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Abstract: In drug delivery systems, mathematical modeling plays an important role in the design of drug carrier systems 

and facilitates the development of new pharmaceutical products. The ultimate aim is to accurately predict the drug 
release profile and improve the overall therapeutic efficacy and safety of these drug carrier systems. In this article, we 

have introduced a operational matrix method, which is based on operational matrix method for solving initial-boundary 

value problem describing the Higuchi and power law. 
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INTRODUCTION 

The science of drug delivery systems is multidisciplinary, integrating polymer science, pharmaceutical science, 

clinical, molecular biology and mathematics. Controlled release is a technique in which an active drug is made available 

to a specified target at a rate and period designed to achieve an intended effect. Such controlled release drug delivery 

devices offer definite advantages which include a reduced dosing frequency, a decreased incidence and/or intensity of 

side effects,  a more constant and/or prolonged therapeutic effect  and  an increase in cost effectiveness. 

 

The development and optimization of pharmaceutical products are greatly facilitated by mathematical models 

[1]. Theoretical modeling of drug delivery significantly improves the understanding of the underlying physical 
mechanisms governing drug release, while helping to determine the crucial parameters that regulate release rates. 

Moreover, the predictability offered by mathematical models reduces the number of required experiments, saving time 

and curtailing costs. Several expressions have been proposed for the description of drug release, such as the Higuchi law 

[2], the power-law or Peppas model [3, 4, 5] and, more recently, a relatively simple formula containing a stretched 

exponential function, also known as the Weibull function. 

The Higuchi law [2] states that 

tccDAM st )2( 0                                                               (1) 

where tM  is the cumulstive amount of drug released at time t , A  is the surface area of the controlled release device 

exposed to the release medium, D  is the drug diffusivity, 0c  and sc  are the initial drug concentration and the drug 

solubility, respectively. This law is valid for systems where the drug concentration is much higher than the drug 
solubility. 

The power law [6] states   
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M
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                                                                 (2) 

where tM  and M  are the amounts of drug released at times t  and infinity, respectively; k  is an experimentally 

determined parameter and n  is an exponent that depends on the geometry of the system: it can be related to the drug 

release mechanisms [7, 8]. In addition to the above two equations, various approaches have been developed that are 

based on the geometry of the device and the physicochemical drug properties, and they provide a comprehensive, 

mechanistic interpretation of the drug release kinetics [9, 10, 11].  

 

The Weibull function is sporadically used in drug release studies in spite of its extensive empirical use in 

dissolution studies [12, 13]: 
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where a  and b  are constant. This model has the form of a stretched exponential function. It describes experimental 

disolution data quite well, but put o now there is no physical reasoning for it or a physical meaning of t he constant a  

and b . Ref. [14] is intented to provide such a physical meaning for the Eq.(3). 

 

CHEBYSHEV POLYNOMIALS 

Definition 2.1 The Chebyshev polynomials )(tTn  of the first kind is a polynomials in x  of degree n , defined by 

relation [15, 16] 

ntTn cos)(  ,  when cost  

If the range of the variable x  is the interval ]1,1[ , the range the corresponding variables   can be taken ],0[  . We 

map the independent variable t   in ]1,0[  to the variable s  in ]1,1[  by transformation  

12  ts  or )1(
2

1
 st  

and this lead to the shifted Chebyshev polynomial of the first kind )(* tTn  of degree n  in x  on ]1,0[  given by [15, 16] 

)12()()(*  tTsTtT nnn . 

It is of course possible to defined )(* tTn , like )(tTn , directly by a trigonometric relation. Indeed, we obtained  

ntTn 2cos)(*   when 2cost . 

The leading coefficient of 
nt  in )(* tTn  to be 

122 n
.These polynomials have the following properties [15]: 

 i) )(1
* tT n   has exactly 1n  real zeroes on the interval ]1,0[ . The i -th zero it  is   
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ii) It is well known that the relation between the powers 
nt  and the second kind Chebyshev polynomials )(* tTn  is  
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where  '  denotes a sum whose first term is halved. 

