∞} the 
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Euclidean norm of a quadruple Nm(Eq) of real algebraic 
units Eq with Eqe´e´´=1 exhibits invariances. The 

Euclidean norm Nm(Eq) differs only by a rational factor 

from the Bezoutian or Hessian B(t,z)=(F(t,z),F(t,z))=-

⅔H(ϕ3) [29]. World-points Xμ(f)=(1,-f,f2,1)=X[gh](f) 

depend on 6⋅16 hyperelliptic theta functions 

α[gh](u+v)Γ̃β[gh](u-v),γ[gh](u+v)Γ̃δ[gh](u-v) 

e[gh](u+v)Γ̃f[gh](u-v) in space of characteristics [gh] [34]. 
Hyperelliptic orthogonal substitutions α[gh](u+v)Γ̃β[gh](u-

v) are four-component linear forms (αβ) with 16 matrix 

elements Γ̃ij,i’j’=±1 where five linear forms (αβ) also 

constitute general elliptic theta functions ϑ[gh](u). In FZU 
inert characteristics [gh]={0,1} are iteratively resolved in 

𝕂[∂]. Units 𝜀(𝜔, √∆) = 𝑒
5𝜋𝑖

24
(𝜔 𝜔̅  +  1)−½ln2 𝜂(½ 𝜔)

𝜂(2  𝜔)
 in 

ℕ[√∆] where 𝐸ℎ∆ = ½𝑓3(√∆) are independent on the 

actual period ω where Nm(f(√∆),𝕂)=2 for h∆=1. Besides 

modular units g(aω) sixteen hyperelliptic half-periods 

[gh] are inert which determine mass ratios in a quadratic 

equation for K(X). This f-parametrized hyperelliptic 
equation is X(fk)jX(fk)=s+[gh](u,v)s-[gh](u,v)=0 which is 

set in context to nontrivial zeros znt. A γ-invariant 

derivative exp(|γ|2(ch)4Dh
2)ϑ(u)ϑ(u’)=0 is set in context 

to an amplitude representation ξ(z)=exp(∫ds𝔸(s)) of the 

Riemann zeta function ζ(z) [35]. Poles of the amplitude 

are zeros of ξ(z). For f(ω)-points c and h in ϕ3(c)=0 and 

ϕ3(h)=0 and (ch)4≃G(ψs)G(ψs)Γ
(ren)[γμγνDμν]G(ψs)G(ψs) 

in invariant derivative a quadratic map implies to replace 

u±-derivatives by Dirac matrices γμ. Instead of a Lattés 
map αu+b which in case of α=2 yields a complicated 

quartic map only Poncelet involution with α=±1,±i is 

regarded. The invariant derivative Dh in |γ|2(ch)4Dh
2 is 

related to certain values of the Weierstrass zeta function 

𝜁 as shown below. Then a square of the invariant 

derivative Dh can be captured by a vertex function 

Γ(ren)[γμγνDμν] giving S-matrix-like 

exp(|γ|2(ch)4Dh
2)≃exp(∫ds𝔸(s)) with boson-propagator-

like Dμν=[ζ,ζ] is. The poles of exp(|γ|2(ch)4Dh
2) are zeros 

of X(f)jX(f) giving points on K(℘±±,1) and W(℘±±±). The 

exponent is a time-thermal rate Rkqq’ of γ-orbits 

 

                        fs(√∆ik)←γ(ϕ3)fs(√∆ik)  
 

where simplest cycles q≃s are tidal motions of 

four points crossing two lines. Then rational values a in 
g(aω) are inert whereas periods ω fluctuate like a 

hyperelliptic period matrix as a variable elliptic period. 

Modular units g(aω) are modular-invariant Weierstrass 

sigma functions known from quantum Hall functions 
[36] [30] 

 

𝑔(𝑎𝜔) = ∆1 12⁄ 𝑒−𝑎𝜂̃[ζ]⋅𝑎𝜔𝜎(𝑎 ω , 𝕃) = ∆1 12⁄ 𝑒−∫ 𝑑𝑣𝜁̃(𝑢  ,  𝕃)
𝑎𝝎
𝜀     (4.1) 

 

with ε→0, independent η̃[ζ]= ζ(ω/2,ω), half-periods ω=(ω1,ω2), aω= a1ω1+ a2ω2, 𝜁(𝑣, 𝜔) = 𝜁(𝑣,𝜔) − ωη̃ −
1

𝑣
. 

Denoting Klein functions k̃a(ω) by (a1a2) a square of the Dedekind eta function η2(ω)≃ω, e.g. 

 

η2(ω) =
(½ 0)(½ 0)(½ 0)

(⅓ 0)(0  ⅓)(⅓⅓)(⅓−⅓)
    (4.2) 

 
leads to a number of ω representations in terms 

of the modular group Γ(N) [30] [31] [32] [33] [37]. 

Iterates cumulate a congruent memory of universal 

covering of ∑ 𝐵𝜇,𝑘ω𝑘
28

𝑘=1  of a group G
228  of the order 228  

also for hyperelliptic characteristics [gh] (see Appendix 

2). This is in accord to a maximal number of fermions 

states embedded into a congruence 229
, 2210

≃ 𝐺5
−1 [1] 

[38]. For iterated periods ω a chosen value a∊ ℚ2 depends 

on values of the differential operator 
∂

∂𝑢
 on a hyperelliptic 

surface like periods νSh. For a prime 𝑝 ≈ 1 +
𝑔

𝑁
 one has 

pN≃eg for g≪N ≫1 with prime-counting function 

π(p)=(1+g/N)g/N quadratic in g/N and ε(𝑔, 𝑝𝑁) =

(1 − 1
𝑔

𝑝𝑁) ≃ 𝑔𝑒−𝑔 independent on N→∞. The concept is 

to search cyclotomic units within the elliptic addition 

theorem ℘𝑢 − ℘𝑣 =
𝜎𝑢+𝑣𝜎𝑢−𝑣

𝜎𝑢
2𝜎𝑣

2 . Three cases rΔ=1 (Δ≠-3,-

4), rΔ=2(Δ=-4), rΔ=3(Δ=-3) and ε(1)=1½⋅1⅓, ε(2)=1½ , 

ε(2)=1⅓ yield invariant λg2 relations with ℘- function 

𝑃(𝑢) = (𝜀 (𝑟∆)
℘(𝑢)

√∆(𝑟∆)6 )
𝑟∆

 [14] [39]. Quadratic (r=2) and 

hexagonal (r=3) yield P≃℘2 and P≃℘3.The elliptic 

analog of the correspondence η(ω) and 1-1z consists in 
replacing ε(g,g∞) by 

 

𝜀(𝑢, 𝑣) =
𝑔(𝑢  + v)𝑔(𝑢  −  v)

𝑔2(𝑣)
     (4.3) 

leading to the λg2 relation 

𝑃(𝑢) − 𝑃(𝑣) = ∏ (− 𝜀(𝑟))
𝑟∆−1
𝑟=0

𝜀(𝑢,1𝑟 𝑟∆⁄
𝑣)

𝑔2(u)
≃ 𝛩   (4.4) 

which generates a cyclic field with PIB 1, θ, θ2, … where 𝜆 ≃ ∏
℘(𝑢)−℘(v)

℘(u)−℘(v)𝑟 ≃ ∏
𝜀(𝑢(𝑟),𝑣(𝑟))

𝜀(𝑢(𝑟′),𝑣(𝑟′))𝑟,𝑟′ . 

 
 

5. AXES OF STABILITY ANALYSIS 
Stable orbiting laps are defined in terms of a 

stability analysis around axes e.g. yF=xF in a Feigenbaum 

diagram. For a definite elliptic curve xF, yF should be a 

γ-invariant for e.g. vanishing Hessian H(ϕ3)=0. The 2x2 
matrix of four points in universal covering space uμ-uμ=0 

(μ=0,1,2,3 ) reads for inflection tangents 𝛿𝜁21
′ 𝛿℘31

′ =



 

    

Otto Ziep, Sch J Phys Math Stat, Mar, 2025; 12(3): 43-58 

© 2025 Scholars Journal of Physics, Mathematics and Statistics | Published by SAS Publishers, India                                                                                          49 

 

 

𝛿𝜁31
′ 𝛿℘21

′ . The inflection tangent dF(xF,yF) is a constant 

tangent ∆x/∆y in x-y-plane of three points 1,2,3. 

