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1-INTRODUCTION
The concept of bitopological spaces was initiated by Kelly [1] . Let (X ,1"1 ) 1"2) be a bitopological spaces. For
aset Ac X by A'and A®, we denoted the I", —closure and T, —interior of A fori =1,2. In this work we study

some sort of R —separation properties of topological spaces by using the notion of R —open sets instead of open sets.

2-R -OPEN SETS
Definition(2.1):

A subset A in bitopological space (X ,1"1,1"2) is be termed R —open if there exists an T, -open Osuch that

—,0
O (- A (- O 2 sthe family of all R —open set in bitopological space was not necessary topology on X . The

family of all R —open set in bitopological space (X 7,15 )is denoted by R.O.(X) . It clear that every T, —open is R

—open but the converse is not true. The complement of R —open set will be called a R —closed set.
The following theorems gives some properties of R —open sets .

Theorem(2.2):

0,—,0
Let (X,Fl,rz)be topological space. Let A< X , A is R —open if Ac A2t
Proof:

—50 - 0.—
Let A be R —open set. Then OcAcO™ for some I} —open setO . ButO 2 C A2 and thus
0_201 - A01—201 Hence A C Aol_zo1

Lemma(2.3):

—,0,—,0 —,0
Let(X,Fl,rz)beabitopological space and O € [}, thenO 272t =077
Proof :

—,0 - —,0,— —pm - ~,0,—,0 -0
It is know that O 2 < O 2.theno 2172 =072 =0 Z.Soo 1721 < 0O "% On the other
- 0] —50 0 -0
hand, OcO then O cO™2* gyt O=0" for Oerl .So Oc O™ Hence

- —0,— —,0 —,0,—,0 —,0,-,0 -,0
O2cO Z.Thisimpliesthato O Therefore O 2472t =072
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Theorem(2.4):
Let(X : Fl,Fz) be a bitopological space and B < X . Then B € R.O.(X) if there exist A€ R.O.(X)

suchthat Ac B A
Proof: Obvious.

Theorem(2.5):
Let(X , Fl,rz) be a bitopological space. Let {Aa }aeA be a collection of R —open sets in a bitopological

space X . Then UAa is R —open.
Proof :

—20;
For eah a€A ,we have Fl —open Oa such  that Oa CA@( Coa .Then

Jo. = JA, = Jo, ™ Cj;oa Hence letO = JO, hen O = JA, O™

ae acA ae @ aeA

Theorem(2.6):
Let (X,Fl,l“z) be  bitopological  space.  Then I =int; R.O.(X) where
int, RO(X)=1{0:0 = A% | for some Ac RO/(X).
Proof: Obvious.
Theorem(2.7):
Let AcY < X where X is a bitopological space and Y is a subspace of bitopological space

(X,I,,T,). Lt Ae RO(X) then Ac ROLY) .

Proof:

OCACO_ZOl ., Where O s T, -open in X  ow OCY and  ths
O:OﬂY CAﬂY cY ﬂO_Zol CO_ZYOIY orOC ACO_ZYOIY sinceO:OﬂY ,O is Fl/Y

—openinY and the theorem is proved.

We introduce the following definitions of the R —neighbourhood, R -derived, R -closure and R —interior of a
set which is similar to that of standard neighbourhood ,derived closure and interior .

Definition(2.8):
A setN, < X is said to be R —neighbourhood of a point X € X if there exists a Ae R.O.(X) such that
xe Ac N, .

Theorem(2.9):
Ae R.O-(X ) iff A is R —neighbourhood of each X € A

Proof: Obvious.
Definition(2.10):
A point X€ X is said to be R —limit point of A iff for each U ER.O.(X) , XeU and

U- {X}ﬂ A#£@ . The set of all R —limit points of A is said to be R —derived set of A and is denoted by
R —der(A).
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The following theorems give some properties of R —limit points.

Theorem(2.11):
A is R —closed if f it contains the set of its R —limit points.

Proof: Obvious.
Theorem(2.12):

If A , B by subsets of bitopological space (X ) 1“1,1“2) .Then:
1) If Ac B, then R —der(A)c R —der(B).
2)R—der(A)UR—der(B)c R—der(AUB).
3)R—der(ANB)cR —der(A)N\ R —der(B).
4)R—der(R—der(A))/Ac R—der(A).
5)R —der(AUR —der(A))c AUR—der(A).

