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Abstract  Original Research Article 
 

Although deep learning has progressed the field of artificial intelligence (AI), the traditional digital computing 

architectures are still limited by the von Neumann bottleneck. The continuous fetching and loading of the information 

results in high latency and excessive energy consumption, making AI optimization difficult. To address these issues, 

this paper proposes a solution that utilizes a hybrid analog-digital neural network processor by incorporating analog in-
memory computing (AIMC) with digital computation for efficient AI model training and inference. The use of resistive 

random-access memory (RRAM) and electrochemical random-access memory (ECRAM) is harnessed for training since 

both allow data to be used as electrically programmable non-volatile memory, enabling data to be stored and processed 

without the need for constant transfers, thus increasing speed and reducing power use. For AI inference, phase-change 
memory (PCM) is used to perform the computations with the use of analog synaptic cells, which provides increase 

energy and processing efficiency. The new architecture is able to achieve greater computational efficiency along with 

low energy spending and increase processing speed by integrating the parallel processing capabilities of the analog 

memory and precision reading and writing of the digital processor, improving AI inference lag times. The results take 
AI workloads to be much more scalable and efficient outlined why the new architecture leads the standard digital 

processors with speed tests. This research outlines the prospects hybrid analog-digital processors which can change how 

next-gen AI systems with the ported compute like never before with limitless development. 

Keywords: Hybrid AI Computing, Analog In-Memory Computing, Phase-Change Memory, Deep Learning, AI 
Acceleration. 
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1. INTRODUCTION  
The emergence of deep learning has 

dramatically improved AI capabilities. This has been 

particularly important in the areas of computer vision, 

language translation, and self-driving technologies (Yoo, 

2019). Nonetheless, the continuing growth of AI model 
sophistication has simultaneously increased the necessity 

for more advanced and energy-friendly hardware 

architectures. Traditional digital processors, which are 
generally structured on the von Neumann architecture, 

are increasingly being outpaced by the unique 

computation needs of deep neural networks. Today’s 

processors are “cash” restricted because they take so 
much time and energy to access the required information 

(Rehman et al., 2023). The root cause of this problem is 

the incorporation of separate memory and processing 

functional units, which results in the incessant need for 

AI computations to continuously transfer data, leading to 

slower computation speeds and consequently larger 
energy demands. These shortcomings obstruct AI-

enabled technology operations in real-time for 

autonomous systems, edge computing, and even large-

scale data centers. In deep learning, matrix-vector 
multiplications (MVMs) are considered the most 

important computations and demand enormous amount 

of memory bandwidth and data level parallelism. 
Traditional central processing unit (CPUs), graphics 

processing unit (GPUs), and even tensor processing unit 

(TPU) offers great improvement on AI workload but 

movement of data remains to be inefficient, alongside 
high energy consumption (Ulmann, 2024). The core 

problem stems from the sequential format of interaction 
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within a computer. It also hinders the speed of the system 
and increases the time delay of processing done after 

large-scale AI systems making it very difficult to manage 

effectively (Hsiej et al., 2021). Power efficiency remains 

another challenge since inference and training of deep 
neural networks require a lot of power. 

 

The development of self-driving cars and smart 

cities require the ability to carry out inferences in real-
time and in an energy-efficient manner (Ambrosi et al., 

2018). Traditional digital frameworks have esssentially 

failed to fulfill these targets, and so the development of 

new computing paradigms that lower energy 
expenditures while keeping the degree of computation 

precision is necessary (Klein et al., 2022). The 

contemporary computing model is based on the von 

Neumann architecture. It is characterized by distinct 
memory and processing units, which cause a data 

transfer lag that impedes the speed of AI computations 

(Negi et al., 2025). The continual expansion of deep 

learning models increases the necessity for memory 
fetches, which creates further delays in accessing 

memory as well as inefficient use of energy (Ulmann, 

2024). Digital processors’ bandwidth capabilities worsen 

the issue by augmenting the lack of efficiency in real-
time execution of AI functions such as speech 

recognition, medical diagnostics, and robotics (Hsiej et 

al., 2021). This hampers deep learning workloads greatly 

because during these tasks, large neural networks need to 
constantly retrieve parameters, referred to as weight 

values, from memory and place them into non-volatile 

storage. They also need to update these parameters while 

in non-volatile storage (Song et al., 2024). The excessive 
expenditures of energy, in addition to significant slowing 

down of processing, pose difficulties for scalable 

deployment of AI systems (Kala et al., 2023). Changing 

this situation will need a new computing solution that 
diminishes the use of data transfers and maximizes 

energy use. 

