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Abstract: The purpose of this note is to generalize the Wazewski’s Topological Method 11, originally stated for 

ordinary differential equations, to the integro – differential equation of Volterra type (1), under suitable conditions on the 

functions involved. 
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INTRODUCTION 

Consider the following integro – differential equation of Volterra type:  
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 is the unknown vector function ; A : R+  Rn  n ; B : R+  R+  Rn  n and H : R+  R  Rn  

Rn  n are continuous functions with R+ = 0, +) , , f, k are continuous functions, the number a is arbitrary, and we 
suppose also that functions involved in equation (1) satisfies some uniqueness condition of solutions.  

 

The purpose of this note is to study the asymptotic behavior of equation (1), under suitable conditions. There are 
some results in that direction. In general, all asymptotic results in question are obtained under continuity assumptions on 

functions considered therein, while no assumptions the continuity in the whole for f and g is made here.  

 

Many qualitative results for equation of type (1) have been obtained by constructing Lyapunov’s functionals. So, 

our results here are more general and apply (1) wether A is stable, identically zero or completely unstable.  

 

In 1 Burton considered (1) with A constant and B(t, s) = B(t – s) and showed that the theory of existence, 
uniqueness, dimensionality of solutions space and the variation of parameters formula are virtually indistinguishable 

from the corresponding elementary theory of ordinary differential equations.  

Mahfoud in 8 gave sufficient conditions to ensure that (1) has bounded solutions, the method used is new and the main 
results unifies, improves and extends earlier results.  

 

The equations (1) and (2) has been considered in 15 taking B (t, s) = B(t – s), but the techniques used there are 

quite different. In particular, that paper can be considered as a sequel of 10 – 13.  

http://saspjournals.com/sjpms
mailto:jnapoles@frre.utn.edu.ar


 
 
Nápoles Valdes JE et al.; Sch. J. Phys. Math. Stat., 2015; Vol-2; Issue-4 (Sep-Nov); pp-377-382 

Available Online:  http://saspjournals.com/sjpms   378 

 

 

The Wazewski Topological Method, originally stated for ordinary differential equations, had received a 

considerable amount of attention in the last decades (see 3–5, 7, 9, 16 – 18), but in the case of integro – differential 

equations, that situation is quite different (see 14).  
 

In the next section of the present note, we give the basic theory, the concept of generalized polifacial set and 

Wazewski’s theorem for equation (1). For references see 4, 14 and 19 concerning the applicability of Topological 
Method of Wazewski.  

Now, we give the notation and some basic lemmas.  

 

Let (, x0) be a point in E. The initial value problem (i.v.p.) for (1) is to find an intrerval I  R+, a differentiable function 

 : I  Rn satisfying (1) for every t  a, +) and such that (t) = x0 for t  0, a 
 

The i.v.p. for (1) is equivalent to the integral equation (using the variation of parameters formula): 
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where R(t, s) is an n  n matrix which is the unique solution of the equation:   
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(see Grossman and Miller 6 for details) 
 

So that we shall refer to (3) as the (a) – ivp for equation (1). For given t  0 we call E(t) = (t, x) / x  E the 
section of E by t, or more briefly the t – section of E.  

 

We remind that if a  R+ it makes sense to consider de (a) – ivp and indeed we consider a  R+. 
In the following, we assume the hypothesis below, which is not the most general possible but is sufficient for our 

purposes, and avoid superfluous technicalities.  
 

Hypothesis (A): For each compact J  R+ and each compact P  Rn there exist in correspondence a continuous function k 

: J  R+ such that 
 

   )t(),t(x,tH)t(),t(x,tH 2211    k(t) )t(x)t(x 21   

 

for every t  J, 1(t) and 2(t) and every x1, x2  P.  
 

Local Existence, Continuation and Continuous Dependence upon Initial Data of the Solutions of Equation (1). 

The following results for the (a) – ivp can be proved as the case of ordinary differential equations, with natural 

adaptations (see, for example, Coppel 2). We make below some remarks about the existence and continuation of 
solutions outside an a – section of E, wich have some peculiarities proper of integro – differential equations of type (1).  