Simplest cycles of γ(ϕ3) around a given inflection tangent 

dF(xF,yF) yield a bi spinor ψs. But (
4
3
) = 4 possible 

elliptic curves of a hyperelliptic quartic yield 4 possible 

stability axes dFμ(xF,yF) between pairs (1,1’),(1,2’), 

(2,1’),(2,2’) of tidal points 1,2,1’,2’. For Dirac matrices 

γμ the Dirac-like equation reads 𝑑𝐹𝜇𝑖𝑖′𝛾𝑠𝑠′
𝜇 𝜓𝑖′𝑠′ =

𝑚𝛿𝑖𝑖′𝜓𝑖𝑠. Laps and k-component dynamics X(γ◦f), 

Y(γ◦f) in 𝕂[∂½,{11/m}] on Kummer and Weddle surfaces 

capture also different axes (xF,yF) as a 22𝑘
 -polar ball of 

fusilli-like invariant strings in space. Inflection tangent 

quadruples (δku, du, dζ, d℘) are singular 4x4 matrices 

suffering SE(3) steps, unimodular aperiodic quaternary 

continued fractions (M(a)dFμ,ii’ →dFμ,ii’, 3⋅3 aperiodic 

bifurcating continued fractions and 2⋅2 periodic 

continued fractions (see Appendix 3). Cyclic bifurcation 

in the cyclic regulator field allow a fast composite 

22𝑘
 number theoretic transform for quaternary 

unimodular collineations. One-periodic νSh and Abelian 

quadratic fields of continued fractions are compatible 

whereas Hermite’s problem of expressing cubic 
irrationalities treated by ternary steps is non- unique and 

open [40]. Continued fractions are capable to create a 

tower g(aω) →eg(aω) of modular units and Legendre 

modules λ→ eλ in inflection tangents dFμ,ii=(δku, du, dζ, 
d℘). Permuting first and third row in quaternary 

collineations M(a)dFμ,ii’→dFμ,ii’  

 

𝑀(𝒂⃗⃗ ) = (

0 0 0 1
1 0 0 −(𝑁 + 1)
0 1 0 𝑁
0 0 1 𝑎3

)    (5.1) 

 

one gets continued fractions 𝑀(𝑎3
(𝑖)) mod N. Periods νSh are set in context to 2⋅2-dimensional k collineations 

∏ 𝑀(𝒂𝒊) =𝑖=1,...,2𝑘 (
1 ∑ (− 1) ⋅ ∏ 𝑀(𝑎3

(𝑖))𝑗=2𝑖,...,2𝑘𝑖=1,...,𝑘

0 ∏ 𝑀(𝑎3
(𝑖))𝑖=1,...,2𝑘

)   (5.2) 

 

Tangents Fμ,ii of simplest cycles 𝐹𝑘 ← (F𝑘+1
 − 𝐹𝑘+) − N𝛿𝐹 + 𝑎3𝐹𝑘+4 = (𝜆𝑘

 − 𝑁)𝛿𝐹 + 𝑎3𝐹𝑘+4 constitute γ-invariants 𝜆 =
F𝑘+1−𝐹𝑘+2

F𝑘+2−𝐹𝑘+3
 giving an approximative collineation 𝑀(𝑎) → (𝜆 − 1)𝑔2(𝑢) ⊕ (

0 1
1 𝑎3

) 

 

The tangent dF(xF,yF) is capable for a quadratic stability analysis of steps around zk+1, zk 

 

 
Figure 2: Iterates γ as steps zk+1, zk around an axis dF(xF,yF) of a given inflection tangent 

Periodic collineations of continued fractions 

and fixed points of Hermite maps are mutually 
dependent. Collineations of {u- ζ}, {℘-ζ}, {u-℘} pairs 

as periodic continued fractions (CF) 𝛱 (
0 1
1 𝑎3

) 

correspond to γ-fixpoints. Hermite’s problem of 

expressing a cubic irrationality ∂ in terms of periodic 

ternary continued fractions is unsolved. Iterates of 
λ=λm/m+½ converge to λm is ψs- and mass m- dependent. 

Period-3 addition is congruent to 3u=0. Equianharmonic 

elliptic curves estimate δF for points aω in λ= 1⅓ with 

periods ⅓{(1,0), (1,1), (1,0), (0,1)} (ω1, ω2)= ⅓{(1,0), 
(1,-2), (1,2), (0,1)}(ω1, ω2) or ⅓{(1,1), (1,-1), (1,0), 

(0,1)}(ω1, ω2)= ⅓{(1,1), (1,2), (1,0), (0,1)}(ω1, ω2) 

leading to a=⅓ (∓1, ∓2) (ω1, ω2) in terms of half- periods 

ω1 and ω2 [41]. The cross ratio λ= 1⅓ depends on 8 

nontrivial combinations of ω1 and ω2 fractions for four 

parameters us. A Cantor set results from ak+1=T3(ak) on 
I0=[0,½] and I1=[½,1] and initial condition ak= ζ(2,3,k) 

from tent map Tc [42]. 

 
𝑇𝑐(𝑥) = 𝑐𝑥: 𝑥 ∊ 𝐼0 , 𝑐(1 − 𝑥):𝑥 ∊ 𝐼1   (5.3) 

and Cantor string zeta function 

𝜁(2,3, 𝑙) = ∑ 2𝑛
𝑛∈ℕ 3−(𝑛  +  1)𝑙   (5.4) 

 

Congruences modulo 22𝑘
 yield a circulant 

matrix as a polynomial with cyclotomic coefficients a(l) 

in the series ∑ 𝜁𝐶𝑆(𝑙)𝑙 𝑎(𝑙) = 𝐻𝐶𝑆 ∑
𝑎(𝑙  ′/ 𝐻𝐶𝑆)

2𝑙′−2𝑙′=𝐻𝐶𝑆𝑙 . 

This is like a time-thermal rate Rkk’ with occupation 

number 
1

2𝑙−2
 of states on a circle where coefficients 

a(l’/HCS) consist of a bilinear expansion of ψs. 
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6. INTERVAL DIFFEOMORPHISM 
The hyperelliptic Lebesgue measure μ(dx) for a quartic 

polynomial is [11] 

𝜇ℎ(𝑑 𝑥) =
𝑑𝑥

2𝐾√𝛷4(𝑥)
.   (6.1) 

compares to that for the logistic map 

𝜇𝑙(𝑑 𝑥) =
𝑑𝑥

𝜋√𝑥(1  − 𝑥)
   (6.2) 

A hyperelliptic measure with deg Φ(x)= 4 is 

directly related to Jacobi theta functions ϑ(u, 𝕃 ) for 

quarter periods K and K’. The Lebesgue measure μh and 

μl differ by K/π with quarter period K. A map on unit 

interval x∊I=[0,1] as exactly solvable chaos is [10]. 

 
 

∫ 𝜇ℎ(𝑑 𝑥)
𝑥

0
≃ ∫

𝑑𝑢

𝐾
   (6.3) 

A general Riemann surface with cardiods is 

reducible to flat space. Accordingly, the Euler- Poincaré 

characteristic vanishes 𝜒(𝕃𝑤) =
1

𝑤!
∫ ∧𝑤
𝛿𝐺

𝑐1(𝕃𝑤) = 0 

with first Chern class 𝑐1(𝕃𝑤) = ∑ d𝑖
𝑤
𝑖=1 𝑑𝑢𝑖 ∧ 𝑑𝑢̅𝑖 

leading to the alternating w-form of a line bundle of type 

{d1,…,dw} of a lattice with periods ωw in w-dimensions 

[43]. 

 
𝜒(𝕃𝑤) = (− 1)𝑤𝑑1 . . . 𝑑𝑤𝑑𝑢1 ∧. . .∧ 𝑑𝑢𝑤 ∧ 𝑑𝑢̅1 ∧. . .∧ 𝑑𝑢̅𝑤 → 0  (6.4).  

The general Riemann surface is a bizarre 

ensemble of plants, trees and coast lines of infinite length 

but of vanishing volume. Accordingly, one hast to resort 

to Hausdorff measure and Hausdorff dimension. 
 