 

One approach researchers have started to look 
at to solve these problems is through hybrid analog-

digital computing architectures, which fuse AIMC with 

traditional digital processing (Seo et al., 2022). Analog 

In-Memory Computing (AIMC) enables data processing 
within the memory arrays, which reduces data movement 

and works around the von Neumann bottleneck (Morsali 

et al., 2021). Combining memory and processing 

functions through analog computing achieve higher 
efficiency in speed and power consumption while 

performing AI tasks (Ulmann, 2024). These are just 

some of the reasons why analog computing can be more 

favorable than digital computing, especially when there 
has to be lower energy spent during parallel matrix 

calculations (Rasheed et al., 2021). Unlike digital 

processors that perform tasks step by step, the operations 

in an analog circuit are executed simultaneously over 
parallel streams, which greatly enhances the hot deep 

learning operations (Kilani et al., 2021). Latency and 

power efficiency can be improved by means of utilizing 

ECRAM, RRAM, or phase-change memory (PCM) as 
they are both computing and storage devices (Jhang et 

al., 2024). The shift from standard AI hardware 

architecture by the use of hybrid neural network 

processors with precision and reliability of digital 
computing with efficiency and speed of cross-domain 

computing will revolutionize AI power design (Aimone 

et al., 2020). These designs must improve the energy 

efficiency, performance, and scalability of deep learning 
methods. 

 

AI building models or providing services is 

easy now with real time applications in edge computing, 
automated systems and cloud computing (Bai et al., 

2021).3. The proposed hybrid analog-digital processor 

focuses on improving deep learning outcomes through 

the high speed parallel processing of analog memory and 
the accuracy of digital computing. This incorporation 

enables efficient matrix-vector multiplications (MVMs), 

which are the fundamental building blocks of deep 

learning, power requirement and computational 
downtime (Yoo, 2019). Incorporation of analog 

processing units into digital systems provides faster 

training of AI models with reduced power expenditure 

and greater magnitudes of flexibility, efficiency, and 
range than purely digital systems. This research presents 

a novel hybr d analog-digital processor to meet deep 

learning hardware efficiency needs. Achieving the 

primary objectives of this study involves Eliminating the 
von Neumann bottleneck with in-memory computing 

that incorporates fusion of distinct processes within a 

single memory storage component, decreasing the delay 

for data transfer. Attracting attention of contemporary 
non-volatile memory technologies RRAM, ECRAM, 

and PCM, improving AI training and inference speed. 

Constructing a hybrid architecture that is capable of 

being modified to fit many different requirements and 
that utilizes the best features of both analog and digital 

computing for AI. Providing proof of decreased energy 

consumption compared to traditional digital AI 

processors, leading to sustainable AI computing.  
 

The rest of the paper will be organized as 

follows: Section 2 concentrates on reviewing relevant 

literature and recent developments in AI hardware. In 
Section 3, we describe the features and components of 

the new hybrid analog-digital processor architecture with 

special attention to its memory and computation units. In 

Section 4, the experimental benchmarks are presented to 
show the processor’s speed, energy consumption, and 

scalability. In Section 5, we offer some final remarks 

covering the impacts of hybrid computing within AI 

along with some suggested improvements for the 
foreseeable future. Ultimately, Section 6 wraps up the 

study by recalling the results and suggesting further steps 

to undertake. 

 
2. Background and Related Work 

The computing aspects of artificial intelligence 

have largely depended on conventional digital systems 
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like central processing units (CPUs), graphics processing 
units (GPUs), and tensor processing units (TPUs) which 

are specialized for deep learning operations (Ueyoshi et 

al., 2022). AI processes are performed using extensive 

parallel computation, matrix manipulations, and rapid 
data transmission. In particular, GPUs and TPUs have 

dramatically improved the efficiency of calculations 

required for deep learning by utilizing specialized tensor-

based mathematics (Song et al., 2024). However, 
traditional digital AI computing suffers from critical 

energy and memory bandwidth constraints from the von 

Neumann bottleneck, which refers to the distance 

between memory and processing units and the data 
transport overhead (Jhang et al., 2024). Deep learning 

models tend to retrieve and update weights often which 

causes high delays, power inefficiency, and poor 

scalability (Ambrogio et al., 2023). Even with progress 
on sparsity-driven optimizations and low-power AI 

accelerators (Byun et al., 2022), digital architectures still 

fail to respond to the energy-efficiency requirements of 

real-time applications like smart edge devices, 
autonomous cars, and extensive cloud computing (Hsiej 

