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Abstract: Let [ ]ijA   be an n n  matrix, where 
1

ij

i ja b
 


, , 1, 2, , .i j n  In this paper, we establish a 

specific formula to calculate the determinant of matrix A . 
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Introduction 

Determinants occur throughout mathematics. For example, a matrix is often used to represent the coefficients in 

a system of linear equations, and the determinant can be used to solve those equations, although more efficient 

techniques are actually used, some of which are determinant-revealing and consist of computationally effective ways of 

computing the determinant itself. For an n n  matrix A , its determinant is defined as 

( )

1

( )
n

i i

i

A sign 


 


  , 

where the sum runs over all !n  permutations   of the n  items 1, 2, , n  and the sign  of a permutation  , 

( )sign   is 1  or 1 , according to whether the minimum number of transpositions, or pair-wise interchanges, 

necessary to achieve it starting from 1, 2, , n  is even or odd. Thus, each product 

( )

1

n

i i

i




  

enters into the determinant with a   sign if the permutation   is even or a   sign if it is odd. The most fundamental 

and naive method of implementing an algorithm to compute the determinant is to use Laplace's formula [1] for expansion 

by cofactors, i.e., 

1

, 1, 2, , ,
n

ij ij

j

A A i n


   

where ijA  which is called the cofactor of ij , is a product of ( 1)i j and the minor resulting from the deletion of row i  

and column j . This approach is extremely inefficient in general, however, as it is of order !n  for an n n  matrix. 

Consequently, those determinants which have special constructers are investigated. There are a series of literatures about 

this topic, such as the referenced [2-6] and the references therein. 

 

In this paper, we focus on an n n  matrix [ ]ij n nA   , where 
1

ij

i ja b
 


, , 1, 2, , .i j n  One 

specific formula to calculate the determinant of matrix A is established. 

 

Main result and its proof 

To state clearly, let nD  be the determinant of the  n n  matrix [ ]ijA  . For 1n  , the conclusion is trival. 

In general, assume that 2n  . Our main result is to establish a specific formula to compute nD .  
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Theorem 1. For 2n  ,  
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
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Proof. We complete the proof by induction on the order n  of matrix A . For 2n  , we obtain 
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It follows that Thoerm 1 holds when 2n  . 

 

Now, we assume that Thoerm 1 holds when ,n k  where 2k  . That is to say,  
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Then when 1n k  ,   
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. 

By adding column 1 multiplied by a scalar 1  to column j , 2, 3,j  , 1k  , we obtain that 
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By adding row 1 multiplied by a scalar 1  to row j , 2, 3, , 1j k  , we obtain that 
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By Laplacian Theorem and row-multiplying transformations, we have 
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It is clear that  
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is a determinant of order k . By the assumption, we have  
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Consequently,  
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Simplying the above equality leads to  
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By induction, we obtain that for 2n  ,  
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