Scholars Journal of Physics, Mathematics and Statistics

Sch. J. Phys. Math. Stat. 2016; 3(4):127-138 ©Scholars Academic and Scientific Publishers (SAS Publishers) (An International Publisher for Academic and Scientific Resources)

ISSN 2393-8056 (Print) ISSN 2393-8064 (Online)

On Separation Properties and $(R_0)_R$ **Spaces**

Reyadh Delfi Ali

Department of Mathematics, College of Education, University of Al-Gadisiya, Iraq

*Corresponding Author:

Reyadh Delfi Ali Email: reyadh_delphi@yahoo.co.uk

Abstract: The author introduces some open sets in bitopological spaces and studies some of their basic properties. Certain separation properties and $(R_0)_R$ obtained from standard separation by replacing open sets by R-open sets in their definitions are studied. **Keywords:** bitopological, R-open

1-INTRODUCTION

The concept of bitopological spaces was initiated by Kelly [1]. Let (X, Γ_1, Γ_2) be a bitopological spaces. For a set $A \subset X$ by A^{-i} and A^{0_i} , we denoted the Γ_i -closure and Γ_i -interior of A for i = 1, 2. In this work we study some sort of R -separation properties of topological spaces by using the notion of R -open sets instead of open sets. 2- R -OPEN SETS

Definition(2.1):

A subset A in bitopological space (X, Γ_1, Γ_2) is be termed R-open if there exists an T_1 -open O such that $O \subset A \subset O^{-2^{0_1}}$, the family of all R-open set in bitopological space was not necessary topology on X. The family of all R-open set in bitopological space (X, Γ_1, Γ_2) is denoted by R.O.(X). It clear that every T_1 -open is R-open but the converse is not true. The complement of R-open set will be called a R-closed set.

The following theorems gives some properties of R-open sets .

Theorem(2.2):

Proof:

Let (X, Γ_1, Γ_2) be topological space. Let $A \subset X$, A is R-open if $A \subset A^{0_1 - 2^{0_1}}$.

Let A be R -open set. Then $O \subset A \subset O^{-2^{0_1}}$ for some Γ_1 -open set O. But $O^{-2} \subset A^{0_1-2}$ and thus $O^{-2^{0_1}} \subset A^{0_1-2^{0_1}}$. Hence $A \subset A^{0_1-2^{0_1}}$.

Lemma(2.3):

Let (X, Γ_1, Γ_2) be a bitopological space and $O \in \Gamma_1$, then $O^{-2^{0_1-2^{0_1}}} = O^{-2^{0_1}}$. Proof :

It is know that $O^{-2^{0_1}} \subset O^{-2}$.then $O^{-2^{0_1-2}} \subset O^{-2^{-2}} = O^{-2}$.so $O^{-2^{0_1-2^{0_1}}} \subset O^{-2^{0_1}}$. On the other hand, $O \subset O^{-2}$ then $O^{0_1} \subset O^{-2^{0_1}}$.But $O = O^{0_1}$,for $O \in \Gamma_1$.So $O \subset O^{-2^{0_1}}$.Hence $O^{-2} \subset O^{-2^{0_1-2^{0_1}}}$. This implies that $O^{-2^{0_1}} \subset O^{-2^{0_1-2^{0_1}}}$. Therefore $O^{-2^{0_1-2^{0_1}}} = O^{-2^{0_1}}$.

Theorem(2.4):

Let (X, Γ_1, Γ_2) be a bitopological space and $B \subset X$. Then $B \in R.O.(X)$ if there exist $A \in R.O.(X)$ such that $A \subset B \subset A^{-2^{0_1}}$. Proof: Obvious.

Theorem(2.5):

Let (X, Γ_1, Γ_2) be a bitopological space. Let $\{A_{\alpha}\}_{\alpha \in \Lambda}$ be a collection of R -open sets in a bitopological space X. Then UA_{α} is R-open.

Proof :

For each
$$\alpha \in \Lambda$$
, we have Γ_1 -open O_{α} such that $O_{\alpha} \subset A_{\alpha} \subset O_{\alpha}^{-2^{0_1}}$. Then

$$\bigcup_{\alpha \in \Lambda} O_{\alpha} \subset \bigcup_{\alpha \in \Lambda} A_{\alpha} \subset \bigcup_{\alpha \in \Lambda} O_{\alpha}^{-2^{0_1}} \subset \bigcup_{\alpha \in \Lambda}^{-2^{0_1}} O_{\alpha}$$
. Hence, let $O = \bigcup_{\alpha \in \Lambda} O_{\alpha}$. then $O \subset \bigcup A_{\alpha} \subset O^{-2^{0_1}}$.

Theorem(2.6):

Let (X, Γ_1, Γ_2) be bitopological space. Then $\Gamma_1 = \operatorname{int}_1 R.O.(X)$ where $\operatorname{int}_1 R.O.(X) = \{O : O = A^{o_1}\}$ for some $A \in R.O.(X)$. Proof: Obvious.

