On The Binary Quadratic Diophantine Equation $x^{2}-4 x y+y^{2}+14 x=0$
K. Meena ${ }^{1}$, S. Vidhyalakshmi ${ }^{2}$, A. Nivetha ${ }^{3}$
${ }^{1}$ Former VC, Bharathidasan University, Trichy, Tamilnadu, India
${ }^{2}$ Professor, Dept. of Mathematics, SIGC, Trichy, Tamilnadu, India
${ }^{3}$ M. Phil Scholar, Dept. of Mathematics, SIGC, Trichy, Tamilnadu, India

*Corresponding Author:

S. Vidhyalakshmi

Email: nts.maths.ig@gmail.com
Abstract: The binary quadratic equation $x^{2}-4 x y+y^{2}+14 x=0$ represents a hyperbola. In this paper we obtain a sequence of its integral solutions and present a few interesting relations among them.
Keywords: Binary quadratic equation, integral solutions.

INTRODUCTION

The binary quadratic Diophantine equations (both homogeneous and non-homogeneous) are rich in variety [1, 2, $3,4,5,6]$. In the binary quadratic non-homogeneous equations representing hyperbolas respectively are studied for their non-zero integral solutions. These results have motivated us to search for infinitely many non-zero integral solutions of another interesting binary quadratic equation given by $x^{2}-4 x y+y^{2}+14 x=0$. The recurrence relations satisfied by the solutions x and y are given. Also a few interesting properties among the solutions are exhibited $[7,8,9,10,11,12,13$, $14,15,16]$.

METHOD OF ANALYSIS

The Diophantine equation representing the binary quadratic equation to be solved for its non-zero distinct integral solution is

$$
\begin{equation*}
x^{2}-4 x y+y^{2}+14 x=0 \tag{1}
\end{equation*}
$$

Note that (1) is satisfied by the following non-zero integer pairs
$(1,7),(4,-56),(3,7),(4,-14)$
However, we have other solutions for (1), which are illustrated below:
Solving (1) for y, we have

$$
\begin{equation*}
y=2 x \pm \sqrt{3 x^{2}-14 x} \tag{2}
\end{equation*}
$$

Let $\alpha^{2}=3 x^{2}-14 x$
Multiplying the above equation by 3 on both sides and performing a few calculations, we have

$$
\begin{equation*}
X^{2}=3 \alpha^{2}+49 \tag{3}
\end{equation*}
$$

where $\quad X=3 x-7$
The least positive integer solution of (3) is

$$
\alpha_{0}=7, X_{0}=14
$$

Now, to find the other solution of (3),consider the pellian equation

$$
\begin{equation*}
X^{2}=3 \alpha^{2}+1 \tag{5}
\end{equation*}
$$

whose fundamental solution is

$$
\left(\tilde{\alpha}_{0}, \tilde{X}_{0}\right)=(1,2)
$$

The other solutions of (5) can be derived from the relations

$$
\tilde{X}_{n}=\frac{f_{n}}{2}, \tilde{\alpha}_{n}=\frac{g_{n}}{2 \sqrt{3}}
$$

where

$$
\begin{aligned}
& f_{n}=(2+\sqrt{3})^{n+1}+(2-\sqrt{3})^{n+1} \\
& g_{n}=(2+\sqrt{3})^{n+1}-(2-\sqrt{3})^{k+1}
\end{aligned}
$$

Applying the lemma of Brahmagupta between $\left(\alpha_{0}, X_{0}\right) \&\left(\tilde{\alpha}_{n}, \tilde{X}_{n}\right)$, the other solutions of (3) can be obtained from the relation

$$
\begin{align*}
& \alpha_{n+1}=\frac{7}{2} f_{n}+\frac{7}{\sqrt{3}} g_{n} \tag{6}\\
& X_{n+1}=7 f_{n}+\frac{21}{2 \sqrt{3}} g_{n} \tag{7}
\end{align*}
$$

Taking positive sign on the R.H.S of (2) and using (4),(6)\&(7), the non-zero distinct integer solutions of the hyperbola (1) are obtained as follows

$$
\begin{align*}
& x_{n+1}=\frac{1}{3}\left(7 f_{n}+\frac{21}{2 \sqrt{3}} g_{n}+7\right) \tag{8}\\
& y_{n+1}=2 x_{n+1}+\left(\frac{7}{2} f_{n}+\frac{7}{\sqrt{3}} g_{n}\right), n=-1,1,3,5 \ldots
\end{align*}
$$