Proof :
We prove parts (5) and the others follow directly from definition.

5)  Letxe R—der(AUR —der(A)). 1fXe A, the result is obvious. So let X R —der(A)/A . Then, if
UeRO(X) containing X , U-{x}N(AUR—-der(A)=¢ , ten U—{x}NA=g or
U—-{x}JNR—der(A)=g¢. IfU - {x}NA=¢, then xeR—der(A). 1f U —{x}N R —der(A)= ¢ then
U - {X}ﬂ A= ¢ . Thereforex e R — der(A).

Thus in any case R —der(AU R —der(A))c AUR —der(A).

Definition(2.13):
Let A be a subset of a bitopological space (X,Fl,l“z) ,AUR - der(A) is defined to be the R —closure
of A and is denoted by R — cl (A) .

Theorem(2.14):
Let (X ) Fl ) Fz )be a bitopological space. Let A and B be two subsets of X . Then:
1) 1IfAc B, thenR—cl(A)cR—cl(B) .
2)R-cl(A)JUR—-cl(B)cR—cl(AUB).
3)R—cl(ANB)cR—cl(A)NR—cl(B).
HR—cl(R-cl(A))=R—cl(A).
5) Aisa R —closed iff R —cl (A)z A, R-cl (A) is R -closed .
6) R—cl (A)= N{F,F isR—closedand Ac F} R—cl (A) is the smallest R —closed set containing A .

Proof:
We prove parts (4) and the others follow directly from definition.

#)R—cl(R—cl(A))=R—cl(AUR—der(A)).
=(AUR —der(A))UR —der(AUR —der(A))= AUR—der(A)=R —cl(A).

Definition(2.15):
A point X € X is said to be a R —interior point of A if £ there exist U e R.O.(X)containing X, such that

U < A . Thesetof all R —interior of A is said to be the R —interior of A and is denoted by R — int(A) .
The following theorem gives some properties of R —interior sets.
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Theorem(2.16):
Let (X 7,15 )be a bitopological space. Let A and B be two subsets of X . Then:
1) R —intis R -open.
2) R- int(A))is the largest R -open set contained in A .
3)AisR -openiff A=R — int(A).
#)R—int(R—int(A))=R —int(A).
5)1f Ac B then R—int(A)c R —int(B).
6)R—int(A)UR —int(A)c R—int(AUB).
7R—int(ANB)c R—int(A)\R —int(B).

Proof:
We prove parts (1),(2) and the others follow directly from definition .

1) Let Xe R— int(A) then U = A for some U € RO.(X ) containing X .Also y €U then y € R—int(A),
therefore X eU < R —int(A).Hence R — int(A) is R —neighbourhood of X .

There by theorem 2.9, R — int(A) is R -open.

2) Let Ve R.C.(X) , VcCA . Then yeV .implies that ye A ,s0 that yeR— int(A) Therefore
V cR-int(A).

;. R—=T. spaces i=0,12.

In this section we introduce (R -T, )spaces, i =0,1,2 and study some of their properties.

Definition(3.1):
Let (X ) Fl ) Fz ) be a bitopological space .
a) (X , Fl)is called R —T0 iff for each X, Y € X such that X # Y , there exists a R -open set in X containing exactly

one of them.
b) (X, Fl)is called R — T, iff for each X, y € X such that X # Y , there exists a R -open set V, containing X but not

y and a R -open set V2 containing Y butnotX .
c) (X , Fl)is called R —T, or R -Hausdoffiff for each X , y € X such that X # Y, therefore exists disjoint R -open sets
V, andV,,XxeV,and y €V,.

The following theorems gives properties of(R -T, )spaces, 1=012.

Theorem(3.2):

Let (X ) Fl , Fz ) be a bitopological space.
1) 15(X, T} ) is Ty then (X, T, )isR—T,.
2)If(X,Fl) isT, then (X,Fl)is R-T,.
)If(X,I) isT, then (X,I})isR—T,.

Proof:
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We prove parts (3) and the others similar prove part (3). Suppose that (X ) Fl) isT2 and X,y e X suchthatX#Y ,

then there exists disjoint Fl —open setsV, andV,, X EV1 and y eVZ. Now since every Fl —open is R -open. Then

Theorem(3.3):

Let (X , Fl , Fz ) be a bitopological space.
) 15(X, ) isR =T, then (X,T})isR—T,.
(X, T;,) isR—T, then (X,I})isR—T,.
Proof: Obvious.