Theorem(2.7):

Let $A \subset Y \subset X$ where X is a bitopological space and Y is a subspace of bitopological space (X, Γ_1, Γ_2) . Let $A \in R.O.(X)$ then $A \in R.O.(Y)$. Proof:

 $O \subset A \subset O^{-2^{0_1}}$, where O is T_1 -open in X now $O \subset Y$ and thus $O = O \cap Y \subset A \cap Y \subset Y \cap O^{-2^{0_1}} \subset O^{-2Y^{0_1Y}}$ or $O \subset A \subset O^{-2Y^{0_1Y}}$ since $O = O \cap Y$, O is Γ_1/Y -open in Y and the theorem is proved.

We introduce the following definitions of the R –neighbourhood, R -derived, R -closure and R –interior of a set which is similar to that of standard neighbourhood, derived closure and interior.

Definition(2.8):

A Set $N_x \subset X$ is said to be R-neighbourhood of a point $x \in X$ if there exists a $A \in R.O.(X)$ such that $x \in A \subset N_x$.

Theorem(2.9):

 $A \in R.O.(X)$ iff A is R-neighbourhood of each $x \in A$. Proof: Obvious.

Definition(2.10):

A point $x \in X$ is said to be R -limit point of A iff for each $U \in R.O.(X)$, $x \in U$ and $U - \{x\} \bigcap A \neq \phi$. The set of all R -limit points of A is said to be R -derived set of A and is denoted by R - der(A).

The following theorems give some properties of R –limit points.

Theorem(2.11):

A is R -closed if f it contains the set of its R -limit points. Proof: Obvious.

Theorem(2.12):

If A, B by subsets of bitopological space (X, Γ_1, Γ_2) . Then: 1) If $A \subset B$, then $R - der(A) \subset R - der(B)$. 2) $R - der(A) \cup R - der(B) \subset R - der(A \cup B)$. 3) $R - der(A \cap B) \subset R - der(A) \cap R - der(B)$. 4) $R - der(R - der(A))/A \subset R - der(A)$. 5) $R - der(A \cup R - der(A)) \subset A \cup R - der(A)$. Proof :

We prove parts (5) and the others follow directly from definition.

5) Let $x \in R - der(A \cup R - der(A))$. If $x \in A$, the result is obvious. So let $x \in R - der(A)/A$. Then, if $U \in R.O.(X)$ containing x, $U - \{x\} \cap (A \cup R - der(A)) \neq \phi$, then $U - \{x\} \cap A \neq \phi$ or $U - \{x\} \cap R - der(A) \neq \phi$. If $U - \{x\} \cap A \neq \phi$, then $x \in R - der(A)$. If $U - \{x\} \cap R - der(A) \neq \phi$ then $U - \{x\} \cap A \neq \phi$. Therefore $x \in R - der(A)$. Thus in any case $R - der(A \cup R - der(A)) \subset A \cup R - der(A)$.

Definition(2.13):

Let A be a subset of a bitopological space (X, Γ_1, Γ_2) , $A \cup R - der(A)$ is defined to be the R-closure of A and is denoted by R - cl(A).

Theorem(2.14):

Let (X, Γ_1, Γ_2) be a bitopological space. Let A and B be two subsets of X. Then: 1) If $A \subset B$, then $R - cl(A) \subset R - cl(B)$. 2) $R - cl(A) \cup R - cl(B) \subset R - cl(A \cup B)$. 3) $R - cl(A \cap B) \subset R - cl(A) \cap R - cl(B)$. 4) R - cl(R - cl(A)) = R - cl(A). 5) A is a R-closed iff R - cl(A) = A, R - cl(A) is R-closed. 6) $R - cl(A) = \bigcap \{F, F \text{ is } R \text{ -closed and } A \subset F \}$, R - cl(A) is the smallest R -closed set containing A. Proof: We prove parts (4) and the others follow directly from definition. 4) $R - cl(R - cl(A)) = R - cl(A \cup R - der(A))$.

 $= (A \cup R - der(A)) \cup R - der(A \cup R - der(A)) = A \cup R - der(A) = R - cl(A).$

Definition(2.15):

A point $x \in X$ is said to be a R-interior point of A if f there exist $U \in R.O.(X)$ containing x, such that $U \subset A$. The set of all R-interior of A is said to be the R-interior of A and is denoted by R - int(A). The following theorem gives some properties of R-interior sets.

Theorem(2.16):

Let (X, Γ_1, Γ_2) be a bitopological space. Let A and B be two subsets of X. Then: 1) R - int is R -open. 2) R - int(A) is the largest R -open set contained in A. 3) A is R -open if f A = R - int(A). 4) R - int(R - int(A)) = R - int(A). 5) If $A \subset B$ then $R - int(A) \subset R - int(B)$. 6) $R - int(A) \cup R - int(A) \subset R - int(A \cup B)$. 7) $R - int(A \cap B) \subset R - int(A) \cap R - int(B)$.

Proof:

We prove parts (1),(2) and the others follow directly from definition .

1) Let $x \in R - int(A)$ then $U \subset A$ for some $U \in R.O.(X)$ containing x. Also $y \in U$, then $y \in R - int(A)$, therefore $x \in U \subset R - int(A)$. Hence R - int(A) is R-neighbourhood of x.

There by theorem 2.9, R - int(A) is R -open.

2) Let $V \in R.C.(X)$, $V \subset A$. Then $y \in V$ implies that $y \in A$, so that $y \in R - int(A)$. Therefore $V \subset R - int(A)$.

$$_{3-}R - T_i$$
 spaces, $i = 0, 1, 2$

In this section we introduce $(R - T_i)$ spaces, i = 0,1,2 and study some of their properties.