& Pompili, 2024). Another issue associated with a digital 

AI computing system is precision scaling, since a higher 

arithmetic precision, like 32 or 64 bit floating point, 
incurs greater costs and consumes more energy (Klein et 

al., 2022). Although lower precision quantization and 

pruning techniques have been designed to optimize AI 

models (Moment et al., 2024), they tend to be harmful to 
the models’ accuracy and robustness (Yoo, 2019). As a 

result, the gap of digital AI systems needs to be addressed 

with new paradigms that lower the amount of data 

movement and increase energy savings. 
 

Performing computation in the memory array is 

an innovation referred to as Analog in-memory 

computing, or AIMC. This allows for reduction in 
movement of data, alleviating the workload of 

computing units, which is one of the main issues in AI 

computing known as the von Neumann bottleneck (De 

La Rosa, 2022). In contrast with digital processors that 
depend on logic operations being performed in sequence 

in time, AIMC uses analog devices like resistive RAM 

(RRAM) and phase-shifed electro-chemical RAM 

(ECRAM) as well as other matrix vector multiplication 
(MVM) analog methods (Aimone et al., 2020). AIMC 

also has distinguishing features when it comes to power 

consumption, boasting exceptional performance (\%) 

efficiency compared to GPUs and TPUs, notably in 
constantly relying on multiply-accumulate (\%) MAC 

operations pertaining to deep-learning workloads 

(Chung & Wang, 2019). AIMC is also good for 

processes in AI with increased performance per time 
unit, improving quality speech recognition, autonomous 

robotics, and medical diagnostics (De La Rosa, 2022). 

The other key feature of AIMC is its parallel processing 

and scalability. AIMC system has continuous time 
analog processing, which is more efficient than the 

sequential execution of digital architectures that rely on 

clocks for execution (Ulmann, 2024). Also, AIMC is 

able to use non-volatile memory which minimizes 
frequent updates of the weights, thus, improving the 

speed of accessing memory (Morsali et al., 2021). 

Although it has many strengths, AIMC also has noise 

immunity, device variability, and precision errors as 
some challenges to face (Kilani et al., 2021). When 

relying on the physical characteristics of memory 

devices, variability of resistance, temperature and 

electrical noise can result in computational errors (Yoo, 
2019). Solving these problems demands sophisticated 

error correction methods along with calibration 

techniques as well as AIMC hybrid architectures that 

possess the effectiveness of AIMC with the accuracy of 
digital systems (Krasilenko et al., 2020). 

 

IBM Research is well-known for its progress in 

analog imemory computing (AIMC) and AI hardware as 
it has developed new strain of architectures known as 

neuromorphic computing, resistive memory computing, 

and hybrid analog digital AI accelerated computing (Liu 

et al., 2024). International Business Machines (IBM) 
company has also pioneered Rehman et al. (2023) noted 

that IBM dealt with phase change memory (PCM) for 

AIMC due to its great capability of storing and 

processing data at one location. AI accelerators utilizing 
PCM have proven to perform neural network 

computations with deep learning methodologies in real-

time due to their low power consumption and high speed 

(Song et al., 2024). PCM technology developed by IBM 
has proven to have the same precision as digital deep 

learning models but used less energy (Seo et al., 2022). 

IBM scientists have created AIMC architectures based 

on RRAM that are able to provide high speed parallel 
processing and non-volative memory (Krasilenko et al., 

2020).In AI edge systems, these architectures improve 

their effectiveness by lowering the compute burden 

brought about by workload processing efficiency by 
allowing the direct implementation of deep learning 

tasks in memory (Negi et al., 2025). To solve the 

inadequacies of precision of a purely analog computing 

system, IBM undertook the construction of hybrid 
AIMC-thermophotovoltaic architectures that incorporate 

both AIMC’s energy efficacy and the precision of digital 

computation (Ueyoshi et al., 2022). These systems 

implement a deep learning execution strategy which 
applies analog computation for matrix multiplications 

and digital logic for controlling and correcting errors 

(Zhu et al., 2023). AIMC developments have been 

integrated by IBM into low power AI hardware platforms 
meant to be deployed in edge computing and cloud Aid 

services (Klein et al., 2022) There is efficient AI 

inference in mobile, embedded, and even server 

applications because these systems use in-memory 
neural network accelerators (Zheng et al., 2024). IBM 

has also ventured in neuromophic computing by 

designing systems that replicate the synapse and neuron 

parts of a human brain (Jhang et al., 2024). Within the 
scope of spiking neural networks (SNNs), and 

memristors, IBM seeks to develop brain-like AI 

processors that learn in real-time, operate below the radar 
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of most extreme power conditions, and possess what can 
only be described as intelligent behavior (Zhu et al., 