The recurrence relations for x_{n+1}, y_{n+1} are respectively

$$
\begin{aligned}
& 6 x_{n+1}-84 x_{n+3}+6 x_{n+5}=-168 \\
& 6 y_{n+1}-84 y_{n+3}+6 y_{n+5}=-336
\end{aligned}
$$

A few numerical examples are given in table below
Table 1: Numerical Solutions

n	x_{n+1}	y_{n+1}
-1	7	21
1	63	231
3	847	3157
5	11767	43911

Some relations satisfied by the solutions (8) \& (9) are as follows

1. $x_{n+3}=-x_{n+1}+4 y_{n+1}-14$
2. $x_{n+5}=56 y_{n+1}-15 x_{n+1}-224$
3. $y_{n+3}=15 y_{n+1}-4 x_{n+1}-56$
4. $y_{n+5}=209 y_{n+1}-56 x_{n+1}-840$
5. $x_{n+1}=15 x_{n+3}-4 y_{n+3}-14$
6. $x_{n+5}=4 y_{n+3}-x_{n+3}-14$
7. $y_{n+1}=4 x_{n+3}-y_{n+3}$
8. $y_{n+5}=-4 x_{n+3}+15 y_{n+3}-56$
9. $x_{n+1}=209 x_{n+5}-56 y_{n+5}-224$
10. $x_{n+3}=15 x_{n+5}-4 y_{n+5}-14$
11. $y_{n+1}=56 x_{n+5}-15 y_{n+5}-56$
12. $y_{n+3}=4 x_{n+5}-y_{n+5}$
13. Each of the following expressions is a nasty number
i) $24 x_{2 n+2}-6 y_{2 n+2}-14$
ii) $2352 x_{2 n+4}-630 y_{2 n+4}-2450$

REMARKABLE OBSERVATIONS

1) By considering suitable linear transformations between the solutions of (1), one may get integer solutions for hyperbolas

$$
\text { Example 1) Define } X=24 x_{n+1}-6 y_{n+1}-28, Y=12 y_{n+1}-42 x_{n+1}+42
$$

Note that the pair (X,Y) satisfies the hyperbola $Y^{2}=3 X^{2}-12 \times 7^{2}$
Example 2) Define $X=2352 x_{n+3}-630 y_{n+3}-2548, Y=1092 y_{n+3}-4074 x_{n+3}+4410$ Note that the pair (X, Y) satisfies the hyperbola $Y^{2}=3 X^{2}-12 \times 49^{2}$
2) By considering suitable linear transformations between the solutions of (1), one may get integer solutions for parabolas

Example 3) Define $X=24 x_{n+1}-6 y_{n+1}-28, Y=12 y_{n+1}-42 x_{n+1}+42$
Note that the pair (X, Y) satisfies the parabola $Y^{2}=3 \times 7 X-12 \times 7^{2}$
Example 4) Define $X=2352 x_{n+3}-630 y_{n+3}-2548, Y=1092 y_{n+3}-4074 x_{n+3}+4410$
Note that the pair (X, Y) satisfies the parabola $Y^{2}=49 \times 3 X-12 \times 49^{2}$
Solving (1) for x, we have

$$
\begin{equation*}
x=2 y-7 \pm \sqrt{3 y^{2}-28 y+49} \tag{10}
\end{equation*}
$$

Let $\alpha^{2}=3 y^{2}-28 y+49$
Multiplying the above equation by 3 on both sides and performing a few calculations, we have

