Scholars Journal of Physics, Mathematics and Statistics

Sch. J. Phys. Math. Stat. 2016; 3(3):106-109

A Specific Formula to Compute the Determinant of One Matrix of Order n
 Ber-Lin Yu
 Faculty of Mathematics and Physics, Huaiyin Institute of Technology, Huai'an, Jiangsu, 223003, P. R. China

*Corresponding Author:

Ber-Lin Yu
Email: berlinyu@163.com
Abstract: Let $A=\left[\alpha_{i j}\right]$ be an $n \times n$ matrix, where $\alpha_{i j}=\frac{1}{a_{i}+b_{j}}, i, j=1,2, \ldots, n$. In this paper, we establish a specific formula to calculate the determinant of matrix A.
Keywords: Determinant; Matrix; Laplace Theorem.

Introduction

Determinants occur throughout mathematics. For example, a matrix is often used to represent the coefficients in a system of linear equations, and the determinant can be used to solve those equations, although more efficient techniques are actually used, some of which are determinant-revealing and consist of computationally effective ways of computing the determinant itself. For an $n \times n$ matrix A, its determinant is defined as
$|A|=\sum_{\sigma} \operatorname{sign}(\sigma) \prod_{i=1}^{n} \alpha_{i \sigma(i)}$,
where the sum runs over all n ! permutations σ of the n items $1,2, \ldots, n$ and the sign of a permutation σ, $\operatorname{sign}(\sigma)$ is +1 or -1 , according to whether the minimum number of transpositions, or pair-wise interchanges, necessary to achieve it starting from $1,2, \ldots, n$ is even or odd. Thus, each product
$\prod_{i=1}^{n} \alpha_{i \sigma(i)}$
enters into the determinant with $\mathrm{a}+$ sign if the permutation σ is even or a $-\operatorname{sign}$ if it is odd. The most fundamental and naive method of implementing an algorithm to compute the determinant is to use Laplace's formula [1] for expansion by cofactors, i.e.,

$$
|A|=\sum_{j=1}^{n} \alpha_{i j} A_{i j}, i=1,2, \ldots, n
$$

where $A_{i j}$ which is called the cofactor of $\alpha_{i j}$, is a product of $(-1)^{i+j}$ and the minor resulting from the deletion of row i and column j. This approach is extremely inefficient in general, however, as it is of order $n!$ for an $n \times n$ matrix. Consequently, those determinants which have special constructers are investigated. There are a series of literatures about this topic, such as the referenced [2-6] and the references therein.

In this paper, we focus on an $n \times n$ matrix $A=\left[\alpha_{i j}\right]_{n \times n}$, where $\alpha_{i j}=\frac{1}{a_{i}+b_{j}}, i, j=1,2, \ldots, n$. One specific formula to calculate the determinant of matrix A is established.

Main result and its proof

To state clearly, let D_{n} be the determinant of the $n \times n$ matrix $A=\left[\alpha_{i j}\right]$. For $n=1$, the conclusion is trival. In general, assume that $n \geq 2$. Our main result is to establish a specific formula to compute D_{n}.

Theorem 1. For $n \geq 2$,

$$
D_{n}=\frac{\prod_{n \geq i>j \geq 1}\left(a_{j}-a_{i}\right)\left(b_{j}-b_{i}\right)}{\prod_{j=1}^{n} \prod_{i=1}^{n}\left(a_{i}+b_{j}\right)} .
$$

Proof. We complete the proof by induction on the order n of matrix A. For $n=2$, we obtain

$$
\begin{aligned}
D_{2} & =\left|\begin{array}{ll}
\frac{1}{a_{1}+b_{1}} & \frac{1}{a_{1}+b_{2}} \\
\frac{1}{a_{2}+b_{1}} & \frac{1}{a_{2}+b_{2}}
\end{array}\right| \\
& =\frac{1}{a_{1}+b_{1}} \times \frac{1}{a_{2}+b_{2}}-\frac{1}{a_{1}+b_{2}} \times \frac{1}{a_{2}+b_{1}} \\
& =\frac{\left(a_{1}+b_{2}\right)\left(a_{2}+b_{1}\right)-\left(a_{1}+b_{1}\right)\left(a_{2}+b_{2}\right)}{\left(a_{1}+b_{1}\right)\left(a_{2}+b_{2}\right)\left(a_{1}+b_{2}\right)\left(a_{2}+b_{1}\right)} \\
& =\frac{a_{1} b_{1}+a_{2} b_{2}-a_{1} b_{2}-b_{1} a_{2}}{\left(a_{1}+b_{1}\right)\left(a_{2}+b_{2}\right)\left(a_{1}+b_{2}\right)\left(a_{2}+b_{1}\right)} \\
& =\frac{\left(a_{1}-a_{2}\right)\left(b_{1}-b_{2}\right)}{\left(a_{1}+b_{1}\right)\left(a_{2}+b_{2}\right)\left(a_{1}+b_{2}\right)\left(a_{2}+b_{1}\right)} .
\end{aligned}
$$

It follows that Thoerm 1 holds when $n=2$.