Theorem(3.4):
Let (X 5,15 ) be a bitopological space . Then (X, T, )is R — T, iff for each X € X , R — cl{x} = {x}.
Proof :

Suppose that(X , Fl) isR—T,, and suppose y € {X}C . Then X # Yand by R —T,, then existV € R.O.(X) such
thaty €V butXgV . HenceyeV c {X}C . Therefore by theorem 2.16 part (3) {X}C R -open. Thus {X} R —closed
by theorem 2.14 part (5), R — cl {X}Z {X} .The converse is clear.

Corollary(3.5):
Let (X 7,15 ) be a bitopological space. Then (X, T, )is R — T, iff for each X € X ,R - der{x} =9,
Proof: Obvious.

Theorem(3.6):
Let(X,Fl,FZ) be a bitopological space. Then (X, T, )is R —T,iff for each X, y € X such that X # Y

there exists a R -open setV suchthatX €V and Y ¢ R—cl (V)
Proof:
Let(X,T,)isR—T, and X , y € X such that X# Y . Then there exist disjoint R -open sets\V and U such that

xeV andyeU . 1fyeR—dl (V) this contradicts thatV andU disjoint. Hence Y & R —Cl (V) the converse is
clear .

Theorem(3.7) [2]:
Let (X : F) be a topological space and A€ " .Then A[1B < A[ B for every subset B of X .

Theorem(3.8):

Let(X,Fl,FZ) be a bitopological space. LetV € RO.(X )andY €T, .thenV NY € RO.Y) .
Proof :

OcV CO_ZOl,WhereO is T, —openin X Thus O ﬂY cV ﬂY CO_Zol ﬂY .
NOWV ﬂY cQO™ mY and by theorem 3.7V (Y cONY”* Henee VY COﬂYZY ,

<~ 2v Oy
(where (_ZY )is the I', —closure operator Y ). It follow that O ﬂY cV ﬂY cO ﬂY (where

(Oly ) is the I’ —interior operator in Y ).ThereforeV ﬂY € R-O-(Y) :
Theorem(3.9):
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Let (X 7,15 ) be a bitopological space. Then
1) Every ", —open subspace of R — T spaceisR —Tj, .
2)Every I, —open subspace of R — T, spaceisR—T, .

3)Every I', —open subspace of R — T, spaceisR —T, .
Proof:
We prove part (3) and the others similar prove (3).

3)Let(X , Fl) be R—T,. LetX and Y by two points of the Fg —open subspace Y of X . IfV, andV, are disjoint R -
open sets in X of X and Y , respectively, then by theorem 3.8 V, (1Y and V, (Y are disjoint R —open sets of X
andinY .

4- (RO )R —SPACES

In this section we introduce (Ro )R —space and study some of their properties.

Definition(4.1):
Let (X 17,15 ) be a bitopological space. (X : Fl)ls called (RO )R if for each V € R.O,(X )and each X eV
R—cl{x}cV.
Since a space (X,Fl) is R — T, iff the singletons are R —closed (theorem 3.4), it is clear that every R — T, space is
(Ro )e.
Definition(4.2) [3]:
A Topological space (X , F) is called (Ro ) iff foreachU €T and each X €U ,@C U.

Theorem(4.3):
Let (X D % ) be a bitopological space if (X, T, )is Ry, then (X, I} ) is (Ro )R .
Proof: Obvious.
Definition(4.4) [5]:
A Topological space (X , F) is called (Ro)s iff for each semi openU and each X €U , scl {X}C U, where
scl {X} denotes the semi closure of {X} .

Definition(4.5):
Let (X,l“l,l"z) be a bitopologicalspace, the R of X is defined to be the set

R—Ker{x}={y:xeR—cl{y}}.