$$
\begin{equation*}
Y^{2}=3 \alpha^{2}+49 \tag{11}
\end{equation*}
$$

where $Y=3 y-14$
The least positive integer solution of (3) is

$$
\begin{equation*}
\alpha_{0}=7, Y_{0}=14 \tag{12}
\end{equation*}
$$

Now, to find the other solution of (11), consider the pellian equation

$$
\begin{equation*}
Y^{2}=3 \alpha^{2}+1 \tag{13}
\end{equation*}
$$

whose fundamental solution is

$$
\left(\tilde{\alpha}_{0}, \tilde{Y}_{0}\right)=(1,2)
$$

The other solutions of (13) can be derived from the relations

$$
\tilde{Y}_{n}=\frac{f_{n}}{2}, \tilde{\alpha}_{n}=\frac{g_{n}}{2 \sqrt{3}}
$$

where

$$
\begin{aligned}
& f_{n}=(2+\sqrt{3})^{n+1}+(2-\sqrt{3})^{n+1} \\
& g_{n}=(2+\sqrt{3})^{n+1}-(2-\sqrt{3})^{n+1}
\end{aligned}
$$

Applying the lemma of Brahmagupta between $\left(\alpha_{0}, Y_{0}\right) \&\left(\tilde{\alpha}_{n}, \tilde{Y}_{n}\right)$, the other solutions of (11) can be obtained from the relation

$$
\begin{align*}
& \alpha_{n+1}=\frac{7}{2} f_{n}+\frac{7}{\sqrt{3}} g_{n} \tag{14}\\
& Y_{n+1}=7 f_{n}+\frac{21}{2 \sqrt{3}} g_{n} \tag{15}
\end{align*}
$$

Taking positive sign on the R.H.S of (10) and using (12),(14)\&(15), the non-zero distinct integer solutions of the hyperbola (1) are obtained as follows

$$
\begin{equation*}
y_{n+1}=\frac{1}{3}\left(7 f_{n}+\frac{21}{2 \sqrt{3}} g_{n}+14\right) \tag{16}
\end{equation*}
$$

$$
\begin{align*}
& x_{n+1}=2 y_{n+1}-7+\left(\frac{7}{2} f_{n}+\frac{7}{\sqrt{3}} g_{n}\right), \tag{17}\\
& n=0,2,4,6 \ldots
\end{align*}
$$

The recurrence relations for x_{n+1}, y_{n+1} are respectively

$$
\begin{aligned}
& 6 x_{n+1}-84 x_{n+3}+6 x_{n+5}=-168 \\
& 6 y_{n+1}-84 y_{n+3}+6 y_{n+5}=-336
\end{aligned}
$$

A few numerical examples are given in table below
Table 2: Numerical Solutions

n	x_{n+1}	y_{n+1}
0	63	21
2	847	231
4	11767	3157

Some relations satisfied by the solutions (16) \& (17) are as follows

1. $y_{n+3}=4 x_{n+1}-y_{n+1}$
2. $y_{n+5}=56 x_{n+1}-15 y_{n+1}-56$
3. $x_{n+3}=15 x_{n+1}-4 y_{n+1}-14$
4. $x_{n+5}=209 x_{n+1}-56 y_{n+1}-224$
5. $y_{n+1}=15 y_{n+3}-4 x_{n+3}-56$
6. $y_{n+5}=4 x_{n+3}-y_{n+3}$
7. $x_{n+1}=4 y_{n+3}-x_{n+3}-14$
8. $x_{n+5}=-4 y_{n+3}+15 x_{n+3}-14$
9. $y_{n+1}=209 y_{n+5}-56 x_{n+5}-840$
10. $y_{n+3}=15 y_{n+5}-4 x_{n+5}-56$
11. $x_{n+1}=56 y_{n+5}-15 x_{n+5}-224$
12. $x_{n+3}=4 y_{n+5}-x_{n+5}-14$
13. Each of the following expressions is a nasty number
i) $24 y_{2 n+2}-6 x_{2 n+2}-84$
ii) $2352 y_{n+3}-630 x_{n+3}-9408$

REMARKABLE OBSERVATIONS

By considering suitable linear transformations between the solutions of (1), one may get integer solutions for hyperbolas

Example 5) Define $X=24 y_{n+1}-6 x_{n+1}-98, Y=12 x_{n+1}-42 y_{n+1}+168$
Note that the pair (X,Y) satisfies the hyperbola $Y^{2}=3 X^{2}-12 \times 7^{2}$
Example 6) Define $X=2352 y_{n+3}-630 x_{n+3}-9506, Y=1092 x_{n+3}-4074 y_{n+3}+16464$
Note that the pair (X, Y) satisfies the hyperbola $Y^{2}=3 X^{2}-12 \times 49^{2}$
By considering suitable linear transformations between the solutions of (1), one may get integer solutions for parabolas
Example 7) Define $\quad X=24 y_{n+1}-6 x_{n+1}-98, Y=12 x_{n+1}-42 y_{n+1}+168$
Note that the pair (X, Y) satisfies the parabola $Y^{2}=7 \times 3 X-12 \times 7^{2}$