7. INVARIANT RELATIONS FOR 

LEGENDRE MODULES 
The claim of convergence from λ to δF for 

infinite k-components yields a complex charged current 

for w<4 λ=λm/m+½ with 𝜆𝑚 = ψ̅sλmss′ψs′  

 

with (2πλ2-αf
-1)→0 and a real current for w> 3 

where λ→0 due to a map γ(Φ)∘f(ω). Fluctuating line 

bundles 𝕃w for quadratic Hermite substitutions γ(ϕ3) in 

fields 𝕂[∂] and 𝕂[∂½] change f(ω) by the trend 4𝒒2𝑘−1
=

𝜆𝑘 for doubling ω→2ω which is f24≃24/λk→∞. This 

explains complex values of the Legendre module λ near 

Nm(f(ω))=2 for hΔ=1. Invariant equations 𝑗⅓(𝜔) =

𝛾2(𝜔) =
𝑓24(𝜔)−24

𝑓8(𝜔)
 recover cubic equations rN

3-γ2rN-24=0 

for certain degrees rN=fN(ω) of f(ω) e.g. for N=3,8,24. 

Then a cubic equation exists for 

𝜙𝑁 = 1 − 𝜇𝑟𝑁(𝑓(𝜔))                                                                                       (7.1) 

 

which justifies iterated Hermite maps γ(ϕN) for 

certain parameter μ which have been calculated in [44]. 

ϕN changes  

𝛿𝐹(𝑁) =
𝜇𝜅−𝜇𝜅+1

𝜇𝜅+1−𝜇𝜅+2
 and αF(N)=-zk/z2k. 

Computed values δF(N) and αF(N) from work [44], are 

compared to the product 𝛿𝐹𝛼𝐹
2 

Table 1: Relation 𝛅𝑭𝛂𝑭
𝟐 for transformation degrees ={2-8,10} from [44] 

N 𝛿𝐹 𝛼𝐹 𝛿𝐹𝛼𝐹
2 

2  4.67  2(2.5)  29.19 

3  6.08  1.93  22,64 

4  7.29  1.69  20,82 

5  8.35  1.56  20,32 

6  9.3  1.47  20,1 

7  10.2  1.41  20,28 

8  10.95  1.36  20,25 

10  12.37  1.29  20,58 

 
The invariant product 𝛿𝐹𝛼𝐹

2 is set in context to 

an invariant λg2 as a CM property [45, 39]. Being 

invariant, it stands for an interaction-independent mean 

vacuum density in the universe [1]. A regular map as a 
quadratic test of a cubic equation is possible for nine 

hΔ=1-fields. Then appearing periods νSh enable nine 

elementary fermions. Period-doubling coefficients ck in 

z←z2+c and δF=1-δklnδkck correspond to cubic roots ek∊ 

[∂], 𝕂[∂½] of a sextic polynomial on K(X) and W(Y). 

Period-doubling relates to doubly-periodic addition. 

Treating cubic roots as addition steps of quadruples roots 

at k→k+1,k+2 are γ(Φ)∘xk→xk+1, γ(Φ)∘xk+1→xk+2. The 
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equianharmonic value exp(ωe)≃4,61 with omega-2 

constant ωe is close to 𝛿𝐹 ≅ 4,669 where 

 

𝜔𝑒 =
𝛤3(

1

3
)

4𝜋
≅ 1.5299   (7.2) 

A quartic polynomial for adding points u,v,u±v for symbolic invariant 𝐴1
3 = 𝐴2

3 corresponds to an 

equianharmonic conjugate logistic map. The expression of λ in terms of theta constants is 
 

𝜆 = −
𝜗4[10]

𝜗4[01]
      (7.3) 

Being 1⅓ for equianharmonic curves λ can be rewritten in terms of modular units g(aω). For period- doubling 

{a}={a10,a01,a11}=½{(1,0),(0,1),(1,1)} it is a quadratic transformation of ϑ(u). Then λ[g(aω)] with a=(a1,a2) ∊ ℚ2 yields 

 

𝜆[𝑔(𝑎 𝜔)] ≃ 𝑒4(𝑎10η̃[ζ]𝑎10𝜔−𝑎01η̃[𝜁]𝑎01𝜔) ≃ 𝑒η̃[ζ]𝜔𝑒  (7.4) 

 
which yields 4,61 for η̃[ζ]≃1 Powers of the 

Dedekind eta function η-2N(ω)=Π(a)k̃a(ω) are Γ(N) 

modular invariant [33]. The modular group Г(N) is set in 

context to a one-periodic λk[λk’] behaviour related by 

periods νSh. Computationally one has 𝜇𝑘 = 𝑐0 + 𝑐1𝑒
𝑘𝑐2  

for the logistic map c2=1.530 which is roughly c2≃ ωe 

[46]. The one-dimensional map induces world-point 
dynamics M(a)X(f)= eS(a)X(f)→X(f) in terms of SE(3) 

steps in ℂw which ranges from diffusion-like to a robot-

like discrete potential flow. Zeros of X(f)jX(f) are linked 

to the fundamental theorem of hyperelliptic addition 

[28]. The poles of the amplitude 𝔸(s) function in 

exp(|γ|2(ch)4Dh
2) )≃exp(∫ds𝔸(s)) depend on simplest 

cycles quadruples q≃s. The bi-spinor ψs is defined as an 

eigenstate or stationary state of the shift- operator 
quadruple [1,δk,δkδk,δkδkδk]. Whereas equilibrium is 

defined as elastic matter which minimizes action ℒ by 

δkℒ=0 a bi spinor describes eternal non-equilibrium 

states where matter is generated. The fundamental 
theorem for a quadruple of steps q describes a number of 

δk correlations ∑ 𝛿𝑘𝑠+(𝑢, 𝑣)𝑠−(𝑢, 𝑣)𝑞 = 0 as well 

orthogonal in characteristics [gh] substituted products

 
 ∑ 𝛿𝑘(𝛼[𝑔ℎ](u + v)Г̃𝛽[𝑔ℎ](𝑢 − 𝑣))𝑠+(𝑢, 𝑣)𝑠−(𝑢, 𝑣𝑞 ) = ∑ 𝛿𝑘(𝑋[gh](𝑢)𝑗𝑋[gh](𝑣))𝑞 = 0.  (7.5) 

 

Throughout equality signs are understood as the 

assignment operator ≔. 16 hyperelliptic 

characteristics[𝑔ℎ], g,h= ½{0,1} as well ⅓ 

characteristics as n=3 period transforms of simplest 

cycles raise the fundamental hyperelliptic theorem to a 

quadratic equation of mass ratios of elementary particles 

[47]. For δk shifted states ψs≃{fq}≃{fk,fk+1,fk+2,fk+3} 

result from SE (3) joints M(a)X(f)= eS(A,a)X(f) where 

Sii’μ(A,a) projects a quadratic term onto (fk,fk+1,fk+2) 

around inflection tangent axis dFμii’(μ=1,2,3,4, s=1,2,3,4)  

 
𝑑𝐹𝜇𝑖𝑖′𝛾𝑠𝑠′

𝜇 𝜓𝑖′𝑠′ = 𝑚𝛿𝑖𝑖′𝜓𝑖𝑠 𝑆(𝑨 , 𝒂)𝑖𝑖′,𝜇𝛾𝑠𝑠′
𝜇 𝜓𝑖′𝑠′ = 𝑚𝛿𝑖𝑖′𝜓𝑖′𝑠                                                 (7.6) 

Like a quadruple four rotational SE(3) steps are 

equivalent to one collineation M(a) (see Appendix 4). 

 

8. RENORMALIZATION 
Spacetime is fluctuating doubly-periodic 

lattices under dense lattices of cyclotomic units where a 

quotient of elliptic units ∏
𝜀(𝑢𝑁,𝑣𝑁)𝑔2(𝑢𝑁′)

𝜀(𝑢𝑁′,𝑣𝑁′)𝑔
2(𝑢𝑁)𝑁,𝑁′  as a 

product over modular groups Г(N) tends to a invariant 
λ(𝐶)𝑔2 ≃ 𝛿𝐹𝛼𝐹

2 with composite generator 𝑔2 =
∏ 𝑔2(𝑢𝑁′)𝑁

∏ 𝑔2(𝑢𝑁)𝑁′
. A Poncelet polygon contour C[∏δ℘] in space 

has λ(C[∏δ℘]) =∏λ(C[δ℘]) [48]. Next to scaling zk=-

αFz2k which leads to the renormalized equation (8.8) a 

linear complex relation ∑(q)cqzq=0 exists for quadruples 
q. For a simplest cycle it reduces to 

ckzk+ck+1zk+1+ck+2zk+2=0 with Feynman diagram series of 

zk+2[zk]. In the limit of infinite cyclotomic degrees N→ 

∞ one recovers a dimensionless vacuum energy density 

𝜌vac ≃
𝐻𝑤

2

8π𝐺𝑤
 with a Hubble-like parameter 

Hw=δklng(aω). The k-component coupling constant Gw 

scales with generator as 22k
. For k=3 one gets first 

periods νSh as a fraction 6⋅104 of ρvac which is equivalent 

to the microwave background. For k=9 one gets the 

cosmological constant problem [1]. An expected 

congruence at k=9 yields the experimental value of ρvac. 