Theorem(4.6):
Let (X : 1“1,1“2) be a bitopological space, then (X, I ) is R —T,iff itis R — T, and (Ro )R :
Proof:
suppose that (X, T} )isR =T, and (Ro )R. LetX,y e X such thatX# Y . Since (X, T} ) is R =Ty it follow that

there exist R —open setV such that X eV and Y ¢V and since (X,T) is (Ro )R it follow that R — cl{x} V.
Hencey € (R —cl {X})c Therefore (X : Fl) is R —T, . The converse is clear.
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Theorem(4.7):
Let(X,Fl,FZ) be a bitopologicalspace, then (X,Fl) is (Ro )R iff for every R —closed set F and X ¢ F |
there exists a R —open set V suchthat F <V , X ¢V .
Proof:
Obvious.
Definition(4.8) [4]:
Let (X,F) be a bitopological space. A Subset A of X is called semi open iff for someO0,0c AcO,

where O denotes the closure of O.

Definition(4.9) [5]:
Let(X,F) be a bitopologicalspace, the semi of X is defined to be the sKer{x}: {y :x e scl {y}} where
scl {y} denotes the semi closure of {y} :

Theorem(4.10):
Let (X ,Fl,rz) be a bitopologicalspace. Then for X , ye X ,R— Ker{x};t R-— Ker{y} iff
R—cl{x}=R—cl{y}.
Proof: Obvious.
Theorem(4.11):
Let (X ) D % )be a bitopological space, the following are equivalent:
a)(X,Fl)is(Ro )R -
b) For every X € X , R —cl{x} = R — Ker{x}.
) IfF is R—closedin X ,then F = {V :V is R—open,F =V }.
dIfV is R-openin X ,thenV =U {F :Fis R —closed, F =V }.
e) For any nonempty set A and R —open set V in X such that A[1V # ¢ , there exists a R —closed set F for which
FcVadANF =¢.
f) Forany R —closed set F in X and X ¢ F . R—CI{X}ﬂ F=¢.

Proof:
(a— (b): Lety e R—cl {X}.IetV be any R —opensetX €V . Nowby (a), y €V . This givesthat X € R — cl(y) .

Therefor y € R — Ker(x).
(b) = (c): Suppose X does not belong to the R —closed F . And F°isr —openand X € F° oLet yeR-cl {X}

Then by (b) X € R—cl {y} Therefore, every R —open set which contains X , contains Y .Hence, R—cl {X} cF C.

Now (R —cl {X})C R —openset containing F to which X does not belong. Consequently. X does not belong to the
intersection of all the R —open sets which contain F .Thus (c) hold

(c)— (d): LetV is R —opensetsin X , then V “is R —closedset. Now by ( ¢) ,

V°=N{u:uisR -open,V° cu }.ThereforeV =U {u® :u®is R —closed,u® <V }.

(d)— (e): LetV be R —open and A is non-empty such that A(1V = ¢ . Let X € AV .by (d) there exists aR —
closed F suchthatX € F <V clearly, AN F # ¢.
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(e)— (f): Let F beaR —closed setand X & F . Then F ¢ is R —open and {X}ﬂ F®=¢ .By(e), there existsa R —
closed set H such that H ﬂ{X}# ¢ and H<F° . Therefore R—Cl{x}c F® consequently,
FNR-cl{x}=¢.

()= (a): Let F be R —closed set in X andX ¢ F,R—cl {X}ﬂ F=¢. The (R —cl {X})C is R —open set such
that F  (R—cl{x})* x & (R —cl {X})C therefore by theorem 4.4 (X , Fl) is (Ro )R :

Theorem(4.12):
Let (X,l“l,l"z) be bitopological space if for every point X of a (RO)R space (X,Fl),

R—cl{x}NR —ker{x}={x} then R —cl{x}={x} .

Proof: Obvious.

Theorem(4.13):
Let (X : Fl,rz) be bitopological space if (X : Fl) is an (R, )x space and X , ye X , then
R—cl{x}=R—cl{y}orR—cl{x} R —cl{y}=¢ .
Proof:
suppose R —cl{x}R—cl{y}# ¢ Letac R —cl{x}R—cl{y}.Then R —cl{a}c R—cl{x} R —cl{y} .
Now by theorem (2.7) part (b)
acR—cl{x}—>aecR—ker{x}
—xeR—cl{a}
—R—c{xjcR—cl{a}
—R-—cl{xjcR—cl{y}
Similarly
aeR-c{y}>R-cl{y}c R-cl{x}
Consequently, R —cl {x} =R-—cl {y}