Now, we assume that Thoerm 1 holds when $n=k$, where $k \geq 2$. That is to say,
$D_{k}=\frac{\prod_{k \geq i>j \geq 1}\left(a_{j}-a_{i}\right)\left(b_{j}-b_{i}\right)}{\prod_{j=1}^{k} \prod_{i=1}^{k}\left(a_{i}+b_{j}\right)}$.
Then when $n=k+1$,

$$
D_{k+1}=\left|\begin{array}{cccc}
\frac{1}{a_{1}+b_{1}} & \frac{1}{a_{1}+b_{2}} & \cdots & \frac{1}{a_{1}+b_{k+1}} \\
\frac{1}{a_{2}+b_{1}} & \frac{1}{a_{2}+b_{2}} & \cdots & \frac{1}{a_{2}+b_{k+1}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{1}{a_{k+1}+b_{1}} & \frac{1}{a_{k+1}+b_{2}} & \cdots & \frac{1}{a_{k+1}+b_{k+1}}
\end{array}\right| .
$$

By adding column 1 multiplied by a scalar -1 to column $j, j=2,3, \ldots, k+1$, we obtain that

Ber-Lin Yu.; Sch. J. Phys. Math. Stat., 2016; Vol-3; Issue-3 (Jun-Aug); pp-106-109

$$
\begin{aligned}
& D_{k+1}=\left|\begin{array}{cccc}
\frac{1}{a_{1}+b_{1}} & \frac{b_{1}-b_{2}}{\left(a_{1}+b_{2}\right)\left(a_{1}+b_{1}\right)} & \cdots & \frac{b_{1}-b_{k+1}}{\left(a_{1}+b_{k+1}\right)\left(a_{1}+b_{1}\right)} \\
\frac{1}{a_{2}+b_{1}} & \frac{b_{1}-b_{2}}{\left(a_{2}+b_{2}\right)\left(a_{2}+b_{1}\right)} & \cdots & \frac{b_{1}-b_{k+1}}{\left(a_{2}+b_{k+1}\right)\left(a_{2}+b_{1}\right)} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{1}{a_{k+1}+b_{1}} & \frac{b_{1}-b_{2}}{\left(a_{k+1}+b_{2}\right)\left(a_{k+1}+b_{1}\right)} & \cdots & \frac{b_{1}-b_{k+1}}{\left(a_{k+1}+b_{k+1}\right)\left(a_{k+1}+b_{1}\right)}
\end{array}\right| \\
& =\frac{\prod_{i=2}^{k+1}\left(b_{1}-b_{i}\right)}{\prod_{i=1}^{k+1}\left(a_{i}+b_{1}\right)}\left|\begin{array}{cccc}
1 & \frac{1}{a_{1}+b_{2}} & \cdots & \frac{1}{a_{1}+b_{k+1}} \\
1 & \frac{1}{a_{2}+b_{2}} & \cdots & \frac{1}{a_{2}+b_{k+1}} \\
\vdots & \ddots & \vdots \\
1 & \frac{1}{a_{k+1}+b_{2}} & \cdots & \frac{1}{a_{k+1}+b_{k+1}}
\end{array}\right| .
\end{aligned}
$$

By adding row 1 multiplied by a scalar -1 to row $j, j=2,3, \ldots, k+1$, we obtain that

$$
\begin{aligned}
& D_{k+1} \\
& =\prod_{i=1}^{\prod_{i=2}^{k+1}\left(b_{1}-b_{i}\right)}\left(a_{i}+b_{1}\right)
\end{aligned}\left|\begin{array}{cccc}
1 & \frac{1}{a_{1}+b_{2}} & \cdots & \frac{1}{a_{1}+b_{k+1}} \\
0 & \frac{a_{1}-a_{2}}{\left(a_{2}+b_{2}\right)\left(a_{1}+b_{2}\right)} & \cdots & \frac{a_{1}-a_{2}}{\left(a_{2}+b_{k+1}\right)\left(a_{1}+b_{k+1}\right)} \\
\vdots & \vdots & \ddots & \vdots \\
0 & \frac{a_{1}-a_{k+1}}{\left(a_{k+1}+b_{2}\right)\left(a_{1}+b_{2}\right)} & \cdots & \frac{a_{1}-a_{k+1}}{\left(a_{k+1}+b_{k+1}\right)\left(a_{1}+b_{k+1}\right)}
\end{array}\right| .
$$