Fixed points of maps 𝛾(𝜙) ∘. . .∘ 𝛾(𝜙) are generators 

which replace a Dedekind eta function η(z) in units ε(u,v) 

by roots of unity 1z. With ε(u,v)≃g2(uN)(℘(uN)-℘(vN)) 

one gets [45]. 

 

∏
𝜀(𝑢𝑁,𝑣𝑁)

𝜀(𝑢𝑁′,𝑣𝑁′)
𝑁,𝑁′ ≃ ∏

𝑔2(𝑢𝑁)

𝑔2(𝑢𝑁′)

(℘ (𝑢𝑁) −  ℘ (𝑣𝑁))

(℘ (𝑢𝑁′) −  ℘ (𝑣𝑁′))
≃ 𝑔2

𝑁,𝑁′ 𝜆[𝛿℘]                           (8.1) 
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where ℘(uN=ω)=ei. The γ-map is a shift of the 

difference δkei. For kth shifts 𝛿℘∘k = 𝛾∘𝑘(𝜙)𝛿℘ =
𝛾(𝜙) ∘. . .∘ 𝛾(𝜙)𝛿℘ the Legendre module reads λ =
𝜆(C[𝛿℘∘𝑘]) ≃ 𝑔2λ(C[𝛿℘]) on contour C[δ℘] of a 

Poncelet polygon. The g2 factor creates a topological 
entropy ht. By means of the symbolic map the 

hyperelliptic addition is linearized in the complex 

variable z≃f(ω). The exact quadratic relation between ϑ2 

and ℘ or δ℘ where the elliptic ℘-function is extracted 

from the hyperelliptic X(f)=(℘±±,1) by a rotation of (1,-

f,f2) allows to set zk=ϑ1≃g(aω) where zk+1 ≃℘. Values 

zk≃f(√Δk)≃g(akωk) on universal covering uk=akωk relate 

to simplest cycles most likely to a four-point contour 

around an inflection tangent. Already the Legendre 

modular function as a cross ratio depends on a 13-

segment contour C. Central to FZU and unified fields is 
a linear relation cqzq=0 of this strongly- nonlinear 

problem. For linear expanded modular units 

g(aqωq)≃f(√Δq) the product of 𝑞 = (
4
3
) = 4 factors of 

simplest cycles is called plaquette 𝑈□ 

 

𝑈□ = ∏ e𝑐4e𝑆(𝒂𝑞)𝑔𝑛𝑞(𝑎𝑞
 𝜔𝑞)𝑞                          (8.2) 

 

where for cross-ratio powers nq=(1,1,-2,-2) 

describe a 8- segment contour of λ(C) which reduces for 
simplest cycles of four points zk = zk+3 or zk+1<zk<zk+2 or 

zk+2<zk<zk+1 of interval I(z,z’) where zk=℘(uk) which is 
equivalent to three points zk, zk+1, zk+2 on different sites 

of inflection tangents. The 4∙4 matrix M(a)= eS(A,a) in the 

condition for stability (inflection tangent) 

det𝑑𝐹𝑖𝑖′𝛱𝑀(𝒂) contains modular units 𝑔(𝑎) ≃
∏ 𝑔(𝑎)𝑎

∏ 𝑔(𝑎  ′)𝑎′

 with dFμii’=(δu, du, dζ, d℘) collineations  

d𝐹𝜇𝑖𝑖′ ← 𝑑𝐹𝜇𝑖𝑖′𝑒
𝑐4𝑒𝑆(𝐀,𝒂) ← 𝑑𝐹𝜇𝑖𝑖′𝑀(𝒂𝑘) (Appendix 4). 

q=4-components 𝑔(𝑢𝑞) ← 𝜎(𝑢𝑞′)𝑀𝑘𝑘′(𝒂) ←

𝑒∫ 𝑑𝑣𝜁(𝑣)𝑒𝑐4𝑒𝑆(𝒂) get non- commutative in  

det𝑑𝐹𝑖𝑖′ ≃
∏ 𝑔(𝑎)𝑀(𝒂)𝑎

∏ 𝑔(𝑎′)𝑀(𝒂′)𝑎′
=

∏ 𝑔(𝑎𝑘)𝑒𝑡4𝑒𝑆(𝒂𝑘)
𝑘

∏ 𝑔(𝑎𝑘
′ )𝑒𝑡4𝑒

𝑆(𝒂𝑘
′ )

𝑘

  (8.3) 

with cyclic matrix t4 for an infinite number of 

νSh. Steps γ(ϕ3) as additions with nearly invariant λΠg2 

operate on a Riemann surface with zero self-intersection 

number and zero Euler-Poincare characteristic χ(𝕃w). 

This w-dimensional generalized Riemann surface 
formerly of genus w=1, …,5 consists of non-intersecting 

lines. Linearized world-points X(f)≃ψs yield Kirchhoff 

equations for discrete Xk lines of a potential flow of an 

ideal fluid. Having doubly-periodic cycles of entropy ht 

and temperature T the liquid is a universal superfluid 

state. Periods ωk split in a sextic number field [∂½]. 
Minima of the Legendre modular function λ=1-δkht are 

shifts of topological entropy ht. For cubic roots (e1, e2, e3) 

=(℘k, ℘k+1, ℘k+2) the Legendre module reads 

 
𝜆 ≃ 1 + 〈

℘𝑘+1−℘𝑘−℘𝑘+2+℘𝑘+1

℘𝑘+2−℘𝑘+1
〉 ≃ 1 + 𝛿𝑘 ln𝛿𝑘℘ (8.4) 

where 

 𝛿𝑒𝑘+𝑁 = 𝛾∘𝑁(𝜙3) ∘ 𝛿℘(𝜔𝑘) = 𝛾∘𝑁(𝜙3) ∘ 𝛿𝑒𝑘  

are related to topological entropy 

ℎ𝑡(𝛾
∘𝑁(𝜙3) = 𝑠𝑢𝑝

𝑑𝜇(𝛾(𝜙3))
ℎ𝜇(𝛾

∘𝑁(𝜙3))  

as a supremum over Lebesgue measure (6.1) of metrical entropy hμ 

𝜆𝐿(𝛾
∘𝑁  (𝜙3)) = ℎ𝜇(𝛾

∘𝑁(𝜙3)) =
1

𝑁
∑ ln𝛿𝑘℘(𝜔𝑘)

𝑁−1
𝑘=0    (8.5) 

 

which is related to the Lyapunov exponent λL. A chain rule in differential form is valid also over discrete k-shifts. Writing 

a finite shift δk℘k as 𝛿𝑘℘𝑘 = 𝛿𝑘(𝛾
∘𝑁(𝜙3) ∘ ℘𝑘−𝑁) and 𝛿℘∘𝑁 = 𝛾∘𝑁(𝜙3) ∘ 𝛿℘ one gets [49] 

 ℎ𝑡 (𝛾
∘𝑔𝑘  (𝜙)) = 𝑔𝑘ℎ𝑡(𝛾𝛷) and ℎ𝑡(𝛾𝛷) =

1

𝑁
∑ ln𝛿𝑘℘(𝜔𝑘)

𝑁−1
𝑘=0 =

1

𝑁
∑ ln𝛿𝑘𝑒

𝑁−1
𝑘=0  which confirms 

𝜆 (C [𝛾∘𝑔𝑘
(𝜙3)]) = 1 − 𝛿𝑘ℎ𝑡 (𝛾∘𝑔𝑘  (𝜙3))  (8.6) 

 
Topological entropy ht is optimized for a tower 

of g(aω) 𝛾∘𝑁(𝜙3) ∘ 𝛿℘ ≃ 𝑔(𝑎1
 𝜔)𝑔(𝑎2

 𝜔)
⋰𝑁

. The k-shift 

of the topological entropy ht classifies an information 

current as density of generators and modular units. 

