Scholars Journal of Physics, Mathematics and Statistics

Sch. J. Phys. Math. Stat. 2016; 3(4):139-143 ©Scholars Academic and Scientific Publishers (SAS Publishers) (An International Publisher for Academic and Scientific Resources)

Infinite-Dimensional Conservation Law and Liouville Integrability of Free Vibration Equation of a Beam

Chun-yan Wang*, Hua Xin

Department of Mathematics, Northeast Petroleum University, Daqing 163318, China

*Corresponding Author: Chun-yan Wang Email: <u>chunyanmyra@163.com</u>

Abstract: According to the infinite-dimensional Liouville theorem, we give the infinite-dimensional conservation law and the Liouville integrability of a forth order free vibration equation of a beam by two cases including discrete spectrum and continuous spectrum. This equation can be considered as the infinite-dimensional Neumann models without any constraints.

Keywords: Hamilton-Jacobi theory, Liouville integrability, beam vibration equation, infinite-dimensional Neumann model

INTRODUCTION

It is well-known that the finite-dimensional Liouville theorem [5] means that if there exist n independent first integrals in evolution, and the liouville integrability is just based on the Liouville theorem [1]. For a given infinite dimensional Hamilton system, a necessary condition to make such system integrable is that it has an infinity number of first integrals. However, Calogero [2] pointed out that due to the ambiguities in the counting of infinities, this condition is not sufficient. A natural problem is how many constants of motion are sufficient to ensure that such system is solvable. In [3], Liu proved an infinite-dimensional liouville theorem based on the infinite-dimensional Hamilton-Jacobi theory, and gave a definition of the infinite-dimensional Liouville integrability. In some degree, Liu's theorems and definitions clarify some relations between the first integrals and solvability of infinite-dimensional Hamiltonian systems. As example, Liu [3] discussed the second order wave equation and Neumann model. For other respects of integrable systems, we can see the Refs [4-7].

In the present paper, our aim is to study a model of the forth order vibration equation of a beam, and obtain its infinite-dimensional Liouville integrability. We discuss the problem by two cases: one is to consider the discrete spectrum, another is continuous spectrum. We construct the complete set of first integrals and prove that these Hamitonian systems are the Liouville integrable.

INFINITE-DIMENSIONAL LIOUVILLE THEOREM AND LIOUVILLE INTEGRABILITY

Consider the case of countably infinite variables. $P = (p_1, \dots, p_n, \dots)$ and $Q = (q_1, \dots, q_n, \dots)$ are a pair of

canonical variables. Here, H = H(P, Q, t) is the Hamilton function. The Hamilton canonical equations are given by

$$\frac{dq_i}{dt} = \frac{\partial H}{\partial p_i},\tag{1}$$

$$\frac{dp_i}{dt} = -\frac{\partial H}{\partial q_i},\tag{2}$$

for $i = 1, 2, \dots$ *S* denotes the action function which takes its value on the classical path. We have $p_i = \frac{\partial S}{\partial q_i}$ for $i = 1, 2, \dots$ and denote them by $P = \frac{\partial S}{\partial Q}$ for simplicity. We write the Hamilton-Jacobi equation as follows

$$\frac{\partial S}{\partial t} = -H(Q, \frac{\partial S}{\partial Q}, t). \tag{3}$$

If there exists a general integral $S = S(Q, \alpha)$ for the H-J equation, where $\alpha = (\alpha_1, \alpha_2, \cdots)$, we can solve the Hamilton canonical equation. A crucial step is to solve out $Q = Q(t, \alpha, \beta)$ from the following system of equations

$$\frac{\partial S}{\partial \alpha_i} = \beta_i,\tag{4}$$

for $i = 1, 2, \cdots$, where $\beta = (\beta_1, \beta_2, \cdots)$. In the finite dimensional case, this condition can be represented as $\det \frac{\partial^2 S}{\partial q_i \alpha_j} \neq 0$. In the infinite dimensional case, we use the invertible property of the operator $\frac{\partial^2 S}{\partial q_i \alpha_j}$ instead of $\det \frac{\partial^2 S}{\partial q_i \alpha_j} \neq 0$ (see,[3]). Liu[3] proved the following results.