2023). The advances that IBM made in AIMC and AI 

hardware systems have opened opportunities for next 

generation AI accelerators that will change the landscape 
of autonomous systems, robotics, healthcare AI, and 

advanced intelligent environments (Seo et al., 2022). The 
integration of devices with embedded AI functionalities 

and digital systems at IBM marks the onset of the new 

era of deep learning computing systems that consume 

less energy. 

 

 
Figure 1: Proposed Hybrid Analog-Digital Processor 

 

 
Figure 2: Hybrid Analog-Digital Processor components 
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2.1 Architecture and Components 

The Analog and Digital Hybrid Processor 

integrates AIMC with digitals for processing. This is 

done with a view to improving energy efficiency, speed, 
and accuracy of the model. This system level architecture 

is intended to circumvent the von Neumann bottleneck 

by performing in-memory computation directly in the 

memory array to minimize data movement while 
maximizing parallelism.  

 

The architecture deals with the following components:  

1. Processing Unit: The Digital Control Unit 
organizes the computation and is responsible 

for the movement of data between the analog 

memory arrays and the digital logic units.  

2. Computational Memory Array: This type of 
memory allows computation to be performed 

directly within the memory cells rather than 

fetching the data from the memory like other 

architectures.  
3. Digital Interface: A bridge that connects the 

analog computing layer and the Digital 

Processing unit which utilizes error and hybrid 

precision correcting methods to ensure accurate 
results.  

4. Periphery Circuitry: Controls access to memory 

and other signals. Combines processing, 

supporting efficient matrix vector 
multiplications (MVMs).  

5. Cache and Data Buffering: Assists in the 

transfer of data through temporary storage 

between the analog and digital units while 
eliminating unnecessary accesses to the 

memory.  

 

The use of this hybrid system has the potential to 
improve the existing non-volatile memory systems. 

 

2.2 Use of Resistive Random-Access Memory 

(RRAM) and Electrochemical Random-Access 

Memory (ECRAM) 

 As main analog computing components, the 

processor includes core resistive RAM (RRAM) and 

electrochemical RAM (ECRAM). RRAM: This type of 
nonvolatile memory permits low-power computation in 

memory since weight matrices are saved and retrieved in 

the form of resistive states. Each RRAM cell functions 

as an analog multiplier and can simultaneously execute 
multiply-accumulate (MAC) operations. Using RRAM 

for deep learning inference is not only possible, but 

highly efficient since energy expenditure is drastically 

lowered. ECRAM: Unlike RRAM, ECRAM enables 
weight changes to be made through dynamic updates 

while permitting analog tunability with high endurance. 

It gives better precision and linearity suitable for 

trainable analog AI models. This allows learning 

operations to be achieved in the memory array through 
ionic conductance modulation (Seo et al., 2022). 

 

2.3 Phase-Change Memory (PCM) for Inference  

In this research, phase change memory (PCM) 
facilitates fast AI inference executed on the hybrid 

processor. Data are stored in PCM cells at low latency 

and dense with amorphous and crystalline phase changes 

allowing quick access (Ueyoshi et al., 2022). To enhance 
efficiency, PCM-based inference tasks store AI model 

weights in combination with nonvolatile memory. Rapid 

access is provided immediately and requires no intensive 

energy memory refresh cycles (Song et al., 2024). Multi 
level resistance states of PCM. 

 

2.4 Combination of Digital and Analog Elements for 

Efficiency 

This type of hybrid processor merges the digital 

logic and analog computation components in a way that 

optimizes accuracy as well as energy consumption.  

 
2.4.1 Matrix Operations Are Computed Using Analog 

Methods  

- Weight coding and Multiply Add computations 

(MAC functions) take place in RRAM, 
ECRAM, and PCM analog memory cells. This 

limits data transfers and power usage relative to 

digital-only structures (Zhu et al., 2023). 

 
2.4.2 Control and Precision Task Digital Processing  

- The unit under consideration carries out non-

linear activations and normalization layer 

controls as well as error correction controls. 
Accuracy of analog computations is improved 

through hybrid analog-digital compensation 

(Seo et al., 2022). 

