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Abstract: Maximum flow problem on hypergraphs (hyper-networks) is an extension of maximum flow problem on 

normal graphs. In this report, we discuss a generalized fuzzy version of maximum flow problem in hyper-networks 

setting, and a new fuzzy maximum flow algorithm in hyper-network setting is obtained. Our algorithm mainly based on 

fuzzy set theory and incremental graph, and the technology of  -cut is also employed to determine the fuzzy maximum 

flow. The implement procedure is manifested at last. 
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INTRODUCTION AND NOTATIONS 
There is an important component of graph theory and artificial intelligence which is Maximum flow problem of 

weighted graph and it shows extensive applications in various fields like: computer network, data mining, image 

segmentation and ontology computation [1-7]. Hyper-graph, a subset system for limited set, is one of the most general 

discrete structures, and is the generalization of the common graph. In terms of lots of practical problems, the usage of the 

concept of hyper-graph shows more effective than the concept of graph. Until now, we can see the applications of hyper-

graph model in a variety of fields like: VLSI layout and electricity network topology analysis. And recently, intelligence 

algorithms and learning algorithms on hyper-graph and its computer applications are studied by researchers [8-17].  

 

Let V={v1,v2,…,vm} be a limited set, E be the family of subset of V, i.e., E 2
V
. Then H=(V,E) is a hyper-graph on 

V. The elements of V and E are called a vertex and a hyper-edge respectively. Let V  be the order of H, E be the scale 

of H. Then e  is the basic number of hyper-edge e. r(H)=
j

max je is the rank of hyper-edge e, and s(H)= 
j

min je is 

the lower rank of hyper-edge e. If e =k for each hyper-edge e of E (that is r(H)=s(H)=k), then H is a k-uniform hyper-

graph. If k=2, then H is just a normal graph. 

 

If any two hyper-edges are not contained by each other, a hyper-graph H can be called a simple hyper-graph or a 

sperner hyper-graph. Let 
'H =(V,

'E ) be a hyper-graph on V, then if 
'E E, 

'H  is a part-hyper-graph of H. For S
V, H[S]={eE:e S} is called a sub-hyper-graph of H induced by S. 

 

By using the set of vertices to represent the elements of V, the Hyper-graph H can be represented by graph. If je

=2, a continuous curve which attaches to the elements of ej is chosen to represent ej; If  je =1, we use a loop which 

contains ej to represent ej; If je  3, we choose a simple close curve which contains all the elements of ej to represent ej. 

  

In this paper, we suppose that H is a weighted hyper-graph, each edge is given a weight w (e). The degree of vertex 

vj in hyper-graph H is denoted as deg ( )j H = ( ) ( , )
e E

w e h v e


 , where ( , )h v e =
1,

0,

if v e

if v e





. 
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Let ( )e = ( , )
v V

h v e


 . Then, the normalized laplacian  on hyper-graph H is defined by： 

( )ijL H =  

 

Let H=(V, E) be a fixed, directed and weighted hyper-graph with n vertices which express a hyper-network.  

Directed  hyper-graph  models  can represent relationships among elements there in  a lot of  projects  like  large  super-

network  research,  database  systems  research,  timing  research,  circuit  design  research  and  so  on. According to its 

good application background, the directed  hyper-graph  theory  has  been  a    subject which  develops rapidly in  the  

field  of graph theory. 

 

Particularly, a directed hyper-graph is a hyper-graph where each hyper-edge is divided into two sets: e= ( , )X Y  

with X Y =   and X, Y can be the empty set. Here, Xis called a tail point set and Y is called a head point set and they 

are denoted by ( )T e  and ( )H e  respectively. Similar to the undirected hyper-graph, we can define the hyper-road, 

hyper-path, hyper-cycle in the directed hyper-graph in directed hyper networks.  

 

A {-1,0,1} incidence matrix is introduced to represent the directed hyper-graph. The j-th column expresses the j-th 

vertex jv  and i-th row expresses the i-th hyper-edge ie :[ ]ij m na  =

1,   ( )

1,      ( ) 

0,       otherwise

i j

i j

v T e

v H e

 






. 

  What is followed below is an example of the directed hyper-graph and its incidence matrix: 

 
  

Actually, some uncertain factors which cannot be expressed by fixed functions or parameters exist in many 

hyper-networks applications. Hence, the theory shows extensive applications in networks and hyper-networks [18-22]. In 

this paper, the fuzzy maximum flow problem in hyper-networks is considered in detail. Then the new optimization model 

is presented by means of the fuzzy set theory and incremental graph.  