By Laplacian Theorem and row-multiplying transformations, we have

$$
D_{k+1}=\frac{\prod_{i=2}^{k+1}\left(b_{1}-b_{i}\right)\left(a_{1}-a_{i}\right)}{\left(a_{1}+b_{1}\right) \prod_{i=2}^{k+1}\left(a_{i}+b_{1}\right)\left(a_{1}+b_{i}\right)}\left|\begin{array}{ccc}
\frac{1}{a_{2}+b_{2}} & \cdots & \frac{1}{a_{2}+b_{k+1}} \\
\vdots & \ddots & \vdots \\
\frac{1}{a_{k+1}+b_{2}} & \cdots & \frac{1}{a_{k+1}+b_{k+1}}
\end{array}\right|
$$

It is clear that

$$
\left|\begin{array}{ccc}
\frac{1}{a_{2}+b_{2}} & \cdots & \frac{1}{a_{2}+b_{k+1}} \\
\vdots & \ddots & \vdots \\
\frac{1}{a_{k+1}+b_{2}} & \cdots & \frac{1}{a_{k+1}+b_{k+1}}
\end{array}\right|
$$

is a determinant of order k. By the assumption, we have

Ber-Lin Yu.; Sch. J. Phys. Math. Stat., 2016; Vol-3; Issue-3 (Jun-Aug); pp-106-109

$$
\left|\begin{array}{ccc}
\frac{1}{a_{2}+b_{2}} & \cdots & \frac{1}{a_{2}+b_{k+1}} \\
\vdots & \ddots & \vdots \\
\frac{1}{a_{k+1}+b_{2}} & \cdots & \frac{1}{a_{k+1}+b_{k+1}}
\end{array}\right|=\frac{\prod_{k+1 \geq i i j \geq 2}\left(a_{j}-a_{i}\right)\left(b_{j}-b_{i}\right)}{\prod_{j=2}^{k+1} \prod_{i=2}^{k+1}\left(a_{i}+b_{j}\right)} .
$$

Consequently,
$D_{k+1}=\frac{\prod_{i=2}^{k+1}\left(b_{1}-b_{i}\right)\left(a_{1}-a_{i}\right)}{\left(a_{1}+b_{1}\right) \prod_{i=2}^{k+1}\left(a_{i}+b_{1}\right)\left(a_{1}+b_{i}\right)} \frac{\prod_{k+1 \geq i>j \geq 2}\left(a_{j}-a_{i}\right)\left(b_{j}-b_{i}\right)}{\prod_{j=2}^{k+1} \prod_{i=2}^{k+1}\left(a_{i}+b_{j}\right)}$.
Simplying the above equality leads to
$D_{k+1}=\frac{\prod_{k+1 \geq i>j \geq 1}\left(a_{j}-a_{i}\right)\left(b_{j}-b_{i}\right)}{\prod_{j=1}^{k+1} \prod_{i=1}^{k+1}\left(a_{i}+b_{j}\right)}$.
By induction, we obtain that for $n \geq 2$,
$D_{n}=\frac{\prod_{n \geq i>j \geq 1}\left(a_{j}-a_{i}\right)\left(b_{j}-b_{i}\right)}{\prod_{j=1}^{n} \prod_{i=1}^{n}\left(a_{i}+b_{j}\right)}$.

Acknowledgement

This research is supported by Sci. \& Tech. Research Fund of Huaiyin Institute of Technology.

References

1. Leon SJ; Linear algebra and its application. Beijing: China Machine Press, 2007.
2. Huang Z; Generalization of vandermonde determinant. Journal of Jimei University (Natural Science), 2009; 12: 8891.
3. Yu Y, Cai L; On the smarandache prime part sequences and its determinant. Pure and Applied Mathematics, 2008; 4: 747-751.
4. Li H, Zeng L; Properties of boolean determinant. Journal of Jishou University (Natural Science Edition), 2009; 30: 6-10.
5. Liu X, Hao X; One type cyclic matrix determinant calculation and one of its application. Journal of Yanan University (Natural Science Edition), 2009; 28:17-18.
6. Yu B; Calculation of the determinant with a claw or double claws structure. Far East Journal of Mathematical Sciences, 2010; 43:145-151.