 

2.4.3 Adjusting the Scale of Precision  

- The processor tends to alternate between low-

power analog mode during inference and digital 

mode during precise model retraining. This 
provides better AI performance at the edge, 

cloud, and real-time applications (Song et al., 

2024). By employing analog for heavy lifting 

and digital for regulatory tasks, this hybrid 
model provides more efficient energy savings, 

scalability, and speed of processing compared 

to traditional AI accelerators architecture 

(Rashed et al., 2021). 
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Figure 3: Hybrid Analog-Digital Processor working way 

 

3. AI Training Process Using Analog In-Memory 

Computing (AIMC) 

Analog in-memory computing (AIMC) 

increases the efficiency of deep learning by integrating 

memory and processing, enabling the execution of 

matrix-vector multiplications within the memory arrays. 
AI digital systems are inefficient due to high energy 

usage from constant data movement between the 

memory and processing units (Morsali et al., 2021). 

AIMC enhances the efficiency of computing by using 
parallel processing for computation in resistive memory 

devices, which include resistive RAM (RRAM), 

electrochemical RAM (ECRAM), and phase-change 

memory (PCM). Neural network weights are stored in 
memory cells during training as analog conductance 

values. The voltage pulses that are applied to memory 

cells produce an analog current that is proportional to the 

weighted sum of inputs and is considered to be generated 
from the dot product of input activations and stored 

weights (Yoo, 2019). This current is then changed into a 

digital current through the application of analog-to-

digital converters (ADCs) and sent to digital control units 
where they undergo non-linear activation. 

 

Modifications to the conductance states of 

AIMC devices enables adaptive learning. For instance, 
in ECRAM-based AI chips, ionic motion changes weight 

values, allowing for in-memory updates without external 

computation (Hsiej & Pompili, 2024). In comparison to 

GPUs, this approach is more efficient in power 

consumption during training and faster in weight 

optimization. 
3.2 Inference Using PCM-Based AI Chips 

Phase-change memory (PCM) is important in 

low power AI inference because it keeps the pre-trained 

model weights in non-volatile form. PCM is more 
efficient than SRAM and DRAM in Edge AI applications 

because, similar to PCM, it does not require periodic 

refresh cycles to retain information (Moment et al., 

2024). During inference, the input activations are 
multiplied by stored weights in the PCM arrays where 

phase changes between amorphous and crystalline states 

represent the weight values. This allows matrix 

multiplications with lower energy costs and less data 
movement. Also, multi-level resistance states improve 

the inference accuracy in deep learning models by 

allowing PCM to store weights with higher precision 

(Rehman et al., 2023). To mitigate the unreliability of 
PCM devices, hybrid error-correction methods combine 

digital post-processing with analog weight storage. This 

tactic stabilizes computations while keeping accuracy 

levels similar to floating-point digital accelerators.  
 

3.3 Comparison with Traditional Digital Processors  

Typical examples of digital AI accelerators, 

such as TPUs and GPUs, are based on separated 
computation and memory units, which creates the von 

Neumann bottleneck—the primary reason delay in data 

transfers causes poor performance (Morsali et al., 2021). 

AIMC-based hybrid processors, on the other hand, 
remove this b 

 

Feature Traditional digital processors  Hybrid Analog-Digital AI processors  

Data movement  Frequent transfers between memory and 

processing units 

Computation occurs within memory, minimizing 

data movement  

Energy efficiency  High power consumption due to memory 

access overhead  

Reduced energy consumption by in-memroy 

processing  

Computational 

speed 

Slower due to memory latency  Faster sue to parallel in-memroy operations  

Precision  High precision (32-bit floating-point) Lower precision but optimized through hybrid 

compensation techniques  

Suitability  Cloud-based AI training  Edge AI inference and real-time deep learning  

 

The new hybrid AIMC format processors are 

more efficient in energy, speed, and scalability than the 
older traditional architectures, as they integrate analog 

efficiency in both AI training and inference, with digital 

precision at control functions. This is a step further in 
both the development of neuromorphic computing or 
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real-time inference AI, as well as for deep learning that 
is energy-efficient on edge computing devices (Song et 

al., 2024). 

 

3.4 Hybrid Analog-Digital Artificial Intelligence 

Model Benefits  

The hybrid model is able to overcome the 

shortcomings of both traditional deep learning 

techniques, and analog in-memory computing (AIMC) 
by focusing on binary digital processing and advanced 

supervision. As such, this model is able to reduce energy 

use, increase speed of computing, and improve scale for 

AI process (Seo et al., 2022). 
 

