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Abstract: The binary quadratic equation 0144 22  xyxyx  represents a hyperbola. In this paper we obtain a 

sequence of its integral solutions and present a few interesting relations among them. 
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INTRODUCTION 
The binary quadratic Diophantine equations (both homogeneous and non-homogeneous) are rich in variety [1, 2, 

3, 4, 5, 6]. In the binary quadratic non-homogeneous equations representing hyperbolas respectively are studied for their 

non-zero integral solutions. These results have motivated us to search for infinitely many non-zero integral solutions of 

another interesting binary quadratic equation given by 0144 22  xyxyx .The recurrence relations satisfied by the 

solutions x  and y  are given. Also a few interesting properties among the solutions are exhibited [7, 8, 9, 10, 11, 12, 13, 

14, 15, 16].  

 

METHOD OF ANALYSIS 

 The Diophantine equation representing the binary quadratic equation to be solved for its non-zero distinct 

integral solution is 

                                   0144 22  xyxyx                                                                                            (1) 

Note that (1) is satisfied by the following non-zero integer pairs 

       14,4,7,3,56,4,7,1   

However, we have other solutions for (1), which are illustrated below: 

Solving (1) for y, we have 

  xxxy 1432 2                                               (2) 

Let xx 143 22   

Multiplying the above equation by 3 on both sides and performing a few calculations, we have 

    493 22  X                           (3) 

where      73  xX                                                          (4)             

The least positive integer solution of (3) is 

 14,7 00  X  

Now, to find the other solution of (3),consider the pellian equation 

 13 22  X                        (5) 

whose fundamental solution is 

    2,1
~

,~
00 X  

The other solutions of (5) can be derived from the relations 
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Applying the lemma of Brahmagupta between  00, X &  nn X
~

,~ , the other solutions of (3) can be obtained from the 

relation 

  1n
2

7
nf +

3

7
ng                                                 (6) 

    1nX 7 nf +
32

21
ng                           (7) 

Taking positive sign on the R.H.S of (2) and using (4),(6)&(7), the non-zero distinct integer solutions of the hyperbola (1) 

are obtained as follows 

 







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1
1 nnn gfx                                (8) 
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                                        (9) 

The recurrence relations for  11,  nn yx are respectively 
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A few numerical examples are given in table below 

 

Table 1: Numerical Solutions 
n  

1nx  
1ny  

-1 7 21 

1 63 231 

3 847 3157 

5 11767 43911 

 

Some relations satisfied by the solutions (8) & (9) are as follows 

1. 144 113   nnn yxx  

2. 2241556 115   nnn xyx  

3. 56415 113   nnn xyy  

4. 84056209 115   nnn xyy  

5. 14415 331   nnn yxx  

6. 144 335   nnn xyx  

7. 331 4   nnn yxy  

8. 56154 335   nnn yxy  

9. 22456209 551   nnn yxx  

10. 14415 553   nnn yxx  

11. 561556 551   nnn yxy  

12. 553 4   nnn yxy  

13. Each of the following expressions is a nasty number 

i) 14624 2222   nn yx  

      ii) 24506302352 4242   nn yx  
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REMARKABLE OBSERVATIONS 

1) By considering suitable linear transformations between the solutions of (1), one may get  integer solutions for 

hyperbolas 

             Example 1) Define  28624 11   nn yxX , 424212 11   nn xyY       

             Note that the pair (X, Y) satisfies the hyperbola   
222 7123  XY  

        

     Example  2) Define 25486302352 33   nn yxX , 441040741092 33   nn xyY  

       Note that the pair (X, Y) satisfies the hyperbola  
222 49123  XY  

      

2) By considering suitable linear transformations between the solutions of (1) , one may get  integer           

      solutions for parabolas 

           Example 3) Define 28624 11   nn yxX , 424212 11   nn xyY         

             Note that the pair (X, Y) satisfies the parabola   
22 71273  XY   

     

   Example 4) Define 25486302352 33   nn yxX , 441040741092 33   nn xyY  

          Note that the pair (X, Y) satisfies the parabola   
22 4912349  XY    

Solving (1) for x , we have 

 4928372 2  yyyx                      (10) 

Let 49283 22  yy  

Multiplying the above equation by 3 on both sides and performing a few calculations, we have 

    493 22  Y                            (11) 

where      143  yY                (12)             

The least positive integer solution of (3) is 

 14,7 00  Y  

Now, to find the other solution of (11), consider the pellian equation 

 13 22  Y                       (13) 

whose fundamental solution is 

  00

~
,~ Y =  2,1  

The other solutions of (13) can be derived from the relations 

 nY
~
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n
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where 
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Applying the lemma of Brahmagupta between  00 ,Y &  nn Y
~

,~ , the other solutions of (11) can be obtained from the 

relation 

  1n
2

7
nf +

3

7
ng                                                 (14) 

    1nY 7 nf +
32

21
ng                           (15) 

Taking positive sign on the R.H.S of (10) and using (12),(14)&(15),
 
the non-zero distinct integer solutions of the 

hyperbola (1) are obtained as follows 
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The recurrence relations for 
11,  nn yx are respectively 
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A few numerical examples are given in table below 

 

Table 2: Numerical Solutions 
n  

1nx  1ny  

0 63 21 

2 847 231 

4 11767 3157 

 

Some relations satisfied by the solutions (16) & (17) are as follows 

1. 113 4   nnn yxy  

2. 561556 115   nnn yxy  

3. 14415 113   nnn yxx  

4. 22456209 115   nnn yxx  

5. 56415 331   nnn xyy  

6. 335 4   nnn yxy  

7. 144 331   nnn xyx  

8. 14154 335   nnn xyx  

9. 84056209 551   nnn xyy  

10. 56415 553   nnn xyy  

11. 2241556 551   nnn xyx  

12. 144 553   nnn xyx      

13. Each of the following expressions is a nasty number 

i) 84624 2222   nn xy  

      ii) 94086302352 33   nn xy  

   

REMARKABLE OBSERVATIONS 

By considering suitable linear transformations between the solutions of (1), one may get  integer solutions for 
hyperbolas 

              Example 5) Define  98624 11   nn xyX , 1684212 11   nn yxY      

             Note that the pair (X, Y) satisfies the hyperbola   
222 7123  XY  

        

       Example 6) Define  95066302352 33   nn xyX , 1646440741092 33   nn yxY  

              Note that the pair (X, Y) satisfies the hyperbola  
222 49123  XY  

 

By considering suitable linear transformations between the solutions of (1) , one may get  integer solutions for parabolas 

               Example 7) Define      98624 11   nn xyX , 1684212 11   nn yxY  

               Note that the pair (X, Y) satisfies the parabola   
22 71237  XY  
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               Example 8) Define 95066302352 33   nn xyX , 1646440741092 33   nn yxY    

                  Note that the pair (X, Y) satisfies the parabola  
22 4912349  XY  

 

CONCLUSION 

 In this paper, we have made an attempt to obtain a complete set of non-trivial distinct solutions for the non-

homogeneous binary quadratic equation. To conclude, one may search for other choices of solutions to the considered 
binary equation and further, quadratic equations with multi-variables. 
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