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Abstract: In this paper, we introduce a new technique  for solving  fractional  physical equations in the form of a rapid 

convergence series  arrives at the exact solutions called variational  iteration natural transform method(VINTM).It  is a 

coupling of variational iteration method and the natural transform method. The results reveal that the method is very 

effective, simple and can be applied to other physical differential equations. The fractional derivatives are described in 

the Caputo sense. 
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INTRODUCTION 
The natural transform, initially was defined by Waqar et al,. [1] as the N - transform, which studied their 

properties and applications. Later, Belgacem et al., [2, 3] defined its inverse and studied some additional fundamental 

properties of this integral transform and named it the natural transform. Applications of natural transform in the solution 

of differential and integral equations and for the distribution and Bohemians spaces can be found in [3-10]. Now, we 

mention the following basic definitions of natural transform and its properties are introduced as follows: 

 

Definition 1.1 [11] 

Over the set of functions 
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The natural transform of )(tf is 0,0,)();()]([
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 sudteutfusRtfN st
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where )]([ tfN  is the natural transformation of the time function )(tf  and the variables

 

u and s are the natural 

transform variables. 

 

Theorem 1.2. We derives the relationship between Natural and Laplace, Sumudu transform in successive theorems [11] 

as follows: 

1- If ),( usR  is natural transform and )(sF is Laplace transform of function )(tf in A, )(uG is Sumudu transform 

then,                                

 

)(
1

)(
1

);()]([
0

u

s
F

u
dtetf

u
usRtfN u

st

 




,                                                                        (2)                                                                                

2. If ),( usR  is natural transform and )(sF is Laplace transform of function )(tf in A then, )(uG is Sumudu 

transform of function )(tf in A, then: 
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3- If )(tf n
is the nth derivative of function )(tf then, its natural transform is given by: 
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4. If   ),( usF , ),( usG are the natural transform of respective functions )(tf , )(tg both defined in set A then,  

),(),(]*[ usGusuFgfN                                                                                                                 (5) 

where gf * is convolution of two functions f and g  . 

5. If )]([ tfN   is the natural transform of the function )(tf , then the natural transform of fractional derivative of order 

 is defined as:
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    (6) 

6. Let the function f (t) belongs to set A be multiplied with weight function 
te
then, 
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7.  Let the function )(atf belongs to set A, where a is non-zero constant then, 

  

],[
1

)]([ u
a

s
R

a
atfN 

                                                                                                  

(8) 

8. If )(twn
is given by dtdttftw

nt t
n

 
0 0

))((....)( , then, the natural transform of )(twn
is given by: 
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9. The natural transform of T-periodic function Atf )( such that ,...2,1,0),()(  ntfnTtf is given by: 
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10. The function )(tf in set A is multiplied with shift function
nt , then, 
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                                                                                                            (11) 

2  Analysis of the proposed method(VINTM). 

 

In the case of an algebraic equation , the Lagrange multipliers can be evaluated by an iteration formula for 

finding the solution of the algebraic equation  that can be constructed as[12]: 

 
).(1 nnn xfxx                                                                                                  (12) 

The optimality condition for the extreme  leads to  

                                                                                                                                  (13) 

Where   is the classical variational operator. From (12) and (13), for a given initial value 0X  , we can find the 

approximate solution 1nX  by the iterative scheme for (12) as follows: 

                                                                        (14) 

This  algorithm  is well known as the Newton-Raphson method and has quadratic convergence. To illustrate the basic 

idea of variational iteration  natural transform  method, we consider the following fractional differential equation: 
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Where R  is a linear operator, N is a nonlinear operator and )(tK  is a given continuous function. Now, we extend this 

idea to finding the unknown Lagrange multiplier. The main step is to first take the natural transform to eq. (15). Then the 

linear part is transformed into an algebraic equation as follows: 
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Where 0,0,)();()]([
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The iteration formula of (15) can be used to suggest the main iterative scheme involving the Lagrange multiplier as: 
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Considering )]([)]([[ tUNtURN   as restricted terms, one can derive a Lagrange multiplier as: 
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This yields the stationary conditions of eq. (17) as follows; 
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with eq. (17) and the inverse-natural transform
1N , the iteration formula (16) can be explicitly given as: 
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Consequently the exact solution may be produced by using 
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APPLICATIONS 

Application   3.1 

Consider the following one–dimensional linear inhomogeneous fractional linear Schrodinger equation: 

RxtiUUD xxt  ,10,0, 

                                                                            
(21) 

Subject to initial condition: 
ixexU )0,(  

where  is parameter describing the order of the fractional derivative. The function ),( txU is the unknown function, t  

is the time and x  is the spatial coordinate. The derivative is understood in the Caputo sense. The general response 

expression contains parameter describing the order of the fractional derivative that can be varied to obtain various 

responses.  

 

By applying the natural transform on both sides of eq.(21),then 
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The iteration formula of eq. (21) can be constructed as: 
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where  is a general Lagrange multiplier, which can be identified optimally via the variational theory, 0
~

0 U
 

and

]][ nxxiUN  is a restricted variation, that is , 0
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This yields the stationary conditions, which gives
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Substituting this value of Lagrangian multiplier in eq. (23) we get the following iteration formula: 
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Applying inverse natural transform on both sides of eq. (25) we get:
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Finally,  approximate analytical solution ),( txU  is given by: 
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For the special case α = 1, we obtain[See figures (1,2)] 

          
)(),( txietxU                                                                                             (32) 

which is the exact solution of eq(21) obtained by [13] . 

   

Application  3.2 

 

Consider the one–dimensional linear inhomogeneous fractional Burger's equation: 
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Subject to  initial condition:             
2)0,( xxU 

 As the  previous application, by applying VINTM, we obtain:  
2

0 xU  ,                                                                                                                                            (34)                                                                                                                                                                                                  
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(36) 

Finally, approximate analytical solution ),( txU  is given by 

22),( txtxU                                                                                              (37) 

which is the exact solution of eq (33) obtained by LTADM [14] . 

 

  

Application  3.3 

 

We next consider the linear inhomogeneous fractional KdV equation: 
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Finally, approximate analytical solution ),( txU  is: 
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For the special case α = 1, we obtain 
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which is the exact solution received by HAM [15] and VIM [16]. 

 

 Application  3.4 

 

Consider the following linear Fokker-Plank equation: 
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Subject to  initial condition 

RxxxU  .,sinh)0,(  

Similar to the previous applications, by applying VINTM,. we obtain: 

xU sinh0  ,                                                                                                                                       (47) 
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Finally, we approximate the analytical solution ),( txU  by: 
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For the special case α = 1, we obtain [See figure 3] 

xetxU t sinh),(                                                                                     (52)
 
 

which is the exact solution and is same as obtained by ADM [17], VIM[18] and HPM[19]. 

 

CONCLUSION 

It is obvious that the new technique (VINTM), has been successes to find  exact solution of  linear Schrödinger 

equation, inhomogeneous Burger’s equation  , KdV equation  , and Fokker-Plank equation. The results state that 

proposed technique is very powerful and efficient in finding the analytical solutions for a large class of physical 

differential equations of fractional order.  
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