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Abstract: Unimportant and uncertain decisions can be made by flipping a coin in real-life. And apparently, toss a coin is 

a question of random probability. In the present paper, the author has made use of difference equation in solving a 

complicated probability problem of coin toss. 
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INTRODUCTION 

There exists such a classic question of probabilities [1]: On average, how many times do we flip a coin before two 

continuous heads could appear firstly?  It is a natural expansion to this problem. On average, how many times do we flip 

a coin [2-4]
 
before m continuous heads could appear firstly? Obviously, the bigger the n-value, the more relatively 

complex the calculation of average times. It even evolved into some algebraic formulas that is difficult to simplify. The 

really interesting is that the natural conclusion is surprisingly simple. The answer is 22 1 m
. In the present paper, this 

mathematical puzzle is solved by using of difference equation [5-6] skillfully, and also avoids multiple Calculations. 

 

 

Firstly, when the coin comes to rest head up, the tail must be underneath, and the probability that an unbiased coin 

will fall with the head up is
2

1
. 

 

Then, defining the following variables. 

nP is the probability that m continuous heads are obtained by flipping a coin n times; 

And apparently, 
m

mmm PPPPP )
2

1
(,01221   . 

)(nE  represents the mathematical expectation that is How many times do we flip a coin before m continuous heads 

could appear firstly? 
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inX is the probability of having obtained  1i continuous heads but reversed in ith  times, then use  in  more times 

to obtain m continuous heads; 
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Furthermore, we have the difference equation as following: 
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Above all, we only need to seek out )(nE . 
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2 Solving the )(nE  by the difference equation 

Firstly, we prove the formula 

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From the difference equation, 
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We have, 
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As the result of 
m

mmm PPPPP )
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(,01221   , we easily have 
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Then the formula (2) becomes 
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Therefore we solve 1A . 

 

Secondly, we find the 



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nnPnE )( , our tool is also the difference equation. The calculation procedures are as 

follows: 

We suppose the BnPnE
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From the difference equation, we have  
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Because of 
m

mmm PPPPP )
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(,01221   , we have 
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Then the formula (6) becomes 
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Then we obtain 

                            22)( 1  mnEB                           (10) 

 

CONCLUSIONS 

Difference equation contains Unknown function and Differences, but excludes derivatives. Difference equations are 

the discretization of the differential equations and also called recurrence relation. 

 

According to this result, mathematical induction and traditional summation of sequence do not seem to play roles 

when solving this classic question of probabilities. Ironically, this simple difference equation works its magic and obtains 

the wonderful conclusion skillfully. 
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