 

SETTING 

In this section, we introduce several famous concepts of fuzzy theory. A trapezoidal fuzzy number is denoted as a a = 

1 2( , , , )m m   ,and it has a membership function defined by 
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( )a x =

1

1
1 1

1 2

2
2 2

2

0,                  if 

,   if 

1,                  if 

,   if 

0,                   if 

x m

x m
m x m

m x m

m x
m x m

x m















 


 
   



 
  
   

  

, 

where 1m  is left extremities of the modal value, 
2m  is the right extremities of the modal value,  is the left spread, and 

  is the right spread. The terms 1m   and 2m   expressed the lower and upper bounds respectively. Modal value 

is the largest value x  1 2[ , ]m m    of the membership function. 

 

Let A be a fuzzy set, then the  -cut of A denoted by A  is a collection consisting of those members of the 

generalized X whose membership values outnumber the threshold level , A ={ | ( ) }x A x  . 

 

In rich applications of maximum flow problem in hyper-network setting, the hyper-arcs capacities only have the 

upper bounds. Then, the capacities of the hyper-arcs discussed in such situations, possess their lower bounds 1m   and 

their inferior extremities of the modal interval 1m  equal zero. Therefore, these capacities are denoted as trapezoidal 

fuzzy numbers with 1m  = 1m =0. 

 

By analyzing the fuzzy hyper-arc capacity and trapezoidal membership function, if the hyper-flow in this hyper-arc


2m , its degree of satisfaction is 1. When the flow is between 2m  and 2m  , its satisfaction degree is between 1 and 

zero. That is to say, it is partially meeting the restriction of capacity of that hyper-arc. From this point of view, we 

implemented a heuristic, relied on  -cuts [23-28]. This heuristic alternates this fuzzy problem into a crisp problem, 

through which the experts (decision maker) can select the minimum satisfaction degree of the last solution. 

 

ALGORITHM 

In this section, we first present the problem and notations of the maximum flow problem, the fuzzy maximum flow 

problem in hyper-networks setting from mathematical point of view, and the whole implementation.  

 

Consider a directed flow hyper- network G= ( , , )V E C , where V implies the finite set of vertices, which is denoted 

by the number {1, 2,…,n}. E expresses the set of the directed hyper-edge, and each directed hyper-edge e is denoted by 

an ordered pair ( ( ), ( ))G e G e , where e E. C represents the set of directed hyper-edge capacities. In the fuzzy 

maximum flow problem in hyper-networks setting, every directed hyper-edge e has a nonnegative, independent, fuzzy 

flow capacity e  with the membership functions e . Then, for each pair of vertices ( ,i jv v ), we use ij =

{ , }i j

e

v v e E


 

  

to denote its fuzzy flow capacity associated with certain membership functions  . 

In what follows, flow representation is employed by: x=

{ , }

{ }
i j

ij e

v v e E

x x
 

   

where ex denotes the flow of directed hyper-edge (hyper-arc)e. The flow is called a feasible flow in hyper-networks 

setting if the following two conditions are established: 

(1) For each vertex, the outgoing flow and incoming flow must meet the following balance conditions. 
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1 1

1 1

{ , } { , }

{ , } { , }

{ , } { , }

0,    2 1

j j

i j j i

n j j n

j j

v v e E v v e E

ij ji

v v e E v v e E

nj jn

v v e E v v e E

f

i n

f

e E

   

   

   

  



    

   


 

 

 

 

x x

x x

x x

 

in which f denotes the flow of the hyper-network G. 

(2) The flow at each directed hyper-edge must be satisfied by the capacity constraint. Clearly, 

(i) ijx  0 (non-negative flow); 

(ii) ijx  ij  (capacity restrictions); 

 

Having fixed a hyper-path between s and t in a hyper-graph G, the maximum flow can be sent of s to t for the hyper-

path p, meeting the following restrictions: min{ : ( , ) }ij i j e p   . 

Therefore, the hyper-arc of p is called saturated if it has the smallest capacity. 

 

Thus, class of problem can be determined if we use the two different tricks: the method of the incremental hyper-

graph and of the minimum cuts. The method of the incremental hyper-graph searches all hyper-paths between the source 

vertex and destination vertex, and it analyzes the capacities of each hyper-arc of these hyper-paths and deliveries the 

possible maximum flow. The second technology consists of two parts, 1V and 2V , from the vertices where the source 

vertex s, belongs to the 1V and the destination vertex t belongs to 2V . This method searches all the possible cuts of the 

hyper-graph. The smallest cut capacity is the maximum flow, where the cut capacity is the addition of the hyper-arcs 

capacities that have the source vertex in 1V and the destination vertex in 2V .  

 

In our algorithm, the experts (decision makers)should decide the flow which needs possible large but at the same 

time can’t infringe excessively the hyper-arcs capacities limitations. Then, the decision maker needs to determine the 

membership function for the flow: 

( )s y =

0

1 0 1 0

1

1,                   if >

( , ; ),  if 

0,                 if <

y y

L y y y y y y

y y




 



 

where 0y is the minimum ideal flow; 1y is the acceptable minimum flow. 1 0( , ; )L y y y is a fixed linear function with

1 0 0( , ; )L y y y =1 and 1 0 1( , ; )L y y y =0. Thus, the degree of the goal realization at the flow value y is determined by the 

membership function value ( )s y . 