Definition(3.1):

Let $\left(X, \Gamma_1, \Gamma_2\right)$ be a bitopological space .

a) (X, Γ_1) is called $R - T_0$ iff for each $x, y \in X$ such that $x \neq y$, there exists a R-open set in X containing exactly one of them.

b) (X, Γ_1) is called $R - T_1$ iff for each $x, y \in X$ such that $x \neq y$, there exists a R-open set V_1 containing x but not y and a R-open set V_2 containing y but not x.

c) (X, Γ_1) is called $R - T_2$ or R -Hausdoffiff for each $x, y \in X$ such that $x \neq y$, therefore exists disjoint R -open sets V_1 and $V_2, x \in V_1$ and $y \in V_2$.

The following theorems gives properties of $(R - T_i)$ spaces, i = 0, 1, 2.

Theorem(3.2):

Let (X, Γ_1, Γ_2) be a bitopological space. 1) If (X, Γ_1) is T_0 then (X, Γ_1) is $R - T_0$. 2) If (X, Γ_1) is T_1 then (X, Γ_1) is $R - T_1$. 3) If (X, Γ_1) is T_2 then (X, Γ_1) is $R - T_2$. Proof: We prove parts (3) and the others similar prove part (3). Suppose that (X, Γ_1) is T_2 and $x, y \in X$ such that $x \neq y$, then there exists disjoint Γ_1 -open sets V_1 and $V_2, x \in V_1$ and $y \in V_2$. Now since every Γ_1 -open is R-open. Then (X, Γ_1) is $R - T_2$.

Theorem(3.3):

Let (X, Γ_1, Γ_2) be a bitopological space. 1) If (X, Γ_1) is $R - T_1$ then (X, Γ_1) is $R - T_0$. 2) If (X, Γ_1) is $R - T_2$ then (X, Γ_1) is $R - T_1$. Proof: Obvious.

Theorem(3.4):

Let (X, Γ_1, Γ_2) be a bitopological space . Then (X, Γ_1) is $R - T_1$ iff for each $x \in X$, $R - cl\{x\} = \{x\}$. Proof :

Suppose that (X, Γ_1) is $R - T_1$, and suppose $y \in \{x\}^C$. Then $x \neq y$ and by $R - T_1$, then exist $V \in R.O.(X)$ such that $y \in V$ but $x \notin V$. Hence $y \in V \subset \{x\}^C$. Therefore by theorem 2.16 part (3) $\{x\}^C R$ -open. Thus $\{x\} R$ -closed by theorem 2.14 part (5), $R - cl\{x\} = \{x\}$. The converse is clear.

Corollary(3.5):

Let (X, Γ_1, Γ_2) be a bitopological space. Then (X, Γ_1) is $R - T_1$ iff for each $x \in X$, $R - der\{x\} = \phi$. Proof: Obvious.

Theorem(3.6):

Let (X, Γ_1, Γ_2) be a bitopological space. Then (X, Γ_1) is $R - T_2$ iff for each $x, y \in X$ such that $x \neq y$ there exists a R-open set V such that $x \in V$ and $y \notin R - cl(V)$. Proof:

Let (X, Γ_1) is $R - T_2$ and x, $y \in X$ such that $x \neq y$. Then there exist disjoint R-open sets V and U such that $x \in V$ and $y \in U$. If $y \in R - cl(V)$ this contradicts that V and U disjoint. Hence $y \notin R - cl(V)$ the converse is clear.

Theorem(3.7) [2]:

Let (X, Γ) be a topological space and $A \in \Gamma$. Then $A \cap \overline{B} \subset \overline{A \cap B}$ for every subset B of X.

Theorem(3.8):

Let (X, Γ_1, Γ_2) be a bitopological space. Let $V \in R.O.(X)$ and $Y \in \Gamma_2$. then $V \cap Y \in R.O.(Y)$. Proof: $O \subset V \subset O^{-2^{0_1}}$, where O is Γ_1 -open in X. Thus $O \cap Y \subset V \cap Y \subset O^{-2^{0_1}} \cap Y$. Now $V \cap Y \subset O^{-2} \cap Y$ and by theorem 3.7 $V \cap Y \subset \overline{O \cap Y}^2$. Hence $V \cap Y \subset \overline{O \cap Y}^{2^Y}$. (where (-2Y) is the Γ_2 -closure operator Y). It follow that $O \cap Y \subset V \cap Y \subset \overline{O \cap Y}^{2^Y^{0_1Y}}$ (where (0_{1Y}) is the Γ_1 -interior operator in Y). Therefore $V \cap Y \in R.O.(Y)$. Theorem(3.9): Let (X, Γ_1, Γ_2) be a bitopological space. Then

1) Every Γ_2 -open subspace of $R - T_0$ space is $R - T_0$.

2)Every Γ_2 -open subspace of $R - T_1$ space is $R - T_1$.

3)Every Γ_2 -open subspace of $R-T_2$ space is $R-T_2$.

Proof:

We prove part (3) and the others similar prove (3).

3)Let (X, Γ_1) be $R - T_2$. Let x and y by two points of the Γ_2 -open subspace Y of X. If V_1 and V_2 are disjoint R - open sets in X of x and y, respectively, then by theorem 3.8 $V_1 \cap Y$ and $V_2 \cap Y$ are disjoint R - open sets of x and in Y.