Optimized values of λ(ht) and Gw(ht) belong to the 

second exponential level of generators: A one- 

dimensional supremum of 𝑁 = 𝑔𝑘
𝑔𝑘+1 is reached at 

constant (gk+gk+1)(gk-gk+1) where gk= g(akω). The k-

process with 𝑁 = 𝑒𝑔𝑘
2 ln𝑔𝑘 offers to attach the fine 

structure constant [8]. An optimal quadratic map consists 

in two steps. A quadratic map of degree 𝑧2𝑘
 embedded 

into bases 𝑧1 …𝑧2𝑘  in 2k complex planes is projectable 

onto w independent Riemann spheres. In distinction, an 

optimal map searches a minimum of 𝑧𝑘+1 + 𝑙𝑜𝑔𝑔𝑘
𝑧𝑘 

which yields a power tower 𝑧𝑘 → 𝑔𝑘
𝑧𝑘+1 . Both maps are 

compatible for a 2-power bases with generator gk=2 or 
gk=3 if Fermat number congruences exits. Either gk 

powers of g=2 or gk powers of g=3 are roots of unity for 

the first four prime Fermat number Ft. Congruences are 

expected above |M| which is the number of elements of a 
Monster group M with respect to the elliptic invariant 

j(ω). Subsequent maps 𝛾∘𝑁(𝜙3) change the integral base 

(1,∂,∂2) of the pure cubic field 𝕂[∂] or 𝕂[∂½] with 

discriminant 𝛥𝑘+1 = 𝜙3
2𝛥𝑘 [29]. Then the invariant 

polynomial ϕ3 represents the index form I(ϕ3) where 

detγ(ϕ3(t))=ϕ3=1 covers possible integral bases [50]. 

Feigenbaum renormalization consists in the assumption 

of scaling zk=-αFz2k of the doubling component where 

zk=z∘k and 𝑧∘𝑘 = −𝛼𝐹𝑧
∘2𝑘 yields -αFg(g(-z/αF ))=g(z) 
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[51]. This conjecture is equivalent to a a cyclic shift of 
zk+1=gzk and z2k=gkzk for a definite generator g as a root 

of unity. This paper relates the second Feigenbaum 

constant αF to a generator as a universal congruence. 

Periods νSh appear if [1,δk,δkδk,δkδkδk].contains a linear 
relation. 

 

ckzk+ck+1zk+1+ck+2zk+2=0                   (8.7) 

 
between 1,δk and δkδk. Accordingly, a linear 

relation between three functionals is irreducible, e.g. for 

the Dyson equation of G,G0,Σ of Greens function G and 

mass operator Σ or for the Bethe-Salpeter equation of 
P,P0 and Ξ for polarization function P and vertex part Ξ 

where eq. (1.2) indicates the importance of γ for quantum 

statistics 

 

γ(ren)=γ+γ∘Γ(ren)◦γ(ren)  (8.8) 

 

Consistent with spinor definition by δe=(δx)2 a 
renormalized invariant f(ω)→g(z) obeys quartic 

polynomial. 

 

9. CURRENT DENSITY AND VACUUM 

ENERGY DENSITY 
The proof that zeros znt describe charge and 

mass is simple. For ξ(znt)=0 , λ=znt and Δhξ(z)=0 with 

Δh=y2Δxy= Imλ2Δxy one gets the screened Poisson 

equation Δxyξ(z)+μ1ξ(z)=μ2(Imλ-mn) where the 
hyperbolic Laplacian defines mn slices Imznt=Imλ=mn. 

Subsequent γ(ϕ3)- maps yield ξ(z)=0 =L(z,χ) ξ(z)=0 and  

 
 

Δxy(L(z,χ)ξ(z))+μs L(z,χ)ξ(z)=μc(Imλ-mn)     (9.1) 

 

A phase transition where the susceptibility χ 

vanishes yields poles in the amplitude 𝔸 giving ξ(znt)=0. 

Lagrange parameter μ1 describe screening and μ2 charges 
for a continuum of maps γz. But a continuum of γ-maps 

is a regular chaotic map. For proportional shifts δk,≃δkδk 

of periods one gets δF≃1- δklnδkω in case of CM where 

ω≃f2(ω). Accordingly, ω ≃δkω leading to a Gaussian 

distribution with standard deviation of δF. Therefore, 

Hieb’s conjecture is related to the definition of charges. 

The invariant relation for Legendre module λg2 is viewed 
as a mean density of additions on elliptic curves as a 

vacuum energy density for various densities of 1/RΔ 

algebraic units. In the limit 1/RΔ→∞, i.e. RΔ→0 the 

number of roots on circles is sufficient in order to define 
a point. Fermat congruences define w imaginary units for 

rotations. Faster inner shells end up in in a resting bowl 

which defines a point. The module λμ=λμm/m+½ is a 

Dirac-like current density where λλ'=24/f24(ω) or 

(λμm/m)2-¼=24/f24 and 𝜆μ𝑚 = ψ̅𝑞  λμmqq′ψq′ and a linear 

relation cqzq=0 transmits to cqλq=0 for simplest cycles 

quadruples. Poncelet involution i(u)≃=αu+β with 

α=±1,±i is transmitted to an involution i(λ) on inscribed 

and circumscribed contour in λ(C(ijkl)) =

exp (∫ 𝑑𝑣𝜁(𝑣)
𝐶(𝑘)−𝐶(𝑘′) ) = ∏ (𝑖 𝑗 𝑘 𝑙)𝑖𝑗𝑘𝑙 . The product 

over cross-ratios (ijkl) is independent on the path 

between contour endpoints and is capable to describe a 

potential flow. Indices are i∊ℙ1, ℙ3, μ,ν∊ℝ3,1, s=1,2,3,4. 

A stability to iterate near four tangents dFμ,ii’(xF,yF) 

around four points K(Xμ) is supposed. A quadruple of 

steps q=k,k+1,k+2,k+3 in 𝛿𝑞 ∏ 𝛿
𝑙𝜔

 is supposed to be 

stationary frozen for all laps lω. Then shifts δk are 

independent fields in S-matrix 𝜆(𝛿𝐶) ≃ 𝑒∫ 𝑑𝑡𝑆
1
0

(𝑡) =

𝑒∑ 𝛿𝑘
2 ∫ 𝑑𝑡𝜁(𝑡  𝑣  , ω𝑘)

1
0𝑘,𝑤  with susceptibility 

𝜒(𝑣 , 𝜁 (𝑣 , ω𝑘)) = 1 +
𝛿𝑘 ln𝛿𝑘𝑣

𝛿𝑘 ln𝜁(𝑣 , ω𝑘)
= 1 +

𝜆𝑣

𝛿𝑘 ln𝜁(𝑣 , ω𝑘)
 

 𝑆(𝑡) = ∑ (𝛿𝑘
 𝑡 𝑣)𝑅𝑘,𝑞𝑞′𝜁(𝑙 , 𝑚 , 𝑅𝑘,𝑞𝑞′)(𝛿𝑘

 𝜁  (𝑡 𝑣 , ω𝑘))𝑘,𝑞𝑞′   

where the exponent can be  

 ∑ ∫ 𝑑𝑣𝜁(𝑣) = ∑ ∫ 𝑑𝑡𝜀𝜀̅𝑗(𝑣)𝜒(𝑣 ,  𝜁 ,  𝑘)
∂𝜁(𝑣)

∂𝑘𝐶𝑘,𝑤𝐶𝑘,𝑤                                                       (9.2) 

 

with ε and ε̄ in N[√∆]. Like in quantum statistics one gets a mutual current density-vector potential and vector 
potential- current density dependence which allows an action functional representation of λ 

𝜆 = ∏ exp (∫ 𝑑𝑣𝜁(𝑢(𝑣 , ω𝑘)) + 𝜇1detd𝐹𝜇𝑖𝑖′ + 𝜇2(1 − 𝑈□) + 𝜇3𝜒(𝕃𝑤)
𝐶𝑖

)𝑖   (9.3). 