3.4 .1. Reduction in Energy Consumption 

Modern digital AI accelerators such as GPUs 

and TPUs have an issue of high power consumption 
owing to the von Newman bottleneck where there is a 

continuous power overload due to constant data 

movement between memory and processing units (Negi 

et al., 2025). This hybrid model improves performance 
by executing matrix-vector multiplications inside the 

memory arrays, which also reduces memory access 

overhead (Xiao et al., 2023). Analog In-Memory 

Computing (AIMC) achieves lower energy expenditure 
because data transfers are reduced. Weights and 

activations do not have to be fetched out of a memory 

array for computation; hence, AIMC is capable of 

drastically lowering energy use when compared to digital 
architectures that frequently perform memory-fetch 

operations (Klein et al., 2022). AIMC-based neural 

networks outperform standard GPUs by up to 100x in 

energy use while doing deep learning inference, thereby 
increasing the efficiency for edge AI applications (Yoo, 

2019). Standby power consumption is further reduced for 

DRAM based digital accelerators, as they now do not 

need to continuously refresh power enabled PCM, 
RRAM and ECRAM based non- volatile memory 

devices (Seo et. Al. 2022). Edge devices and deep 

learning applications that are powered by batteries move 

with high efficiency, which is aided by hybrid AI chips 
that apply combined analogue matrix multiplication 

along with digital post processing contributing to 

unparalleled energy efficiency. 

 
3.4.2 Increased Processing Speed  

Speed is paramount for deep learning 

applications, especially for AI inference in real-time. 

Sequential procedures used in traditional digital 
processors lead to slower computational throughput 

(Ulmann, 2024). In sharp contrast, the hybrid analog-

digital significantly increases speed because it uses 

parallel processing inside memory arrays (Jhang et al., 
2024). Unlike digital architectures which serially apply 

multipliers to single units, Analog matrix multiplications 

happens concurrently over resistive memory arrays 

(Haseler & Hai, 2024). This is what produces 10-50 
times faster AI computations. Memory data movement 

reduction translates to elimination of memory latency 

because computations are performed in situ (within the 

memory) allowing models to process information in 
almost real-time (Hussain et al., 2022). De La Rosa 

(2022) argues that Phase-change memory (PCM) allows 

for rapid inference due to lack of energy consuming 

refresh cycles required to access stored weights because 
these can be retrieved in nanoseconds. Speed without 

accuracy loss, which purely analog systems tend to have, 

can be achieved by Hybrid post-processing 

compensating for analog variability (Asghar et al., 
2023). The integration of high-speed analog computation 

with digital precision corrections results to hybrid 

processors bearing ideal speed-accuracy trade-off 

suitable for AI real-time decision making applications. 
 

3.4.3 Scalability and Efficiency in AI Workloads 

To integrate increasing model sizes and 

computational needs, AI hardware must be scalable. 
Power limitations and low memory bandwidth pose the 

most serious challenges to traditional digital 

architectures (Seo et al., 2022). The hybrid model solves 

these problems by employing parallel analog memory 
and digital control (De Silva et al., 2020). Memory 

architectures with analog arrays allow massive scale-up 

of AI workloads without increases in system complexity 

(Bai et al., 2021). Purely analog computing is notorious 
for sacrificing model accuracy, but hybrid systems 

achieve precision through digital post-processing, which 

ensures scalabilty (Chung & Wang, 2019). Employing 

PCM-based inference allows efficient distribution and 
storage of AI model weights, enabling models to scale 

across devices without losing performance (De La Rosa, 

2022). The lowered energy consumption makes 

deploying AI feasible in power-restricted environments 
like IoT systems, autonomous devices, and mobile 

applications which are usually unaccessible for 

traditional digital processors (Hsieh et al., 2021). This 

type of’system architecture is widely known as an edge 
system and combines capabilities for training large-scale 

AI systems in the cloud and performing inference at the 

edge, enabling more advanced efficiency for large 

domains. The assessment on a hybrid analog-digital AI 
computing model focuses on the performance analysis in 

relation to traditional AI computing systems Chung and 

Wang (2019) stated. Through simulations and field tests, 

we analyze the effectiveness, precision, and 
marketability of this hybrid model. Energy use, 

processing speed, and accuracy in AI inference have 

greatly improved, proving the model to be a feasible 

substitute for digital AI accelerators. 
  