 

As presented in above section, for each capacity limitation
y

ijx  ij  (
y

ijx ={ : ( , ) , 0}ij ijx i j A x  ) a satisfaction 

function is associated: 

( )ij yx =

1,                     if >

( , ; ),  if 

0,                    if <

y

ij ij

y y

ij ij ij ij ij ij

y

ij ij

x

L x x

x



   






 



 

where ( )ij yx  is the satisfaction degree of the fuzzy capacity restriction in view of the hyper-arc flow ijx (here, ij  and 

ij are defined by the fuzzy hyper-arc capacity). 
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Hence, in terms of the concept of decision making in fuzzy restrictions the minimum flow problem in hyper-

networks setting reduces to get the flow yx  maximizing the membership function D : ( )D yx = ( ) ( )C y S yx x  , 

( )C yx =
{ , }

( )ij ij
i j e E

x
 
  

where ( )C yx  is the degree of simultaneous satisfaction of all hyper-arc capacity constraints in the hyper-network by 

means of the flow yx .The flow maximizing the membership function D  is called the maximal flow in the situation so 

that it maximizes the flow value. The flow with the largest value in the collection of the maximal flows is then called 

optimal. 

 

Let V be the set of vertex;  be the minimum degree of satisfaction which is decided by experts; H be the partition 

number of the interval [ ,1] ;h be the scale of subinterval 1[ , ]k k   ; ( )ijc  =

{ , }

( )e

i j e E

c 
 

  be the capacity value of 

the hyper-arc e contains {i,j} with satisfaction degree ; ( , )t s  be the artificial hyper-arc that joins the destination vertex 

t to source vertex s; ( )ijx  =

{ , }

( )e

i j e E

x 
 

  be the flow in the hyper-arc contain {I ,j} with membership ;T be the 

hyper-circle obtained by the union between the hyper-path (between two vertices s and t) and the artificial hyper-arc 

( , )t s ;  be the hyper-cycle yielded between the hyper-chain (between the vertices s and t) and the artificial hyper-arc 

( , )t s ;
 be the hyper-arcs of  with the uniform direction of ( , )t s ;

  be the hyper-arcs of  with the opposite 

direction of ( , )t s . 

 

Now, we present the main algorithm in our paper. This algorithm is relied on the following implements: the first 

procedure is attributed to the number of  -cuts partitions and the minimum degree of membership. And the procedure 

A2 uses a heuristic by means of -cuts. The initial flow is manifested in procedure A3. The procedure A4 applies an 

algorithm to search a hyper-path between the vertex s and vertex t. The procedure A5 shows the probability of an 

augmenting hyper-chain. At last, the algorithm is finished in procedure A6. 

 

Fuzzy Maximum Flow Algorithm A in Hyper-network Setting 

A1: Initialization (attribution of the minimum satisfaction degree and the number of partition for -cuts). Fixed H and

 . 

A2: Using -cuts in the capacities. For all  execute the A3, A4 and A5, where 

 = +ih (h=
1

1H




,i= 0,…,H-1) and

{ , }

( ) ( )ij e

i j e E

c c 
 

  . 

A3: Attribution of the initial flow. For each pair of vertices (i, j), ( )ijx  0. 

A4: Determination of the hyper-paths between vertices s and t. Repeat this A4 until we can’t find anyhyper-path between 

s and t. Specifically, search a hyper-path p between the vertices s and t, do: determine the hyper-cycle T; contain the flow 

fin the hyper-cycle; f= 
{ , }
min [( ) ( ) ]ij ij
i j T

c x 


 ; at last, we delete the saturated hyper-arcs. 

A5: Determination of a hyper-chain. If there exist a chain between vertices s and t, do: determine  = 1 2min{ , } 

where 

1 =
( , )

{ . }

min [( ) ( ) ]e e
i j

i j e E

c x 
 

 , 2 =
( , )

{ . }

min ( )e
i j

i j e E

x 
 

 .If  > 0, do: 

( , )i j   
{ . }

( )e

i j e E

x 
 

 
{ . }

( )e

i j e E

x  
 

  

( , )i j   
{ . }

( )e

i j e E

x 
 

 
{ . }

( )e

i j e E

x  
 

  

A6: End 

 

 

 

 

http://saspjournals.com/sjpms


 
 
Linli Zhu et al.; Sch. J. Phys. Math. Stat., 2016; Vol-3; Issue-2 (Mar-May); pp-77-83 

Available Online:  http://saspjournals.com/sjpms   82 

 

CONCLUSION 

  In this report, we discuss the fuzzy maximum flow problem in hyper-networks setting.  Our algorithm is 

designed based on fuzzy set theory and incremental graph. The result achieved in our paper illustrates the promising 

application prospects for algorithms using hypergraph model. 
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