 

Lemma 1: Under hypothesis (A), exists  > 0 such that the (a) – ivp has a unique solution in a, a +  (a – , a +  if a – 

  0).  
 

The proof can be done by using Banach’s Contraction Principle in the space of continuous functions C(J, Q), Q 

 E with the supreme norm.  
 

We say that a solution  of the (a) – ivp defined on the interval J is continuable if there exists a solution  of the 

(a) – ivp defined on some interval J which contains J properly and such that (t) = (t) for all t  J. If it is not 

continuable we say that  is a maximal solution and its interval of definition the maximal interval of.  
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Lemma 2: Under hypothesis (A), if  is a solution of the (a) – ivp in a, b) (a < b) then  can be extended as the unique 

solution of the (a) – ivp to the right of b, that is to an interval a, c with b < c.  
 

Lemma 3: If  is a solution of the (a) – ivp defined and bounded in a, b then  can be extended as the unique solution 

of the (a) – ivp to the interval a, b.  
 

Let P = (a, x) be a point of E. If the solution of the (a) – ivp through P is unique we say that P is an ordinary point and put 

O = P  E : P is ordinary.  
 

The above results imply that E(a)  O if  hypothesis (A) is satisfied.  
 

We indicate (t, P) the solution of (1) through P and by (P) its maximal interval of definition. Also we put: 
 

L(t, P) = (t, (t, P))  ;  L(J, P) = (t, (t, P)) : t  J  ;  L((P), P) = L(P) 
 

and L+(P) = (t, (t, P)) : t   when P = (, x)  E. 
 

Lemma 4: Let Pn be a sequence of ordinary points Pn = (tn, xn) such that n
n

Plim


 = P0  O. If t0, b  (P0), then there 

exists N such that for every n  N t0, b  (P0) and ( . , Pn) converges uniformly to ( . , P0) in t0, b.  
 

Lemma 5: Let Pn be a sequence of ordinary points Pn = (tn, xn) such that n
n

Plim


 = P0  O. If X is an open subset of E 

such that:  
 

c, d  (P0)   and   L(c, d, P0)  X, 
 

then there exists N such that for every n  N 
 

c, d  (Pn)   and   L(c, d, Pn)  X 
 

 

Lemma 6: Let Pn be a sequence of ordinary points and X an open subset of E. If n
n

Plim


 = P0  O,   (P0) and L(t, 

P0)  X, then there exists N such that for n  N L(t, Pn) converges to L(t, P0) when n  .  
 

Lemma 7: Assume hypothesis (A). If P(t, x) is in E, then there exists a solution of the () – ivp in the interval ,  + , 

where  is small enough.  
 

The following hypothesis will be taken in the next section.  

 

Hypothesis (B) 

 

1. For every point P  E, there exists at least one integral L (P) of (1).  
2. Every integral L(P) of (1) is continuable to the right up to the boundary of E  

3. E(O) = O 
 

RESULTS 

Let W  E be an open set for which E(O)  W  , we put W(O) = E(O)  W and W = W   WCE  the 

boundary of W with respect to E.  

 

If P = (t, x)  W and if L(P) is not asymptotic with respect to W then there exists one first point Q = L(, P) on 
which L(P) reaches the boundary of W. Q is called the consequent of P and we write Q = C(P). To a generic point P there 

corresponds, in general, an infinity of consequents, but if P  O, then C(P) is unique.  

The set of all points P  W(O) for which there exists C(P) is called the left shadow of (1) with respect to W, and it is 
indicated by G(O).  
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In the sequel, S is the set of egress points and S is the set of strict egress points.  
The following theorem can be easily proved with the help of Lemma 4.   

 

Theorem 1. If P  G(O) and C(P)  S

 then the consequence mapping              

 

C : G(O)  S 
 

is continuous at P.  

 

Theorem 2. If S  S, the mapping  
 

K : G(O)  S  S / K(P) = 









SPifP

)O(GPif)P(C
 

 

is continuous.   