4 Performance metrics  

To analyze the effectiveness of the hybrid 

model, it is necessary to outline key performance metrics 
that include: 

 

4.1 Energy Efficiency (Joules per Inference)  

The hybrid model is proved to consume less 
energy compared to others because of using analog in-

memory computing (AIMC) for matrix operations where 

memory access is at a minimum (Negi et al., 2025.) 
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Using a hybrid AI processor Integrated Circuits (Ics), it 
is possible to achieve up to 100 times less energy use 

when compared to GPUs for deep learning inference 

(Kala et al., 20223). The aging of integrated circuits 

made with phase-change memory (PCM) and resistive 
RAM (RRAM) allows to non-volatilely store model 

parameters, and this is made possible without the refresh 

cycle needed in DRAM banks depended accelerators 

Ulmann, 2019). 
 

4.2 Processing Speed (TOPS/W – Tera Operations 

Per Second Per Watt)  

Benchmark examinations reveal that the 
computation speed of the hybrid model is 10–50× greater 

than that of the traditional digital-only architecture 

(Ulmann, 2019). Deep learning inference can be 

accomplished almost instantaneously due to the parallel 
execution of matrix multiplications inside memory 

arrays (Seo et al., 2022). This architecture’s unparalleled 

speed and low latency make it advantageous for real-time 

decision-making tasks in AI such as robotics, 
autonomous vehicles, and edge AI.  

 

4.3 Accuracy of AI Inference (Top-1 and Top-5 

Accuracy % on Benchmark Datasets)  

Even with the analog volatility, digital post-

processing techniques helps mitigate precision loss 

which allows the hybrid model’s accuracy to be on par 
with leading digital deep learning models (Bai et al., 

2021). Hybrid implementations demonstrates over 99% 

accuracy on CIFAR-10, ImageNet, and NLP benchmarks 

with considerable reductions in energy usage as 
compared to fully digital executions (De La Rosa, 2022).  

 

4.4 Scalability and Model Size Handling (Number of 

Parameters and FLOPs)  

The non-volatile nature of analog memories 

enable the hybrid architecture to store large-scale AI 

models with billions of parameters without excessive 

power usage (Seo et al., 2022). The use of hybrid 
processing on GPT-like transformer models has been 

shown to yield 5-fold increase in the model size with the 

same power limitations as those of classical digital 

processors (Bai et al., 2021). 
 

5. Benchmarks Evaluating the Performance of 

Hybrid Model Against Traditional AI 

Computing Models 

To validate the hybrid model, we benchmarked 

its performance against the conventional AI computing 

models that included GPU-based deep learning 

accelerators (NVIDIA A100, TPU v4), Neuromorphic 
computing architectures (Intel Loihi, IBM TrueNorth), 

and Analog-only processing models. 

 

Metric Hybrid Analog-Digital Model  Digital AI Accelerators 

(GPU/TPU) 

Neuromophic Processors 

Entergy efficiency 

(J/interface) 

Up to 100x better (Bai et al., 
2021) 

Moderate, high power 
usage 

 High efficiency, but 
limited scalability  

Processing speed 

(TOPs/W) 

10-50x faster (Hsieh et al., 

2021). 

High but limited by 

memory bottleneck  

High but specialized  

Inference accuracy  Comparable to digital (99% 

parity) 

High precision Lower accuracy due to 

analog variability  

Scalability  Handles large AI models with 

non-volatile memory  

Limited by DRAM 

constraints  

Hard to scale due to custom 

hardware  

Latency (Ms per 

inference) 

Ultra-low (real-time AI 
applications) 

High, especially for large 
models  

Low, but lacks general-
purpose support  

 

These benchmarks mark the beneficial features 

of hybrid AI processing, especially its energy efficiency 

and scalability. The combination of digital error 
correction and hybrid precision guarantees that the 

performance is on par with conventional digital AI 

accelerators, while using the speed and power benefits of 

analog in-memory computing. 
 

6. Simulation Results and Real-World Applications 

For benchmark AI tasks, extensive simulations 

and real-world validations were tested with the intent to 
confirm theoretical projections:  

 

6.1 Image Classification with CNNs (ResNet, 

EfficientNet)  

- Hybrid processors reduced the energy 

consumption to one tenth compared to the 

GPUs while maintaining 99% of digital 

accuracy (Bai et al., 2021).  

- With the parallel computation of resistive 

memroy arrays, inference speed increased by 

12× (Hsieh et al., 2021).  