Theorem 1[3]. If the operator $\frac{\partial^2 S}{\partial q_i \alpha_j}$ is invertible,

$$Q = Q(t, \alpha, \beta), \tag{5}$$

$$P = P(t, \alpha, \beta), \tag{6}$$

are the solutions of the Hamilton canonical equations (1) and (2).

Theorem 2[3]. Suppose that the Hamilton system has an infinite number of first integrals (or motion constants) $f_i(P,Q,t) = \alpha_i, i = 1, 2, \cdots$ (7)

If these first integrals satisfy the following conditions, the Hamilton system is integrable.

1⁰. $[f_i, f_j] = 0$, where $[f_i, f_j] = \sum_{k=1}^{+\infty} \left(\frac{\partial f_i}{\partial q_k} \frac{\partial f_j}{\partial p_k} - \frac{\partial f_i}{\partial p_k} \frac{\partial f_j}{\partial q_k}\right)$ is the Poisson bracket.

 2^{0} . The operator $\left(\frac{\partial f_{i}}{\partial p_{j}}\right)$ is invertible, where $\left(\frac{\partial f_{i}}{\partial p_{j}}\right)$ denotes the infinite-dimensional matrix with the general element $\frac{\partial f_{i}}{\partial p_{j}}$. Based on the above theorem, Liu[3] gave the following definitions.

Definition 1. An infinite number of motion constants (or first integrals) (13) is called a complete set of motion constants if the condition 2^0 is satisfied.

Definition 2. If a Hamilton system has a complete set of motion constants, the system is called to possess the Liouville integrability or to be Liouville integrable.

THE LIOUVILLE INTEGRABILITY OF THE FREE VIBRATION EQUATION OF A BEAM: DISCRETE SPECTRUM

We consider free vibrations of a beam. When the influence of the dynamical axial force $\frac{ES}{2l} w_{xx} \int_0^l w_x^2 dx$ is neglected, the governing equation of free vibration is given by

$$ELw_{xxxx} + \rho Sw_{tt} = 0, \tag{8}$$

where w is the lateral displacement, E is the Young's modulus, ρ is the density of the beam, S is the area of the cross section, and I is the moment of inertia of the cross section. Furthermore, by re-scaling of t, x and w, we get a forth order equation (see, for example, [7,8])

$$u_{tt} + u_{xxxx} = 0, \tag{9}$$

with the corresponding initial and boundary conditions

$$u(0,t) = u(2\pi,t) = 0,$$
(10)

$$u(x,0) = \psi(t), u_t(0,x) = \varphi(t).$$
(11)

This is an infinite-dimensional problem, and the corresponding Lagrangian function and Hamilton function are

$$L = \frac{1}{2} \int_0^{2\pi} \left((u_t)^2 - (u_{xx})^2 \right) dx,$$
(12)

and

$$H = \frac{1}{2} \int_0^{2\pi} \left((u_t)^2 + (u_{xx})^2 \right) dx.$$
(13)

Let q = u and $p = u_t$ be a pair of canonical variables. Then Hamiltonian function is given as

$$H(p,q) = \frac{1}{2} \int_0^{2\pi} (p^2 + (q_{xx})^2) dx.$$
(14)

Therefore the Hamilton-Jacobi equation is given by

$$\frac{\partial S}{\partial t} = -\frac{1}{2} \int_0^{2\pi} \left\{ \left(\frac{\delta S}{\delta q} \right)^2 + \left(q_{xx} \right)^2 \right\} dx \tag{15}$$