 

FUNDAMENTAL RELATIONS 

In the begining, let assume that Eq.(2-3) has the approximate solution of the truncated Chebyshev polynomial series as: 





N

n

nn tTaty
0

* )()( , )cos()(* ntTn  , cos12 t                   (6) 

Let us consider Eq. (2-3) and find the matrix forms of the equation. First we can convert the solution )(ty   defined by a 

truncated shifted Chebyshev series (3) and its derivative )()( ty k
 to matrix forms [15, 16, 17, 18, 19] 

AT )()( * tty  ,    AT
'

)()(' * tty                                           (7) 

where 
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By using the expression (5) and taking n=0,1,…,N we find the corresponding matrix relation as follows
 

                            
TTT ttandtt DTXTDX )()())(())(( **                                      (8) 

where 

                                                      ]1[)( Nttt X  
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Then, by taking into account (7) we obtain 
Ttt ))(()( 1*  DXT                                                 (9) 

and  
T)( tt ))(())(( 11)1(*  DXT  

To obtain the matrix )(t(k)
X  in terms of the matrix )(tX , we can use the following relation: 
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Consequently, by substituting the matrix forms (8) and (9) into (5) we have the matrix relation 

ADBX
11' )()()(  Ttty                                                (11) 

 

METHOD OF SOLUTION 

Approximating )(' ty , )(ty  by the shifted Chebyshev polynomials as 

ADBX
1)()()('  Ttty  

ADX
1))(()(  Ttty  

Using matrix representation of approximate solution and its derivatives, Eqs (2) and (3) can be written as: 
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where 
nkttf )( , )exp(1)( battg  .The residual )(tRN  for Eqs.(12) and (13) can be written as 
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where  
1))(()(  TT ttf DXF  

1))(()(  TT ttg DXG  

Applying typical Tau method in [17-21], Eqs.(14) and (15) can be converted in 1N  linear  equations by applying 
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The initial conditions are given by  
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1001001
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Therefore, we obtained the N sets of linear equations with N unknowns by Eq.(16) and Eq.(17) or Eq.(18). Using the 

Maple 13, we write the program and solve the N sets of linear equations with N unknowns, and so approximate solution 

)(xyN  can be calculated. 

 

NUMERICAL RESULTS  

We take the values of  4k , 5,0n  in Eq.(2) and 049.0a , 72,0b  in Eq.(3).  Using in Section (3) 

and Section (4), we obtain the numerical results for Eqs.(2)-(3) and the numerical results is plotted in Figs. (1) and (2), 

respectively.  

 
Fig. 1: Numerical solutions of Eq.(2) for various N. 

 

 
Fig. 2: Numerical solutions of Eq.(3) for various N. 

 

 

http://saspjournals.com/sjpms


 
 
Yalçın Öztürk et al.; Sch. J. Phys. Math. Stat., 2016; Vol-3; Issue-1 (Feb); pp-1-5 

Available Online:  http://saspjournals.com/sjpms   5 

 

CONCLUSION 

Controlled release systems are systems that release the drug in a controlled fashion to maintain an appropriate 

concentration for a long period of time. Delivery systems of this type will have an impact on the quality of life of patients 

as well as providing a potentially safer way of delivering correct dosages. Mathematical modeling of the drug release 

process plays an important role in the design of controlled release systems as it can be used to study various design 

parameters and avoid excessive experimentation. Furthermore, given the significant advances in computer simulation 

technology, numerical modeling is increasingly becoming an integral part of research and development in this area. 

Although extensive experimental studies have been carried out in this field in the recent years, modeling of these systems 

is currently lacking. Numerical modeling relies on careful representation of the physical situation, and it requires a 
thorough understanding of drug release kinetics, as well as mathematical expressions and modeling tools. For this 

generality, mathematical modelling is widely employed in different disciplines such as genetics, medicine, psychology, 

biology, economy and obviously engineering. 
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