 $_{4-}(R_0)_{R-\text{SPACES}}$

In this section we introduce $(R_0)_R$ –space and study some of their properties.

Definition(4.1):

Let (X, Γ_1, Γ_2) be a bitopological space. (X, Γ_1) Is called $(R_0)_R$ if for each $V \in R.O.(X)$ and each $x \in V$, $R - cl\{x\} \subset V$.

Since a space (X, Γ_1) is $R - T_1$ iff the singletons are R-closed (theorem 3.4), it is clear that every $R - T_1$ space is $(R_0)_R$.

Definition(4.2) [3]:

A Topological space
$$(X, \Gamma)$$
 is called (R_0) iff for each $U \in T$ and each $x \in U$, $\overline{\{x\}} \subset U$

Theorem(4.3):

Let (X, Γ_1, Γ_2) be a bitopological space if (X, Γ_1) is R_0 , then (X, Γ_1) is $(R_0)_R$. Proof: Obvious.

Definition(4.4) [5]:

A Topological space (X, Γ) is called $(R_0)_s$ iff for each semi open U and each $x \in U$, $scl\{x\} \subset U$, where $scl\{x\}$ denotes the semi closure of $\{x\}$.

Definition(4.5):

Let (X, Γ_1, Γ_2) be a bitopological space, the R of X is defined to be the set $R - Ker\{x\} = \{y : x \in R - cl\{y\}\}.$

Theorem(4.6):

Let (X, Γ_1, Γ_2) be a bitopological space, then (X, Γ_1) is $R - T_1$ iff it is $R - T_0$ and $(R_0)_R$. Proof:

Suppose that (X, Γ_1) is $R - T_0$ and $(R_0)_R$. Let $x, y \in X$ such that $x \neq y$. Since (X, Γ_1) is $R - T_0$ it follow that there exist R -open set V such that $x \in V$ and $y \notin V$ and since (X, Γ_1) is $(R_0)_R$ it follow that $R - cl\{x\} \subset V$. Hence $y \in (R - cl\{x\})^c$. Therefore (X, Γ_1) is $R - T_1$. The converse is clear.

Theorem(4.7):

Let (X, Γ_1, Γ_2) be a bitopological space, then (X, Γ_1) is $(R_0)_R$ iff for every R-closed set F and $x \notin F$, there exists a R-open set V such that $F \subset V$, $x \notin V$. Proof: Obvious.

Definition(4.8) [4]:

Let (X, Γ) be a bitopological space. A Subset A of X is called semi open iff for some $O, O \subset A \subset \overline{O}$, where \overline{O} denotes the closure of O.

Definition(4.9) [5]:

Let (X, Γ) be a bitopological space, the semi of X is defined to be the $sKer\{x\} = \{y : x \in scl\{y\}\}$ where $scl\{y\}$ denotes the semi closure of $\{y\}$.

Theorem(4.10):

Let (X, Γ_1, Γ_2) be a bitopological space. Then for x, $y \in X$, $R - Ker\{x\} \neq R - Ker\{y\}$ iff $R - cl\{x\} \neq R - cl\{y\}$. Proof: Obvious.

Theorem(4.11):

Let (X, Γ_1, Γ_2) be a bitopological space, the following are equivalent:

a) (X, Γ_1) is $(R_0)_p$.

b) For every $x \in X$, $R - cl\{x\} \subset R - Ker\{x\}$.

c) If F is R-closed in X, then $F = \bigcap \{V : V \text{ is } R \text{ -open}, F \subset V\}$.

d) If V is R-open in X , then $V = U \{ F : F \text{ is } R \text{ -closed}, F \subset V \}$.

e) For any nonempty set A and R –open set V in X such that $A \cap V \neq \phi$, there exists a R –closed set F for which $F \subset V$ and $A \cap F \neq \phi$.

f) For any *R*-closed set *F* in *X* and $x \notin F \cdot R - cl\{x\} \cap F = \phi$. Proof:

(a) \rightarrow (b): Let $y \in R - cl\{x\}$. let V be any R -open set $x \in V$. Now by (a), $y \in V$. This gives that $x \in R - cl(y)$. Therefor $y \in R - Ker(x)$.

(b) \rightarrow (c): Suppose x does not belong to the *R*-closed *F*. And *F*^c is *R*-open and $x \in F^c$. Let $y \in R - cl\{x\}$. Then by (b) $x \in R - cl\{y\}$. Therefore, every *R*-open set which contains x, contains y. Hence, $R - cl\{x\} \subset F^c$. Now $(R - cl\{x\})^c R$ -openset containing *F* to which x does not belong. Consequently, x does not belong to the intersection of all the *R*-open sets which contain *F*. Thus (c) hold (c) \rightarrow (d): Let *V* is *R*-open sets in *X*, then V^c is *R*-closedset. Now by (c), $V^c = \bigcap \{u : u \text{ is } R \text{ -open}, V^c \subset u\}$. Therefore $V = U \{u^c : u^c \text{ is } R \text{ -closed}, u^c \subset V\}$. (d) \rightarrow (e): Let *V* be *R*-open and *A* is non-empty such that $A \bigcap V \neq \phi$. Let $x \in A \bigcap V$ by (d) there exists a *R*-

(d) \rightarrow (e): Let V be R-open and A is non-empty such that $A \mid V \neq \phi$. Let $x \in A \mid V$ by (d) there exists a R closed F such that $x \in F \subset V$ clearly, $A \cap F \neq \phi$.