 

Proof: If P  G(O) the result is true by Theorem 1. Let P  S and Pn = (O, xn)   N be a sequence in G(O) converging 
to P, otherwise the theorem is also true, because K is the identity mapping on S. The P is a limiting point of G(O), that is 

P = (O, x). Therefore, P  E(O) and L(P) is unique. As P  S, L((O, ), P)  W for  small enough. By Lemma 4 we 

have for n large O,   (Pn) and by Lemma 6, L(, Pn)  W. Given  > 0 so small that 
 

P)P,t(L   < 
2


  for every t  0,                                    (5) 

 

As we have that Pn = L(O, Pn)  W and L(, Pn)  W there exists n, 0 < n <  such that L(n, Pn) = C(Pn) = K(Pn).  
By Lemma 4, we have for large n: 

 

)P,(L)P,(L nnn   < 
2


                                          (6) 

 

From (5) and (6) we obtain: 
 

P)P(K n   = P)P,(L nn    )P,(L)P,(L nnn   + P)O,(L n   < 
2


 + 

2


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Theorem 3 (Wazewski). If S  V  S and there exists Z  W(O)  V such that        Z  V is a retract of V and Z  V is 

not a retract of Z, then there exists at least one point P  Z – V for which the integral L(P) is asymptotic with respect to 
W. 

 

The proof is the same given by Wazewski.  

 

Remark 1. The condition S  S is essential for the realization of Wazewski’s Theorem. The other condition, v.g. the 
existence of the set Z depends upon the character of equation (1).  

 

Also we assume that functions involved in equation (1) are functions of class Ck with k  1, and we consider that H : Rn + 

1  R is a function of class Ck + 1. If P = (, x)  E and L(P) is an integral of (1) through P we put h(t) = H(L(t, P)), is 

clear that h is of class Ck + 1 in (P). The derivative of order q (q  k + 1) of h(t) at t = T will be denoted by )P(HDq

)P(L . 

Now consider the sets:  
 

W =  ...,2,1i;0)P(H:EP i   

 

i =  ...,2,1i;ki0)P(H0)P(H:EP ki   

http://saspjournals.com/sjpms


 
 
Nápoles Valdes JE et al.; Sch. J. Phys. Math. Stat., 2015; Vol-2; Issue-4 (Sep-Nov); pp-377-382 

Available Online:  http://saspjournals.com/sjpms   381 

 

 

for i = 1, 2, . . . , m , where Hi : R
n + 1  R are m functions of class Ck. 

 

If W  E(O)  , W will be called generalised polifacial set (with respect to (1)) and the i will be called the faces of W 

provided that one of the following conditions is satisfied for each y and each P  i :  

(1) For each L(P), the least q  k + 1 for which )P(HD q

)P(L   0 is odd and the corresponding derivative is positive.  

(2) P is not an egress point.   

Let Li be the set of points of i for which condition (1) is satisfied and Mi the set of points of i that satisfies condition 

(2). To verify if a point P = (, x)  iis in Mi, it is sufficient that one of the following conditions be satisfied: 

(a) For each L(P), the least value q  k + 1 for which )P(HD q

)P(L   0 is, either odd with corresponding derivative 

negative, or even with a positive value of the derivative. 

(b) There exist for each L(P) and a = a(L(P)), b = b(L(P)) such that a, b  (P),   L(a, b), P)  i and a < t  b. 
 

Theorem 4. If W is a generalised polifacial set, then S  V  S where V =                        = 




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Proof. It is obvious that W = 
i

i  and S  Mi = . Then: 
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i
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If P = (, x)  



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i ML , then Hi(P)  0 for i = 1, 2, . . . , m and Hk(P) = 0 if P  Lk. By condition (1), for 

each L(P) we have that Hk(L(t, P)) > 0 for  < t <  + +, where  = (L(P)) > 0 is sufficient small. Then L((,  + , P)  

W and P  S, so that: 
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


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


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i

i

i

i ML   S, 

 

and the proof is complete.  

 

Remark 2. The above theorem shows that a generalised polifacial set W is an open subset of E for which there exist V 

such that S  V  S (see remark 1).  
 

Remark 3. Our results are consistent with those of 1, 8 and 15 in the referent to asymptotic behavior of some 
“closed” examples to equation (1).  
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