Theorem(4.14):
Let (X ,Fl,FZ) be bitopological space and Y is I', —open. Then R—cl, Ac R—cl, A (where
R —cl, A isthe R —closure operator inY")

Theorem(4.15):
Let (X,l“l,l“z) be bitopological space .then every I’ —open and I", —open subspace of (RO)R space is

(R )s -
Proof:
LetY I';—open andI",—open subspace of (Ro )R space (X , Fl) and Ae R.O.(Y )and X € A. Now to prove that there

is BeRO(x)>A=BNY.
N
Since Ae R.O.(Y),then there is an T, /Y open setU inY such thatd < AcU 7 also there isW el such
n g 2X 01X
thatW (Y =U .LetB=AUW .thenB[Y = A . Now, we showthatW cBcW .
r g 2% Oix 2y Oy
ObviouslyW < B . Lett € B .Thent eW orteAlfteW thent €W iHteA teU and

2x O1x

since Y T’ —open set ot eW Therefore B € R.O.(X) . Again, to prove that (Y,Fl /Y) (Ro )R space .
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Since. A=B[1Y o XeB and XeY . Hence R—C|X{X}CB and R—cl {X}CY .1t follows that
R—cl, {X}C A . Then by theorem 2.14 R — cl,, {x} = A .Therefore (Y, T} /Y )is (Ro )R :

5-EXAMPLES
In this section we shall that the converse of the above theorems not true.

Remark(5.1):

The family of all R —open sets in bitopological space was not necessary topology on X as shown by the
following example .
Example(5.2):

Let X ={1,2,3} and T, = {X, ¢, {1}, {2}, 1.2}, L3}}, T, = {6, X, {2}} . Then it can be verified that
(X 17,15 )is bitopological space and RO.(X )= {g, X, {1},{2}, 1.3}, {2,3}, 1,2}} .
Remark(5.3):

The reverse inclusion in the theorem 2.12 parts (2),(3) not true as shown by the following examples .
Example(5.4):

Let X 2{1,2,3} and I ={X,¢, {1}, {2}, {1,2}}, I, ={¢, X,{ZLZ}} . Then it can be verified that
(X,T,,T, )is bitopological space and RO(X )={g, X, {1}, {2}, 1.2}, 1,3}, 2,3} take A={2},B={L3}
Then R—der(A)=¢ R— der( ) @ Also
R—der(AUB)=R—der({1,2,3})= {3} R—der(A)UR —der(B)=¢ .

Example(5.5):
’ IEet )X ={1,2,3} and T ={X,¢, {1}, {2}, {1,2}} {¢ X, {1 2} {3}} Then it can be verified that
(X,l“l,l“z) is bitopological space and R.O.(X)—{¢,X,{ }{ }{ }} Take A= { } B:{2,3}. Then

R —der(A)=1{3},R — der(B)= {3} Therefore R — der(A) N R — der(B)= {3} ¢ R —der(AN B)=¢.
Remark(5.6):

The reverse inclusion in theorem 2.14 parts (2),(3) are not true as shown by the following example .
Example(5.7):

Let X ={1,2,3}and T, = {X, 4, {1}, (2.3}, T, = {X, 4, {,2}} . Then it can be verified that (X, T}, T, )
is bitopological space and RO.(X)z{X,¢, {1}, {2,3}, {1,3}, {ZLZ}} . Take 2{} ={ } .Then
R—cl(A)={1},R—cl(B)={2} Therefore
R—cl(AUB)=R—cl({,2}))=X ¢ R—cl(A)UR—cl(B)={1,2} . Take {23} ={1,2} .The
R—Cl(A) { }R Cl( ):{1 } and ANB= {Z}R—Cl( {} Therefore
R—cl(A)NR-cl(B)={2,3} R-cl(ANB)={2}.

Remark(5.8):

It is obvious that every I’ —openis R —open but the converse is not true as shown by the following example.
Example(5.9):

Consider (X 7,15 )defined in example 5.4 take A= {1,3} is R —open set but not T, ~open .