(e) \rightarrow (f): Let F be a R-closed set and $x \notin F$. Then F^c is R-open and $\{x\} \cap F^c = \phi$. By (e), there exists a R-closed set H such that $H \cap \{x\} \neq \phi$ and $H \subset F^c$. Therefore $R - cl\{x\} \subset F^c$.consequently, $F \cap R - cl\{x\} = \phi$.

(f) \rightarrow (a): Let F be R-closed set in X and $x \notin F$, $R - cl\{x\} \cap F = \phi$. The $(R - cl\{x\})^c$ is R-open set such that $F \subset (R - cl\{x\})^c$, $x \notin (R - cl\{x\})^c$, therefore by theorem 4.4 (X, Γ_1) is $(R_0)_R$.

Theorem(4.12):

Let (X, Γ_1, Γ_2) be bitopological space if for every point x of a $(R_0)_R$ space (X, Γ_1) , $R - cl\{x\} \cap R - ker\{x\} = \{x\}$, then $R - cl\{x\} = \{x\}$. Proof: Obvious.

Theorem(4.13):

Let (X, Γ_1, Γ_2) be bitopological space if (X, Γ_1) is an $(R_0)_R$ space and x, $y \in X$, then $R - cl\{x\} = R - cl\{y\}$ or $R - cl\{x\} \cap R - cl\{y\} = \phi$. Proof: Suppose $R - cl\{x\} \cap R - cl\{y\} \neq \phi$. Let $a \in R - cl\{x\} \cap R - cl\{y\}$. Then $R - cl\{a\} \subset R - cl\{x\} \cap R - cl\{y\}$. Now by theorem (2.7) part (b) $a \in R - cl\{x\} \rightarrow a \in R - \ker\{x\}$ $\rightarrow x \in R - cl\{a\}$ $\rightarrow R - cl\{x\} \subset R - cl\{a\}$ $\rightarrow R - cl\{x\} \subset R - cl\{a\}$ $\rightarrow R - cl\{x\} \subset R - cl\{a\}$ initiallySimilarly $a \in R - cl\{y\} \rightarrow R - cl\{y\} \subset R - cl\{x\}$ Consequently, $R - cl\{x\} = R - cl\{y\}$.

Theorem(4.14):

Let (X, Γ_1, Γ_2) be bitopological space and Y is Γ_2 -open. Then $R - cl_Y A \subset R - cl_X A$ (where $R - cl_Y A$ is the R-closure operator in Y)

Theorem(4.15):

Let (X, Γ_1, Γ_2) be bitopological space .then every Γ_1 -open and Γ_2 -open subspace of $(R_0)_R$ space is $(R_0)_R$.

Proof:

Let $Y \ \Gamma_1$ -open and Γ_2 -open subspace of $(R_0)_R$ space (X, Γ_1) and $A \in R.O.(Y)$ and $x \in A$. Now to prove that there is $B \in R.O.(x) \ni A = B \cap Y$.

Since $A \in R.O.(Y)$, then there is an Γ_1/Y open set U in Y such that $U \subset A \subset \overline{U}^{2Y^{O_{1Y}}}$ also there is $W \in \Gamma_1$ such that $W \cap Y = U$. Let $B = A \cup W$. then $B \cap Y = A$. Now, we show that $W \subset B \subset \overline{W}^{2X^{O_{1X}}}$.

Obviously $W \subset B$. Let $t \in B$. Then $t \in W$ or $t \in A$. If $t \in W$ then $t \in \overline{W}^{2X^{o_{1X}}}$. If $t \in A$, $t \in \overline{U}^{2Y^{o_{1Y}}}$ and since $Y \Gamma_1$ -open set so $t \in \overline{W}^{2X^{o_{1X}}}$. Therefore $B \in R.O.(X)$. Again, to prove that $(Y, \Gamma_1/Y) (R_0)_R$ space.

Since $A = B \cap Y$, so $x \in B$ and $x \in Y$. Hence $R - cl_x \{x\} \subset B$ and $R - cl_x \{x\} \subset Y$. It follows that $R - cl_x \{x\} \subset A$. Then by theorem 2.14 $R - cl_y \{x\} \subset A$. Therefore $(Y, \Gamma_1/Y)$ is $(R_0)_R$.

5-EXAMPLES

In this section we shall that the converse of the above theorems not true.

Remark(5.1):

The family of all R –open sets in bitopological space was not necessary topology on X as shown by the following example .