 
Four stability axes in the ψs - symmetrized 

determinant (9.3) μ1detdFμii’=0 is equivalent to a 
scattering amplitude of four potentials and 8 bi spinor 

states. A plaquette 𝑈□ term μ2 contains doubly-periodic 

ω with one-periodic νSh. It is claimed that Sharkovskii 
periods are locally roots of unity exp(iνShz) which holds 

for four stability axes of four-dimensional superlattices 

exp(iνμzμ) of lattices of algebraic units. A vanishing self-

intersection number by Lagrange parameter μ3 can 
possibly be arranged as a potential flow in the absence of 

radiation and dissipation which is one condition of 

superfluidity. Next a phase transition in the exact K(λ)- 

equation [14] 

 
𝑑

𝑑𝜆
𝜆𝜆′

𝑑𝐾

𝑑𝜆
= 𝜆𝜆′

𝑑2𝐾

𝑑𝜆2
+ (1 − 2 𝜆)

𝑑𝐾

𝑑𝜆
=

𝐾

4
+ 𝜇1𝜙3(𝐾,𝐾′)  (9.4) 

 

by CM is discussed which is a cubic term 

ϕ3(K,K’) of quarter periods. CM implies a fractal 
behavior where quarter periods K, K’→ϑ1 get itself theta 

variables which occurs in a superconducting phase 

transition [24]. Subsequent self-similar iterates K, 

K’→ϑ1 of tori within tori by means of a map γ(ϕ3) on 
K(X(f)) and W(Y(f)) satisfy the γ(ϕ3)- invariant 

hyperelliptic addition X(fk)jX(fk)= s+[gh](u,v)s-[gh](u,v) 
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where X(fk)=d2ϑ(u+v). This is because γ(ϕ3) forces CM. 
Zeros of bifurcated hyperelliptic theta function ϑ(u±v) 

are set in context to non-trivial zeros znt of the Riemann 

zeta function ζ(z). Because λ relates to a current dλ in 

(9.3) is also related to coordinates. A phase transition to 

cylindrical coordinates around a center λ≃znt yields a 

winding number Nℏ=ΠFt between w-shells of ℏ ≃ 𝑁ℏ
2 ≃

1.84 ⋅ 1019 being the definition of Planck constant ℏ. 

Surface tension σs is related to topological entropy 

ht≃ln2. The winding concerns laps lω of orbits in 

𝛿𝑘 ∏𝛿𝑙𝜔
 of a non-turbulent potential flow near fixed 

points of γ(ϕ3). Formally, a Heuman lambda function 

Λ*(u,√λ’)=∂/∂uϑ2(iu,√λ)=πu/KK’+∂/∂uϑ4(u,√λ) exhibits 

a plateau for the classical value K→0 where the 

discriminant vanishes for Jacobi theta functions ϑi(u,√λ). 
Self-similar steps K(λ), K’(λ)→ϑ1 are self-reproducing 

cubic terms of (9.4) modulo a quartic ϕ4(K,K’) where a 

prime denotes quarter periods K,K’ or a λ- derivative 

where [24]. 

 
𝐾𝑤

′′ − 𝜎𝑠
2(1 − 𝐵2  𝜆2)𝐾𝑤 = 0   (9.5) 

Derivatives 
𝑑

𝑑𝜆−1(𝐶𝑤)
=

𝑖𝑁ℏ

𝜎𝑠

𝑑

𝑑𝜆−1(𝐶𝑤+1)
+ 𝛬(𝑢 , 𝕃𝑤+1)  

reproduce a Schrödinger equation. Inserting the second 

 derivative K’’ of (9.5) into (9.4) one gets 
 

(1 − 2 𝜆)𝐾′ + 𝜎𝑠
2𝜆𝜆′(1 − 𝐵2  𝜆2)𝐾 − 𝜇1𝜆𝜆′𝜙3(𝐾,𝐾′) − ¼𝐾 = 0                 (9.6) 

 
Polynomials of (9.6) of up to degree 11 in λ are 

reduced by a quartic polynomial of the Jacobi theta 

function and by ϕ4(λ). The iterated equation displays 

modulo ϕ4(K,K’) a thermodynamic potential 

ϕ3(K,K’)modϕ4(K,K’)≃jμAμ≃Ωk and w gyro twist shells 

Ωw=∫dσ5jwAw 

 

10. CONCLUSION 
Optimal variables of the quadratic map are 

superpositions of z and lnz, are cardioids and superposed 

bulbs which depend on three Lagrange parameters, thus 

explaining the Huygens-Fresnel principle. Subsequent 

optimization yields a tower 𝑔1
....𝑔𝑙 of generators which 

competes with periods νSh which requires a maximal 

general Riemann surface ℂ5 to search for pseudo-
congruences. Analogously, periods νSh are treated as 

general complex number in a Kummer theory which only 

locally allow roots of unity exp(iνShz) [20]. An optimal 

regulator RΔ (2.1) in the L- function consists in 
cyclotomic units in a number field extension of a cubic 

field. Modular units g(aω,ω) combined with Poncelet 

involution i(u)=αu+ with α2=±1 by multiplication αu 

with α=±1,±i survive period fluctuations on universal 
covering u=aω. Poncelet involution is an addition step 

and a Poncelet polygon consists of simplest triangles 

u,v,u±v. A fractal set of quarter periods K≃ϑ1 is 

implemented in every elliptic curve. It is equivalent to a 

phase transition for a cubic/quartic K(λ). The 

normalization K≃δF stands for a charge or flux 

quantization in quantum statistics in [24]. Forced CM by 

eq. (1.2) is equivalent to addition as an exactly iterated 

chaos. The second Feigenbaum constant αF is equivalent 
to a generator g(aω) as a mean cyclic shift. The relation 

𝛿𝐹𝛼𝐹
2 =invariant relates to a stationary addition process 

on fluctuating elliptic curves where λ(CN)g2(aω) 
=invariant holds as an invariant dimensionless energy 

density. Iterated curvature forces complex multiplication 

of elliptic curves. A tower of modular units g(aω) shapes 

gyro twist-like hypersurfaces (w≤5) in w-dimensional 
complex space ℂw. Cycles on ℂw yield invariances of the 

product of both Feigenbaum constants in agreement with 

computation. The linear map γ(ϕ3) in a bicubic number 

field predicts a bicubic norm of a bi spinor field which is 

a quadratic norm multiplied by a coupling constant valid 

for all interactions. 
Appendix 1: Period-Doubling as Doubly-Periodic 

CM Points 

A general quadratic map F(t,z) in Section 3 is 4-

parameter-dependent whereas a Mandelbrot map 𝑧𝜅+1 ←
𝑧𝜅
2 + 𝑐𝜅  on period-doubling cκ depends on a single root 

cκ=ei=℘(ωi). Optimal units in L-function (1.1) and 

regulator (2.1) behave as a tower 𝑔1
....𝑔𝑙 ≃ 𝑔1

𝑔2
𝑔3

where 

already a base 2 exponentiation is ultrafast. Only for a 

square number 𝑔2
𝑔3 series of vanishing Gaussian periods 

exists, i.e. for k=2,4,6,8,10 in 22k
 which are related to 

interactions. In distinction, periods νSh appear as slow 2k 

components related to particles. Local curvature z of a 

self-similar bifurcating spacetime tree is encapsulated by 

L-functions as a Lovelock-like Lagrangian of elastic 
spacetime in nontrivial zeros of the zeta function. 