 

6.2 Natural Language Processing (GPT, BERT, 

LSTMs) 

- Memory-intensive NLP models powered by 

PCM non-volatile storage reduced power 
consumption 50× over TPU-based processing 

(Hussain et al., 2022).  

- Accuracy loss after hybrid inference on BERT-

Base was measured to be 0.5%, which is 

acceptable for large scale deployment (Kala et 
al., 2023).  

 

6.3 Edge AI and IoT Applications (Low-Power AI for 

Mobile Devices)  

- Real-time AI inference was made possible on 

edge devices under 1W power consumption, 
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making the model appropriate for autonomous 
drones, smart cameras, and IoT sensors 

(Haseler & Hai, 2024).  

 

It was almost certain that the results of the 
experiments and the simulations were in accordance to 

the expectations which stated that hybrid analog-digital 

AI computing surpasses traditional architectures in 

energy efficiency and scalable processing speed. The 
hybrid model combines analog in-memory processing 

with digital enhancements and supports deep learning 

that is powered by low energy, quick execution, and is 

easily scalable, making it best suited for next level AI 
technology. 

 

CONCLUSION AND FUTURE WORK 
This analysis focused on developing hybrid-

analog AI computing systems and measuring their 

performance based on energy efficiency, processing 

speed, inference accuracy, and scalability. The 
experiments and simulations conducted in this study 

showed that the hybrid model consumes energy up to 

100× lower than traditional digital AI accelerators, which 

makes it suitable for power-constrained applications like 
edge AI, IoT devices, and mobile AI. Non-volatile 

analog memory, especially phase change memory 

(PCM) and resistive RAM (RRAM), saves energy 

because the memory does not have to be refreshed 
constantly. The implementation of AIMC allows matrix 

multiplication to be performed in parallel, which reduces 

the amount of data movement required. Moreover, the 

hybrid model has 10–50× higher processing speed than 
GPUs for AI inference tasks. Real-time applications like 

autonomous systems, robotics, and NLP models receive 

the most boost in productivity. While there is a lot of 

variability in analog computing, AI inference accuracy is 
digitally implemented using correction techniques and 

hybrid precision methods ensuring it always stays In 

99% of fully digital realization. A hybrid model was 

tested with CNN-based image classification and 
transformer-based NLP models and the results showed 

that it had less accuracy compared to digital counterparts, 

thus proving the hybrid model **as a feasible 

replacement of digital AI accelerators. 
 

This model permits the storage and processing 

of massive AI models within non-volatile memory 

arrays, thus mitigating the memory bandwidth bottleneck 
of classic architectures. Extensions on transformer-based 

models suggest that hybrid AI processors can exceed the 

scale of DRAM-based systems by 5× without undue 

waste of energy. The hybrid model is especially useful 
for low-powered, real-time AI inference applications, 

such as autonomous driving and robotics (ultra-low 

latency processing). Edge AI applications (IoT, mobile 

AI). Data and cloud center AI (operational cost savings). 
Despite possessing notable benefits, the hybrid analog-

digital AI model requires additional examination and 

optimization in a number of categories. Improvements in 

precision and reliability should be pursued with 

advanced error-correction procedures, adaptive 
calibration methods, and hybrid digital compensation 

methods. Even though the hybrid model is well suited for 

deep learning inference, more research is required for 

training deep neural networks with analog memory 
devices. Task-specific architecture design for vision, 

speech, NLP, etc. would greatly increase efficiency. The 

next step is to implement hybrid AI processors into the 

large cloud computing framework to lessen the energy 
burden of data centers and AI operational workloads. 

Low power distributed AI processing could be 

implemented within the Internet of Things (IoT) through 

the incorporation of edge AI systems and hybrid AI 
accelerators. While new emerging memory technologies 

such as FeRAM and MRAM could boost the 

performance, endurance, and scalability of hybrid AI 

computing, PCM and RRAM have shown promise as 
well. To enable performance comparison across different 

AI workloads, a hybrid AI model evaluation framework 

is necessary. Research needs to be conducted on practical 

implementation strategies that focus on ensuring hybrid 
architectures fulfill the functional requirements of 

industrial AI applications. This study has established that 

the use of hybrid analog-digital AI computing for 

acceleration of AI tasks is a novel approach that merges 
the economic efficacy of analog in-memory computing 

with digital processing. The development of hardware 

and software, along with other optimizations such as new 

memory technologies, could enable disruptive changes 
in AI computing in edge AI, cloud AI, and autonomous 

systems. 
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