Example(5.2):

Let $X = \{1,2,3\}$ and $\Gamma_1 = \{X, \phi, \{1\}, \{2\}, \{1,2\}, \{1,3\}\}, \Gamma_2 = \{\phi, X, \{2\}\}$. Then it can be verified that (X, Γ_1, Γ_2) is bitopological space and *R.O.* $(X) = \{\phi, X, \{1\}, \{2\}, \{1,3\}, \{2,3\}, \{1,2\}\}$. Remark(5.3):

The reverse inclusion in the theorem 2.12 parts (2),(3) not true as shown by the following examples . Example(5.4):

Let $X = \{1,2,3\}$ and $\Gamma_1 = \{X, \phi, \{1\}, \{2\}, \{1,2\}\}, \Gamma_2 = \{\phi, X, \{1,2\}\}$. Then it can be verified that (X, Γ_1, Γ_2) is bitopological space and $R.O.(X) = \{\phi, X, \{1\}, \{2\}, \{1,2\}, \{1,3\}, \{2,3\}\}$.take $A = \{2\}, B = \{1,3\}$ $R - der(A) = \phi, R - der(B) = \phi$.Then

 $R - der(A \cup B) = R - der(\{1, 2, 3\}) = \{3\} \not\subset R - der(A) \cup R - der(B) = \phi$ Example(5.5):

Let $X = \{1,2,3\}$ and $\Gamma_1 = \{X, \phi, \{1\}, \{2\}, \{1,2\}\}, \Gamma_2 = \{\phi, X, \{1,2\}, \{3\}\}$. Then it can be verified that (X, Γ_1, Γ_2) is bitopological space and $R.O.(X) = \{\phi, X, \{1\}, \{2\}, \{1,2\}\}$. Take $A = \{1,3\}, B = \{2,3\}$. Then $R - der(A) = \{3\}, R - der(B) = \{3\}.$ Therefore $R - der(A) \cap R - der(B) = \{3\} \not\subset R - der(A \cap B) = \phi$. Remark(5.6):

The reverse inclusion in theorem 2.14 parts (2), (3) are not true as shown by the following example. Example(5.7):

Let $X = \{1,2,3\}$ and $\Gamma_1 = \{X, \phi, \{1\}, \{2,3\}\}, \Gamma_2 = \{X, \phi, \{1,2\}\}$. Then it can be verified that (X, Γ_1, Γ_2) is bitopological space and $R.O.(X) = \{X, \phi, \{1\}, \{2,3\}, \{1,3\}, \{1,2\}\}$. Take $A = \{1\}, B = \{2\}$. Then $R - cl(A) = \{1\}, R - cl(B) = \{2\}$.Therefore $R - cl(A \cup B) = R - cl(\{1,2\}) = X \not\subset R - cl(A) \cup R - cl(B) = \{1,2\}$. Take $A = \{2,3\}, B = \{1,2\}$. The $R - cl(A) = \{2,3\}, R - cl(B) = \{1,2\}$ and $A \cap B = \{2\}, R - cl(A \cap B) = \{2\}$.Therefore $R - cl(A) \cap R - cl(B) = \{2,3\} \not\subset R - cl(A \cap B) = \{2\}.$ Remark(5.8):

It is obvious that every Γ_1 –open is R –open but the converse is not true as shown by the following example. Example(5.9):

Consider (X, Γ_1, Γ_2) defined in example 5.4 take $A = \{1, 3\}$ is R –open set but not Γ_1 –open.

Remark(5.10):

The reverse inclusion in theorem 2.16 parts 6, 7 are not true as shown by the following example. Example(5.11):

Consider (X, Γ_1, Γ_2) defined in example 5.4 take $A = \{3\}B = \{2\}$.

but $R - int(A \cup B) = \{2,3\}$ $R - \operatorname{int}(A) = \phi, R - \operatorname{int}(B) = \{2\}$ Then .Therefore $R - int(A \cup B) = \{2,3\} \not\subset R - int(A) \cup R - int(B) = \{2\}$. Consider (X, Γ_1, Γ_2) defined in example 5.7, take $A = \{1,3\}B = \{2,3\}$. Then $R - int(A) = \{1,3\}, R - int(B) = \{2,3\}$, but $R - int(A \cap B) = \phi$.Therefore $R - \operatorname{int}(A) \cap R - \operatorname{int}(B) = \{3\} \not\subset R - \operatorname{int}(A \cap B) = \phi .$

.Also

Remark(5.12):

The converse of theorem 3.2 are not true as shown by the following examples .

Example(5.13):

Let $X = \{1,2,3\}$ and $\Gamma_1 = \{X, \phi, \{1\}\}, \Gamma_2 = \{X, \phi, \{1,3\}\}$. Then it can be verified that (X, Γ_1, Γ_2) is bitopological space and $R.O.(x) = \{X, \phi, \{1\}, \{1,2\}, \{1,3\}\}$. Therefore (X, Γ_1) is a $R - T_0$ space, but it is not T_0 . **Example(5.14):**

Let $X = \{1,2,3\}$ and $\Gamma_1 = \{X, \phi, \{1\}, \{2\}, \{1,2\}, \{2,3\}\}, \Gamma_2 = \{X, \phi, \{1,3\}\}$. Then it can be verified that (X, Γ_1, Γ_2) is bitopological space and $R.O.(x) = \{X, \phi, \{1\}, \{2\}, \{1,2\}, \{2,3\}, \{1,3\}\}$. Therefore (X, Γ_1) is a $R - T_1$ space, but it is not T_1 and (X, Γ_1) is $R - T_2$ space, but it is not T_2 . **Remark(5.15):**

The converses theorem 3.3 is not true as shown by the following examples.