Example 8) Define $X=2352 y_{n+3}-630 x_{n+3}-9506, Y=1092 x_{n+3}-4074 y_{n+3}+16464$
Note that the pair (X, Y) satisfies the parabola $Y^{2}=49 \times 3 X-12 \times 49^{2}$

CONCLUSION

In this paper, we have made an attempt to obtain a complete set of non-trivial distinct solutions for the nonhomogeneous binary quadratic equation. To conclude, one may search for other choices of solutions to the considered binary equation and further, quadratic equations with multi-variables.

ACKNOWLEDGEMENT

The financial support from the UGC, New Delhi (F.MRP-5123/14 (SERO/UGC) dated March 2014) for a part of this work is gratefully acknowledged.

REFERENCES

1. Banumathy TS; A Modern Introduction To Ancient Indian Mathematics, Wiley Eastern Limited, London, 1995.
2. Carmichael RD; The Theory Of Numbers And Diophantine Analysis, Dover Publications, New York, 1950.
3. Dickson LE; History Of The Theory Of Numbers, Vol. II, Chelsia Publicating Co, New York, 1952.
4. Mordell LJ; Diophantine Equations Acadamic Press, London, 1969.
5. Nigel PS; The Algorithm Resolutions Of Diophantine Equations, Cambridge University, Press, London, 1999.
6. Telang SG; Number Theory, Tata, Mc Graw-Hill Publishing Company, New Delhi, 1996.
7. Gopalan MA, Parvathy G; Integral Points On The Hyperbola $x^{2}+4 x y+y^{2}-2 x-10 y+24=0$. Antarctica J. Math, 2010; 1(2):149-155.
8. Gopalan MA; Vidhyalakshmi S, Sumathi G, Lakshmi K; Integral Points On The Hyperbola $x^{2}+6 x y+y^{2}+40 x+8 y+40=0$. Bessel J. Math., 2010; 2(3):159-164.
9. Gopalan MA; Vidhyalakshmi S; On The Diophantine Equation $x^{2}+4 x y+y^{2}-2 x+2 y-6=0$. Acta cinecia India, 2007; xxxIIIM(2): 567-570.
10. Gopalan MA, Gokila, Vidhyalakshmi S, Devibala S; On The Diophantine Equation $3 x^{2}+x y=14$ ",Acta Ciencia India, 2007; xxxIIIM(5): 645-646.
11. Gopalan MA, Janaki G; Observation On $x^{2}-y^{2}+x+y+x y=2$. Impact J. sci. Tech., 2008; 2(3): 143-148.
12. Gopalan MA, Shanmuganadham P, Vijayashankar A; On Binary Quadratic Equation $x^{2}-5 x y+y^{2}+8 x-20 y+15=0$. Acta cinecia India, 2008; xxxIVM(4): 1803-1805.
13. Gopalan MA, Vidhyalakshmi S, Lakshmi K, Sumathi G; Observation On $3 x^{2}+10 x y+4 y^{2}-4 x+2 y-7=0$. Diophantus J. Maths., 2012; 1(2): 123-125.
14. Mollion RA; All Solutions Of The Diophantine Equations $x^{2}-D y^{2}=n$ Far East J Math. Sci. Speical., 1998; III: 257-293.
15. Vidhyalakshmi S, Gopalan MA, Lakshmi K; On Binary Quadratic Equation $3 x^{2}-8 x y+3 y^{2}+2 x+2 y+6=0$. Scholar Journal Of Physics, Mathematics And Statistics, 2014; 1(2): 4145.
16. Vidhyalakshmi S, Gopalan MA, Lakshmi K; Integer Solutions Of The Binary Quadratic Equation $x^{2}-5 x y+y^{2}+33 x=0$. International Journal Of Innovative Science Engineering \& Technology, 2004; 1(6): 450-453.
