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INTRODUCTION 

In recent years, the existence and multiplicity of solutions for boundary value problems for nonlinear high-order 

ordinary differential equations, especially for even number order equation were widely investigated, and gave a lot of 

satisfactory results on condition of the conjugate boundary conditions or simpler boundary conditions in papers [1-4]. 

 

In present paper, by constructing the correction function, we investigate a kind of boundary value problem of 

nonlinear high-order differential equation with different boundary conditions, and based on the theorem of Krasnosellskii 

we obtain the existence of positive solutions for it. 

 

Preliminary Notes 

In this paper, we concern on the existence of positive solutions for the following nonlinear higher-order boundary 

value problem  
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where 2,1 2 1n k n    . 

 

We assume that 

1( )H ([0,1] [0, ],( , ))f C     is continuous and nonnegative . 

2( )H 1( ) (0,1), ( ) 0N x L N x   and
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0
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( , ) ( ) 0f x y N x   
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Theorem 

Let B  be a Banach space and K B  a cone in B , and 
1 ,

2  be open bounded subsets of B  with 10 ,

1 2   . Assume that 2 1: ( \ )K K      be a completely continuous operator satisfying the condition 

(i) 1 2, , ,y y y K y y y K       Ω Ω ;or 

(ii) 1 2, , ,y y y K y y y K       Ω Ω . 

then   must have at least one fixed point in 2 1( \ )K    . 

 

MAIN RESULTS  

Theorem 
[5] 

Let ( , )G t s  be Grenn function for boundary value problem (1), then 
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Lemma 

For Grenn function for boundary value problem (1), we have
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for any ]1,0[, sx .
 

Proof   

We can easily obtain g
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Lemma 

If ( ) [0,1]ny x C satisfying the conditions as follows 
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then we have ( ) || ( ) || ( ),0 1y x y x x x   , where ( ) 0h x  . 

Proof  
By theorem 2.2 and lemma 2.1, we get 

1 1

0 00 1
|| ( ) || max ( , ) ( )d ( ) ( )d

x
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and so we can obtain 
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Lemma 

 Assume that 1( )H and 2( )H hold with ( ) [0,1]nx C  satisfying 
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that there exists a constant C  such that ( ) ( )x C x  ,where ( ) 0,0 1N x x   . 

Proof  

For any [0,1]x , From Lemma 2.1, we have 
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For any x I ,we define the operator correction function as 
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In this paper, we concern on the modified boundary value problem  
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where ( )x  defined by Lemma 2.3. 

Lemma 

If ( ) ( ) ( )u x y x x   is a solution for problem (4) with ( ) 0y x   for any [0,1]x , then ( )y x must be the 

positive solution for problem (1). 

 

Proof 

For any [0,1]x ,if ( ) ( ) ( )u x y x x  is a solution for problem (4),then by definition of ( , )F x y ,we have 
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that is   
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So ( )y x is the positive solution for problem (1). 

Clearly, the problem (4) is equivalent to the integral equation  
1

0
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Lemma 

Assume that 1( )H and 2( )H hold,then ( )K K  ,and : K K  is completely continuous. 

 

Proof  

For any , [0,1]y K x  , from(2)and(3)we have  
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Theorem 
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(1) has at least one positive solution y K  satisfying r y R  . 
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Let 2 { :||| || }y K y r    ,then for any 2, [0,1]y x  ,we can see that 
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( ) ( ) ( )y x x y x r    

and 
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Thus, problem (1) has at least one positive solution y K  satisfying r y R  . 

From Lemma 2.3, we can see for any 1x     that 
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then problem (1) has at least one positive solution y K  satisfying r y R  . 
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Let
[0,1]

( , )
lim min
y x

f x y
A

y 
 . Owing to condition(Ⅲ) we can see by taking  

1
2 12( ( ) ) 0A g s ds




 


   , 

that there exists a sufficiently large number R r , such that 
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Thus, we see from Theorem 2.3 that problem (1) has at least one positive solution y K satisfying r y R  . 
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