Example(5.16):

Consider (X, Γ_1, Γ_2) defined in examples 5.13 (X, Γ_1) is a $R - T_0$ space, but it is not $R - T_1$. Example(5.17):

Let X be infinite set and $\Gamma_1 = \text{confinite topology on } X$, $\Gamma_2 = \text{discrete topology on } X$. Then it can be verified that (X, Γ_1, Γ_2) bitopological space and $R.O.(x) = \Gamma_1$. Therefore (X, Γ_1) is a $R - T_1$ space but is not $R - T_2$.

Remark(5.18):

The property of $R - T_0$, $R - T_1$ and $R - T_2$ are not hereditary property as shown by the following .

Example(5.19):

Let

$$X = \{1, 2, 3, 4\}$$
 and

$$\begin{split} &\Gamma_1 = \{X, \phi, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}, \{2,4\}, \{1,2,4\}, \{2,3,4\}\}, \Gamma_2 = \{X, \phi, \{1,3\}, \{1,2,4\}, \{1\}\}. \text{ Then it can be verified that } &(X, \Gamma_1, \Gamma_2) \text{ is bitopological space and } \\ &R.o.(x) = \{X, \phi, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}, \{2,4\}, \{1,2,4\}, \{2,3,4\}, \{1,3,4\}, \{1,4\}\} \text{ Therefore } &(X, \Gamma_1) \text{ is } R - T_1 \text{ and } R - T_2 \text{ Now let } Y = \{2,3,4\} \text{ is } \Gamma_1 \text{ -open subspace of } &(X, \Gamma_1) \text{ .} \\ &\Gamma_1/Y = \{Y, \phi, \{2\}, \{3\}, \{2,3\}, \{2,4\}\}, \Gamma_2/Y = \{Y, \phi, \{3\}, \{2,4\}\}. \text{ Then it can be verified } &(Y, \Gamma_1, \Gamma_2) \text{ bitopological space and } \\ &R.o.(Y) = \{Y, \phi, \{2\}, \{3\}, \{2,3\}, \{2,3\}, \{2,4\}\}. \text{ Therefore } &(Y, \Gamma_1/Y) \text{ is not } R - T_1 \text{ and also not } R - T_2 \text{ .} \\ &\mathbf{Example(5.20):} \end{aligned}$$

Let $X = \{1,2,3,4\}$ and $\Gamma_1 = \{X, \phi, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}, \Gamma_2 = \{X, \phi, \{1,2,4\}\}$. Then it can be verified that (X, Γ_1, Γ_2) is bitopological space and $R.o.(x) = \{X, \phi, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}, \{1,4\}, \{1,3,4\}, \{1,2,4\}, \{2,4\}[2,3,4]\}$. Therefore (X, Γ_1) is $R - T_1$ and $R - T_2$. Now, let $Y = \{2,3,4\}$ is subspace of (X, Γ_1) , then $R.o.(Y) = \{Y, \phi, \{2\}, \{3\}, \{2,3\}, \{2,4\}\}$. Therefore $(Y, \Gamma_1/Y)$ is not $R - T_1$ and also not $R - T_2$. **Example(5.21):**

Let $X = \{1,2,3\}$ and $\Gamma_1 = \{X, \phi, \{1\}, \{2,3\}\}, \Gamma_2 = \{X, \phi, \{1,3\}\}$. Then it can be verified that (X, Γ_1, Γ_2) is bitopological space and $R.o.(x) = \{X, \phi, \{1\}, \{1,2\}, \{1,3\}, \{2,3\}\}$. Therefore (X, Γ_1) is $R - T_0$. Now, let $Y = \{2,3\}$ is subspace of (X, Γ_1) then $\Gamma_1/Y = \{Y, \phi\}, \Gamma_2/Y = \{Y, \phi, \{3\}\}$ and it can be verified that $(Y, \Gamma_1/Y, \Gamma_2/Y)$ is bitopological space and $R.o.(Y) = \{Y, \phi\}$. Therefore $(Y, \Gamma_1/Y)$ is not $R - T_0$. Remark(5.22):

The axiom of $R - T_0$ and $(R_0)_R$ are independent as shown by the following examples.

Example(5.23):

Let $X = \{1, 2, 3\}$ and $\Gamma_1 = \{X, \phi, \{1\}, \{2, 3\}\}, \Gamma_2 = \{X, \phi, \{2, 3\}\}$. Then it can be verified that (X, Γ_1, Γ_2) is bitopological space and $R.o.(x) = (X, \phi, \{1\}, \{2,3\})$. Therefore (X, Γ_1) is a $(R_0)_R$, but it is not $R - T_0$.

Example(5.24):

Let $X = \{1, 2, 3\}$ and $\Gamma_1 = \{X, \phi, \{1\}, \{2\}, \{1, 2\}\}, \Gamma_2 = \{X, \phi, \{3\}\}$. Then it can be verified that (X, Γ_1, Γ_2) is bitopological space and $R.o.(x) = (X, \phi, \{1\}, \{2\}, \{1,2\})$. Therefore (X, Γ_1) is $R - T_0$, but it is not $(R_0)_R$.

Remark(5.25):

It is obvious that every space $R - T_1$ is $(R_0)_R$, but the converse is not true as shown by the following example.

Example(5.26):

Consider (X, Γ_1, Γ_2) defined in example 5.23 (X, Γ_1) is a $(R_0)_R$, but it is not $R - T_1$. Remark(5.27):

The axiom of $(R_0)_s$ and $(R_0)_R$ are independent as shown by the following examples.