Legendre module 𝜆(𝐶) =
𝑒𝑘−𝑒𝑘+1

𝑒𝑘+1−𝑒𝑘+2
 and Feigenbaum 

constant 𝛿𝐹 =
𝑐𝜅−𝑐𝜅+1

𝑐𝜅+1−𝑐𝜅+2
 are formally equivalent 

comparing period- doubling Mandelbrot parameter cκ 

with cubic root ek. Elliptic curves cycles obey a zoom 

property because the square of the Dedekind eta function 

η(ω)  ∽ √det𝛾 (
∆(𝛾  𝜏)

∆(𝜏)
)
1/24

 in ωk+1←Πη2(ωk) ≃f2(ωk) is 

modular and γ(ϕ3) is scale-invariant [52]. Then units ε 

(ωk) in ℕ[√∆] ← 𝕂[∂]𝕂`[∂]𝕂``[∂] of simplest cycles (bi 

spinor) have a four-component complex bicubic norm 

𝕂[∂ ½] for power integral bases of periods ω≃(f(ω), 

f’(ω), f’’(ω)) in 𝕂[∂] or 𝕂[∂1/2] of four δk iterates. [53] 

[54]. For Hermite maps γ(ϕ3)◦f(ω) the index form is 

I(ϕ3)= ϕ3
2. Equivalent number fields 𝕂 [∂] or 𝕂 [∂-1] 

demand ϕ3(f(ω)) =1 for index form [50]. The aim of the 

paper is to explain a bi spinor state as a four-component 
state of simplest cycles of quadratic maps within a sextic 

number field 𝕂[∂1/2] with a cubic subfield 𝕂[∂] of 

√K(X). Monogenic fields exist for index forms I(ϕ)=∓1 

[50]. Periods ω result from a stationary folding process 

𝜔 ← 𝛿𝑘𝜔 = (1 − 𝜆)𝛿𝑘
2𝜔. The shift-operator δkω=ωk+1

-ωk 
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is nonlinear. The Lattés maps as u- doublings yield a 
quartic with higher complexity 

℘(2 𝑢) =
(℘𝑢

2 +¼𝑔2)
2+2𝑔3℘𝑢

4℘𝑢
3 −𝑔2℘𝑢−𝑔3

 

  (A1.1) 

even if ℘(2u) [℘(u)] is rational for g2=4, g3=0 or g2=0, 

g3=4 [26] [18]. For hΔ = 1 invariants 𝛾2 = √𝑗3 =
𝑓24(𝜔)−24

𝑓8(𝜔)
∊  ℕ are reducible to a cubic polynomial [52] 

 

𝜙3(𝑓(√Δ) = 𝑓3(√Δ) + 2𝐸𝑓2(√Δ) + 2𝐹𝑓(√Δ) + 2 = 0  (A1.2) 

 

with integers (E F) = (0,0), (1,1), (0, -1), (1,0), (1, -1),(3,2) which results from ϕ4=f4(√∆). 

 ϕ4
6 + 𝛾2 (

−3+√∆

2
)ϕ4

4 − 28 = (ϕ4
3  − 4 𝐴 ϕ4

2 + 8 𝐵 𝜙4
 − 24)(ϕ4

3  + 4 𝐴 ϕ4
2  + 8 𝐵 𝜙4

 + 24).  

 

Periods 𝜔𝑘+1 ≃ 𝜂2(𝜔𝑘) =
∏𝑔(𝑎  𝝎𝑘)

∏𝑔(𝑎  ′ 𝝎𝑘)
 are 

invariant for certain modular units (4.1) [30] [31] [33] 
[32]. The folding process ωk+1 ←ωk creates a 2-power 

tower 𝑓2⋰
. Cycles contain generators as roots of unity 

with 𝑓𝑏2𝑘

(𝜔) = 1 . Formally, the iteration index k can 

be set complex k. A generator 𝑏2𝑘
 exists for first four 

Fermat number congruences b=3k=2 with geometric zeta 

function as a Cantor string ζ(2,3, z) [55] [27]. This power 

tower corresponds to the nome [14] 

 

𝑞 = 1
𝑖𝐾′

2𝐾 = 𝑒2−𝑘ln𝜆𝑘+22−𝑘ln2   (A1.3) 

 

Rational points on Kummer surface K(X) and 

W(Y) are calculated by a folding and taping process 
which is equivalent to quadratic iterates. Iterates Kw[λw] 

on Cw and Kw-1[λw-1] on Cw-1 yield a string sequence u[Kw 

[λw[g[u, 𝕃w[ Kw-1[λw-1[…]]]]]]] with cycles expressed by 

modular units g(u=aω) (a⋴ℚ2) which depend on 

fluctuating lattices of units {l}. The generalized principal 

ideal theorem of CM predicts an equivalence λNg2(a,𝕃) 

≃ 𝛿𝐹𝛼𝐹
2 if a generator or a number theoretic transform 

exists for a tower of modular units. 

 
Appendix 2: A Cumulated Group for Weierstrass 

Relations 

Weierstrass relations are connected to spheres 

which transmits also to hyperelliptic addition. A six-

component spherical triangle of arc length a, b, c and 
angle α, β, γ can be addressed by three four-component 

parameter uμ,vμ,wμ (μ=1,2,3,4) where 

tan(½m0aμ)=iexp(vμ) and tan(½m0αμ)=iexp(wμ) with 

aμ=(2π,a,b,c), αμ=(2π ,α,β,γ) and matrices S and S0  

 
where. 
𝑆 = 𝑑𝑖𝑎𝑔(−1,1,1,1)𝑆0 is a third root S3=1 and S0 is a second root 𝑆0

2 = 1 of 

𝑚0 = ½|

1 −1 −1 −1
0 −1 1 1
0 1 −1 1
0 1 1 −1

| , 𝑆0 =
1

2
|

1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

|   (A2.1) 

 

Rotations of 3⋅4 parameter (u,v,w)=(1,S,S2)u≅(X,Y,Z) with matrices. A sphere 𝕊2 is related to three four- 

component variable (X, Y, Z) in Weierstrass relations s(u)+s(v)+s(w)=0 of elliptic theta s(u)=∑ ϑ(u1)ϑ(u2)ϑ(u3)ϑ(u4) [56]. 

120 possible products of hyperelliptic theta 𝜗[𝑔](𝑢) of characteristics [𝑔] ⇒ [
𝑔

𝑔′] ∈ 𝐹2
4 

 

 24𝑠[𝑔](𝑣) = ∑ (−1)ℎ∧𝑔𝑠[ℎ](𝑢)[ℎ]   (A2.2) 

where 

𝑠[𝑔](𝑢) = (−1)(ℎ+𝑙)𝑔′
𝜗[𝑔](𝑢1)𝜗[𝑔 +  ℎ](𝑢2)𝜗[𝑔  + 𝑙](𝑢3)𝜗[𝑔  −  ℎ  −  𝑙](𝑢4)  (A2.3) 

 
appear in 15 groups of 8 species [57]. Within 

one-periodic units (νSh) of doubly-periodic fluctuating 
congruences ωk the groups of characteristics [gh] have 

the highest degree of inertia. Inert [gh] groups are 

associated with particles in [47]. Invariances of (A2.1) 

with respect to adding Bω=B1ω1+B2ω2 in (uμ,vμ,wμ)→ 
u+½(1, S, S2)Bμω yield 28 possible substitutions 

Bμ∊{0,1} as elements of a group G256 [58]. Iteration 

f(ωk+1) ←γ(ϕ3)◦f(ωk) changes universal covering 

(uμk,vμk,wμk) because of CM ωk+1←Πη2(ωk) ≃f2(ωk). 

After 28 steps elements of the group of order G256 are 

traversed. Iterates cumulate a congruent memory of 

universal covering of ∑ 𝐵𝜇,𝑘ω𝑘
28

𝑘=1  of a group G
228  of the 

order 228  for characteristics [gh]. 

Appendix 3: Elliptic Addition  

Three points of zk=p(u), zk+1=p(v) and zk+2=p(u∓v) where 

℘′2(𝑢) = 𝛷3(𝑧) = ∑ (
3
𝑖
)𝑎𝑖𝑧

3−𝑖3
𝑖=0    (A3.1) 
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yield [41] 

𝑎0(𝑧𝑘
 + 𝑧𝑘+1

 + 𝑧𝑘+2) + 3𝑎1 = (
√𝛷3(𝑧𝑘)±√𝛷3(𝑧𝑘+1)

𝑧𝑘−𝑧𝑘+1
)
2

  (A3.2) 

For 3s1(zk,zk+1,zk+2)=∑zk, 3s2(zk,zk+1,zk+2)=∑zkzk’ and s3(zk,zk+1,zk+2)= zkzk+1zk+2 

4[𝑎0
 𝑠3

 + 𝑎3][3 𝑎0
 𝑠1  + 3 𝑎1] − [3 𝑎0

 𝑠2
 − 3 𝑎2]

2 = 0  (A3.3) 

Roots k,k+1,k+2 belong to simplest cycles q of γ(Φ3)zk in polynomial 𝛷𝑞(𝑧) = ∑ (
3
𝑖
) 𝑠𝑖(𝑧𝑘

 , 𝑧𝑘+1
 , 𝑧𝑘+2)