Remark(5.10):
The reverse inclusion in theorem 2.16 parts 6, 7 are not true as shown by the following example.
Example(5.11):

Consider (X d7, Fz) defined in example 5.4 take A = {B}B = {2}
Then R-— int(A): ¢ R— int(B) = {2} , but R-— int(A U B) = {2,3} Therefore
R—int(AUB)=1{2,3} R—int(A)UR —int(B)={2}. Consider (X,Fl,l“z) defined in example 5.7 ,take
A={3/B={2,3} Then R—int(A)={3},R—int(B)={2,3} but R—int(ANB)=¢ Therefore
R—int(A)NR—int(B)= {3}z R—int(ANB)=¢ .
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Remark(5.12):
The converse of theorem 3.2 are not true as shown by the following examples .
Example(5.13):

Let X ={1,2,3}and T, = {X, 4, I}, T, = {X, 4, 1,31} . Then it can be verified that (X,T},T,) is
bitopological space and R.O.(X) = {X , @, {1}, {1,2}, {1,3}} Therefore (X , Fl) isa R =T, space, butitisnot T,
Example(5.14):

Let X ={1,2,3}and T, = {X, ¢, {1}, {2}, 1,2}, {2,3}, T, = {X, 4, {L3}}. Then it can be verified that
(X,FI,FZ) is bitopological space and R.O.(X)z{X,¢, {1}, {2}, {1,2}, {2,3}, {1,3}}. Therefore (X,Fl) is a

R — T, space, butitisnot T, and (X, T} )is R —T,space, butitis notT, .
Remark(5.15):

The converses theorem 3.3 is not true as shown by the following examples.
Example(5.16):

Consider (X 5,15 ) defined in examples 5.13 (X, T, ) isa R — Ty space, but itisnot R — T, .
Example(5.17):

Let X be infinite set and I'; = confinite topology on X , I', =discrete topology on X . Then it can be
verified that (X ,rl,r2)bitopological space and R.O.(X)zl“l . Therefore (X,Fl) is a R —T, space but is not
R-T,.

Remark(5.18):

The property of R- TO 'R —T1 and R —T2 are not hereditary property as shown by the following .

Example(5.19):

Let X = {1,2,3,4} and
L ={X,¢ {},{2}, {3}, 1.2}, 1.3}, {2,3}, 1.2,3}, {2.4}, {L.2,4}, {2,3,4}},T, = {X, 4, 1,3}, {1,2,4}, {1}}. Then
it can be verified that (X ) Fl ) Fz ) is bitopological space and
Ro(x)=1{X,¢ {1}, {2}, 8}, 1.2}, 13}, {2.3}, 1,23}, {2,4}, 1,2,4}, {2,3,4}, 1,34}, {L.4}} . Therefore

(X,I,) is R=T, and R=T, . Now let Y= {2,3,4} is I, —open subspace of (X,T}) .
LY =, 6,283 2314243} . T, /Y = {Y, 4,83}, {2,4}) Then it can be verified (Y, T, T, )bitopological
space and R.O.(Y)z {Y , @, {2}, {3}, {2,3}, {2,4}}. Therefore (Y 1 /Y) isnot R—T,andalsonotR—T, .
Example(5.20):

i Iit ;)<) =123 4}and T, ={X, ¢, {1}, {2}, 3}, 112}, {13},{2.3}, {L2.3}}, T, = {X, 4, {L.2,4}} . Then it
can be verified that (X 17,15 ) is bitopological space and
Ro.(x)={X,¢,{},{2}, {3}, 1.2}, 1,3}, {2,3}, {1.2,3}, 1.4}, {1.3.4}, {1.2,4}, {2,4][2,3,4]} . Therefore (X,T})
is R—T, andR —T,. Now, letY = {2,3,4} is subspace of (X, T}, ), then R0O(Y )=1{Y,4,{2}, {3},{2,3}, {2,4}} .

Therefore (Y 13 /Y) isnot R—T,andalsonot R—T,.
Example(5.21):

Let X = {1,2,3}and I = {X , &, {1},{2,3}}, I,= {X &, {1,3}}. Then it can be verified that (X , 1“1,1“2)
is bitopological space and R.O.(X)z {X , &, {l}, {1,2}, {1,3}, {2,3}} . Therefore (X,Fl) is R=T, . Now, let
Y ={2,3} is subspace of (X,Fl) then T, /Y = {Y,¢}, r,/Y = {Y,¢, {3}} and it can be verified that
(Y,I,/Y,T,/Y) is bitopological space and R.0.Y )= {Y, #} . Therefore (Y, T} /Y )isnotR —Tj.
Remark(5.22):