Example(5.28)

Let $X = \{1, 2, 3\}$ and $\Gamma_1 = \{X, \phi, \{1\}, \{2\}, \{1, 2\}\}, \Gamma_2 = \{X, \phi, \{3\}\}$ then it can be verified that (X, Γ_1, Γ_2) is bitopological space and $R.O.(x) = \{X, \phi, \{1\}, \{1, 2\}\}$. Therefore (X, Γ_1) is $(R_0)_S$, but it is not $(R_0)_R$.

Example(5.29):

 $X = \{1, 2, 3\}$ and $\Gamma_1 = \{X, \phi, \{1\}, \{1, 2\}, \{2, 3\}, \{2\}\}, \Gamma_2 = \{X, \phi, \{1, 3\}\}$ Let Then $R.O.(X) = \{X, \phi, \{1\}, \{1,2\}, \{2,3\}, \{2\}, \{1,3\}\}.$ Therefore (X, Γ_1) is $(R_0)_R$, but it is not $(R_0)_S$. Remark(5.30):

The axiom of $s \ker\{x\}$ and $R - \ker\{x\}$ are independent as shown by the following examples. Example(5.31):

Let $X = \{1,2,3\}$ and $\Gamma_1 = \{X, \phi, \{1\}, \{2,3\}\}, \Gamma_2 = \{X, \phi, \{2,3\}\}$. Then it can be verified that (X, Γ_1, Γ_2) is bitopological space and $R.O.(X) = \{X, \phi, \{1\}, \{2,3\}, \{1,2\}, \{1,3\}\}$. Therefore $s \ker\{2\} = \{2,3\} \neq R - \ker\{2\} = \{2\}.$

Example(5.32):

Let $X = \{1,2,3\}$ and $\Gamma_1 = \{X, \phi, \{1\}, \{2\}, \{1,2\}\}, \Gamma_2 = \{X, \phi, \{2,3\}, \{3\}\}$. Then it can be verified that and $R.O.(X) = \{X, \phi, \{1\}, \{2\}, \{1,2\}\}$. (X, Γ_1, Γ_2) is bitopological space Therefore $R - \ker\{3\} = \{1, 2, 3\} = X \neq s \ker\{3\} = \{3\}.$

Remark(5.33):

The converse of theorem 4.3 are not true as shown by the following example.

Example(5.34):

Consider (X, Γ_1, Γ_2) defined in example 5.29 (X, Γ_1) is $(R_0)_R$, but it is not (R_0) .

Remark(5.35):

The property of $(R_0)_R$ is not hereditary property as shown by the following examples. Example(5.36):

Let $X = \{1, 2, 3\}$ and $\Gamma_1 = \{X, \phi, \{2, 3\}\}, \{3\}, \{1\}, \{1, 3\}\}, \Gamma_2 = \{X, \phi, \{1, 3\}\}.$ Then $R.O.(X) = \{X, \phi, \{2,3\}, \{3\}, \{1\}, \{1,3\}, \{1,2\}\}$. Therefore (X, Γ_1) is $(R_0)_R$. Now, let $Y = \{2,3\}$ is subspace of (X, Γ_1) , then $R.O.(Y) = \{Y, \phi, \{3\}\}$. therefore $(Y, \Gamma_1/Y)$ is not $(R_0)_R$.

Example(5.37):

Let $X = \{1,2,3,4\}$ and $\Gamma_1 = \{X, \phi, \{1,2\}, \{3,4\}, \{1,2,4\}, \{4\}\}, \Gamma_2 = \{X, \phi, \{1,3\}, \{1,2,3\}, \{1,3,4\}\}$. Then $R.O.(X) = \{X, \phi, \{1,2\}, \{3,4\}, \{1,2,4\}, \{4\}, \{1,2,3\}, \{1,2,4\}, \{2,3,4\}, \{1,3,4\}\}$. Therefore (X, Γ_1) is $(R_0)_R$. Now let $Y = \{2,3,4\}$ is subspace of (X, Γ_1) .

Then $\Gamma_1/Y = \{\phi, Y, \{2\}, \{3,4\}, \{2,4\}, \{4\}\}, \Gamma_2/Y = \{\phi, Y, \{3\}, \{2,3\}, \{3,4\}\}$ and it can be verified that $(Y, \Gamma_1/Y, \Gamma_2/Y)$ is bitopological space and $R.O.(Y) = \{\phi, Y, \{2\}, \{3,4\}, \{2,4\}, \{4\}\}$. Therefore $(Y, \Gamma_1/Y)$ is not $(R_0)_R$.

REFERENCES

- 1. Kelly JC. Bitopological spaces proc. London Math. 1963;13:71-89.
- 2. Bcurbaki. General Topology Addision Wesley puplishing co. 1966;part 1.
- 3. Davis AS. Indexed systems of neighborhoods for general topological spaces. The American Mathematical Monthly. 1961 Nov 1;68(9):886-93.
- 4. Levine N. Semi-open sets and semi-continuity in topological spaces. The American Mathematical Monthly. 1963 Jan 1;70(1):36-41.
- 5. Maheshwar SN. On $(R0)_s$ -spaces partugaliaeMathematics. 1975;34:213-217.