3
𝑖=0 𝑧3−𝑖 . For 𝑠4 =

4𝑠1𝑠3 − 3𝑠2
2, s0=1 and symbolic 𝑠𝑖 → ∑1

4−𝑖∑2
𝑖  and 𝑎𝑖 = 𝐴1

4−𝑖𝐴2
𝑖  one gets 

𝛷𝑞(𝑧) = ∑ (
4
𝑖
)𝑎𝑖

4
𝑖=0 𝑠𝑖 = ∑ (

4
𝑖
)𝐴1

4−𝑖𝐴2
𝑖 ∑1

4−𝑖∑2
𝑖4

𝑖=0 = 0  (A3.4) 

which is equianharmonic a4 if 
𝑎0𝑎4 − 4𝑎1𝑎3 + 3𝑎2

2 = 0   (A3.5) 

For σ2=0 leading to σ4=0 one has 𝑦 =
𝐴2∑2

𝐴1∑1
= (− 4)

1

3 λ=1⅓ with 

4𝐴1∑1𝐴2
3∑2

3 + 𝐴2
4∑2

4 = 0   (A3.6) 

The inflection tangent condition reads [59] 

𝐹(𝐶) = |
𝜁2
′ − 𝜁1

′ 𝜁3
′ − 𝜁1

′

𝜁2
′′ − 𝜁1

′′ 𝜁3
′′ − 𝜁1

′′| = |

1 𝜁1
′ ℘1

′

1 𝜁2
′ ℘2

′

1 𝜁3
′ ℘3

′
| =

𝜗0
′3𝜗𝑠𝜗12𝜗23𝜗13

𝜗01
3 𝜗02

3 𝜗03
3 = 0  (A3.7) 

where ζi=ζ(u0-ui), ℘i=℘(u0-ui), ϑij=ϑ1(ui-uj), ϑs=ϑ1(3u0-u1-u2-u3), For finite differentials of differences with u0, ζ0, ℘0 one 

gets for a simplest cycle q 

𝑑𝐹𝑞,𝑖𝑖′ ≃ |

1 0 0 0
1 𝑑𝑢𝑘 𝑑𝜁𝑘 𝑑℘𝑘

1 𝑑𝑢𝑘+1 𝑑𝜁𝑘+1 𝑑℘𝑘+1

1 𝑑𝑢𝑘+2 𝑑𝜁𝑘+2 𝑑℘𝑘+2

| = 0 

or  

𝑑𝐹𝑞,𝑖𝑖′ ≃ |

1 𝑑𝑢0 𝑑𝜁0 𝑑℘0

1 𝑑𝑢𝑘 𝑑𝜁𝑘 𝑑℘𝑘

1 𝑑𝑢𝑘+1 𝑑𝜁𝑘+1 𝑑℘𝑘+1

1 𝑑𝑢𝑘+2 𝑑𝜁𝑘+2 𝑑℘𝑘+2

|=0 

In ℕ[√Δ] units εq homogeneous ℘(u)- and ζ(u) functions (u,ω)→(εqu,εqω) yield for column 1 replaced by Mqduq  

𝑑𝐹𝑞,𝑖𝑖′ ≃ ||

𝑀0𝑑𝑢0 𝜀0𝑑𝑢0 𝜀0
−1𝑑𝜁0 𝜀0

−2𝑑℘0

𝑀𝑘𝑑𝑢𝑘 𝜀𝑘𝑑𝑢𝑘 𝜀𝑘
−1𝑑𝜁𝑘 𝜀𝑘

−2𝑑℘𝑘

𝑀𝑘+1𝑑𝑢𝑘+1 𝜀𝑘+1𝑑𝑢𝑘+1 𝜀𝑘+1
−1 𝑑𝜁𝑘+1 𝜀𝑘+1

−2 𝑑℘𝑘+1

𝑀𝑘+2𝑑𝑢𝑘+2 𝜀𝑘+2𝑑𝑢𝑘+2 𝜀𝑘+2
−1 𝑑𝜁𝑘+2 𝜀𝑘+2

−2 𝑑℘𝑘+2

|| = 0   (A3.8) 

(A3.7) vanishes if units εq satisfy a cubic equation 𝑀𝑞 + 𝑎1𝜀𝑞 + 𝑎2𝜀𝑞
−1 + 𝑎3𝜀𝑞

−1 = 0 for various tangents a=(du,dζ,d℘) 

where CM parameter Mq ∊ ℂ is forced by a cubic z and ω equation due to γ(ϕ3). (A3.7) allows SE(3) transformations and 

M(a) collineations for a quadruple of units εq.  
 

dF( 𝑥F,  𝑦F) → det𝐹𝑞,𝑖𝑖′∏𝑀(𝒂) = 0                    (A3.9) 

An orthogonal hyperelliptic substitution  𝛼[𝑔ℎ](𝑢 + 𝑣)Г̃𝛽[𝑔ℎ](u − v) →
1+𝐹(𝑐  , 𝛽[𝑔ℎ])

1−𝐹( 𝛼[𝑔ℎ]
 , 𝛽[𝑔ℎ])

∈ [0 ,  ± 1] is SE(3) related e.g. by 

a Cayley transform with skew symmetric matrix F(α, β) in [gh] space if detαΓ̃β=1. The stability axis dF(xF,yF)→ 

dF[gh](xF,yF) in (A3.7) depends on hyperelliptic ϑ[gh](u±) and ℘±± = ℘±±[𝑔ℎ]
, f[gh](ω). The SE(3)- rotation matrix S(A,a) 

depends on 16 combinations of characteristics [gh]. 

dF( 𝑥F,  𝑦F) → d𝐹[𝑔ℎ]( 𝑥F,  𝑦F) 𝛼[𝑔ℎ](𝑢 + 𝑣)Г̃𝛽[𝑔ℎ](u − v)   (A3.10) 

Again, the quadratic map of (A3.8) as a continued fraction of 2x2 minors is capable for fixed points where Mq∈ ℚ[√Δ] 

(q=1,2,3,4).  

Appendix 4: Transition from Robot Dynamics to Chaotic Dynamics 

SE(3) steps of X=(℘±±,1)=(1,-f,f2,1) include unimodular collineations M(a) as continued fractions (n=1), 

bifurcating continued fractions (n=2) and quaternary continued fractions (n=3) 

𝑀(𝑎𝑛) = 𝐶𝑛+1 + (
01,𝑛 0

0𝑛,𝑛 𝑎𝑛
𝑇)   (A4.1) 

with zero matrix 0n,m of n rows and m columns, a vector an=(a1,…,an), a cyclic matrix Cn+1 of order n+1 with 𝐶𝑛+1
𝑛+1 = 1, 

𝐶𝑛+1C𝑛+1
𝑇 = 1 and its exponential map C4 = 𝑒𝑐4. One has [60] 

C𝑛+1
𝑇 𝑀(𝑎𝑛) = (

1𝑛,𝑛 𝑎𝑛
𝑇

01,𝑛 1
) = 𝑒𝑆(1,𝑎𝑛)

.   (A4.2) 
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for 𝑆(𝑨, 𝑎𝑛) = (
𝑨 𝑎𝑛

0𝑛,1 0 ) satisfying 𝑆4 − 𝑨2𝑆2 = 0 where A is a rotation matrix in 𝑀(𝑨,𝒂) = 𝑒𝑆(𝑨 , 𝒂).  

With nilpotent 𝑁0 =
1

𝑨2
𝑆(𝑨2  − 𝑆2) ( 𝑁0

2 = 0 ) and idempotent 𝑃0 = 1 −
𝑆2

𝑨2
, 𝑃± =

1

2𝑨3
𝑆2(|𝑨| ∓ 𝑆) the exponential reads 

𝑒𝑆 = 𝑃0 + 𝑁0 + 𝑒−|𝑨|𝑃+ + 𝑒|𝑨|𝑃− where (𝑃𝜚
2 = 𝑃𝜚) for ρ=0, ∓. A collineation M(a) consists of four SE(3) steps eS(A,a). 

∏(
𝑨𝑘 𝒂
0 1

)

4

𝑘=1

= (
𝑨1𝑨2𝑨3𝑨4 𝑨1𝑨2(𝑨3

 + 1)𝒂 + (𝑨1
 + 1)𝒂

0 1
) = ∏(

𝑨𝑘 𝒂
0 1

)

4

𝑘=1

= (
𝑨4 (𝑨2  + 1)(𝑨 + 1)𝑎
0 1

) 

for a single skew rotation Ak=A where A2<0. 
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