The axiom of R — T, and (Ro )R are independent as shown by the following examples.
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Example(5.23):

Let X ={1,2,3}and T, = {X, ¢, {1}, {2,3}}, T, = {X, &, {2,3}}. Then it can be verified that(X,rl,rz)
is bitopological space and R.O.(X) ( {1} {2 }) Therefore (X I; ) is a(Ro )R ,butitisnot R—=T; .
Example(5.24):

Let X = {1,2,3} and I = { , @, {l}, 2},{ }}, I, ={ , @, { }} . Then it can be verified that
(X ,1“1,1“2) is bitopological space and R.0(X)= (X, @, {L}, {2}, {L,2}) .Therefore (X, )isR — T, ,but it is not
(Ro)g -
Remark(5.25):

It is obvious that every space R —T,is (RO)R , but the converse is not true as shown by the following

example.
Example(5.26):

Consider (X 7,15 ) defined in example 5.23 (X, T, ) isa(R, ), butitisnotR —T, .
Remark(5.27):

The axiom of (RO )s and (RO )R are independent as shown by the following examples.
Example(5.28)

Let X = {1,2,3} and T, = {X, ¢, {1}, {2}, L2}, T, = {X, &, {3}} .then it can be verified that (X : 1“1,1“2)
is bitopological space and R.O.(X) = {X , @, {l}, {ZLZ}}.
Therefore (X, T, )is (RO )S butitis not (R, )R :
Example(5.29):

et X={23} ad T, ={X,4{,02},{23, 2}, ={X,4{L3}} . Then
R.O.(X ) = {X , @, {l}, {1,2}, {2,3}, {2}, {1,3}}. Therefore (X 1 ) is (Ro )R ,but it is not (RO )S .
Remark(5.30):

The axiom of S ker{x}and R— ker{x} are independent as shown by the following examples .
Example(5.31):

Let X = {1,2,3} and I} = {X , @, {l}, {2,3}}, I,= {X , @, {2,3}} . Then it can be verified that

(X ,Fl , Fz ) is  bitopological ~ space  and R.O.(X ) = {X , @, {1}, {2,3}, {1,2}, {1,3}} . Therefore
sker{2}={2,3}# R —ker{2}=1{2}.
Example(5.32):

Let X ={1,2,3}and T, = {X, ¢, {1}, {2}, L.2}}, T, { P,
X

{ }{ }} . Then it can be verified that

(X I, Fz) is  bitopological ~ space  and ( ) {X { } { }, {1,2}} . Therefore
R—ker{3}={1,2,3}= X = sker{3}={3}.
Remark(5.33):

The converse of theorem 4.3 are not true as shown by the following example.
Example(5.34):

Consider (X ) D % ) defined in example 5.29 (X, T ) is (Ro )R , but it is not (Ro )
Remark(5.35):
The property of (Ro )R is not hereditary property as shown by the following examples.
Example(5.36):
Let X ={1,2,3fand T}, = {X, ¢, {2.3}}, 3}, {1}, L3}, T, ={X, ¢, {L.3}}.
Then R.O.(X )= {X , @, {2,3}, {3}, {1}, {1,3}, {1,2}}. Therefore (X , Fl)is (Ro )R . Now, letY = {2,3} is subspace of
(X , Fl), then R.O.(Y)z {Y , P, {3}} therefore (Y 1 /Y) is not(RO )R .
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Example(5.37):

Let X ={1,2,34} and T} ={X,0, {12}, {34}, {L,2,4},{4}},T, ={X, 4, {13}, {1,2,3}, {1,3,4}} .Then

RO.(X)=1{X,¢ 11,2}, 134}, 0,2,4}, {4}, 11,2,3}, {1.2,4}, {2,3,4}, 11,3,4}}. Therefore (X, T} )is(R; ), . Now let
Y = {2,3,4} is subspace of(X , Fl) .

Then T, /Y ={¢,Y, {2}, {3,4}, {2,4}, {4}}, /Y= {¢,Y, {3}, {2,3}, {3,4}} and it can be verified that

(Y,Fl/Y I, /Y) is bitopological space and R.O.(Y)z {¢,Y, {2}, {3,4}, {2,4}, {4}} Therefore (Y,Fl/Y)is not

(RO )R '
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