In order to use the method of the separation of variables, we take the Fourier transformation of u with respect to x,

$$u(x,t) = \sum_{n=1}^{+\infty} a_n(t) \sin(nx),$$
(16)

and then

$$u_t(x,t) = \sum_{n=1}^{+\infty} a'_n(t) \sin(nx).$$
 (17)

Hence the Hamiltonian function becomes

$$H = \frac{1}{2} \sum_{n=1}^{+\infty} \{ a'_n^2(t) + n^4 a_n^2(t) \}.$$
 (18)

Taking the action as

$$S(a_1(t), a_2(t), \dots) = S_0(t) + \sum_{n=1}^{+\infty} S_n(a_n),$$
(19)

and substituting it into Hamilton-Jacobi equation yield

$$\left(\frac{dS_n}{da_n}\right)^2 + n^4 a_n^2 = E_n, n = 1, 2, \cdots,$$
(20)

where $E_n s$ are constants and satisfy the following condition

$$\sum_{n=1}^{+\infty} E_n = 2E.$$
(21)

Solving Eq.(20), we get

$$S_{n} = \int \sqrt{E_{n} - n^{4} a_{n}^{2}} da_{n}.$$
 (22)

According to the calculus, we can solve out the solutions of a_n , for $n = 1, 2, \dots$. Hence we can use the Hamilton-Jacobi theory to solve the beam free vibration problem.

Next we obtain the L-integrability of the free vibration of a beam. We first give an infinite number of first integrals

$$f_n(u,u_t) = \frac{1}{2}n^4 \left(\int_0^{2\pi} u(x,t)\sin(nx)dx\right)^2 + \frac{1}{2} \left(\int_0^{2\pi} u_t(x,t)\sin(nx)dx\right)^2,$$
(23)

for $n = 1, 2, \dots$. In fact, we have

$$\frac{d}{dt}f_n(u,u_t) = n^4 \int_0^{2\pi} u(x,t)\sin(nx)dx \int_0^{2\pi} u_t(x,t)\sin(nx)dx$$
(24)

$$+\int_{0}^{2\pi} u_t(x,t)\sin(nx)dx\int_{0}^{2\pi} u_{tt}(x,t)\sin(nx)dx = 0,$$
(25)

where we use $u_{tt} + u_{xxxx} = 0$ and integration by part in last step. Rewriting the first integrals in terms of variables $a_n s$, we have

$$f_n = \frac{1}{2} (a'_n^2(t) + n^4 a_n^2(t)), n = 1, 2, \cdots.$$
(26)

Therefore, every f_n is just the energy of the *n* th mode. T

Now we prove that these first integrals constitute a complete set. Indeed, in this case, the canonical variables are $q_n = a_n$ and $p_n = a'_n$. From the set of first integrals represented by

$$f_n = \frac{1}{2} \left(p_n^2(t) + n^4 q_n^2(t) \right) \tag{27}$$

in terms of q_n and p_n , we can solve out the $p_n s$. It follows that this is a complete set. On the other hand, we have

$$\frac{\partial f_n}{\partial q_m} = \delta mn,\tag{28}$$

where δmn is the Dirac sign in infinite dimension, that is, the operator (matrix) $\left(\frac{\partial f_n}{\partial q_m}\right)$ is invertible. It is easy to prove $[f_n, f_m] = 0$. According to theorem 2, the beam free vibration problem is the infinite-dimensional liouville integrable. If we remove some first integrals in the set, for example, f_1 , the set will be not complete, since we can't solve out p_1 .

THE LIOUVILLE INTEGRABILITY OF THE FREE VIBRATION OF A BEAM: CONTINUOUS SPECTRUM

We consider the Cauchy problem for an infinite vibrating beam

$$u_{tt} + u_{xxxx} = 0, \tag{29}$$

$$u(-\infty,t) = u(+\infty,t) = 0,$$
 (30)

$$u(x,0) = u_0(x), u_t(x,0) = u_1(x).$$
(31)

We take the Fourier transformation of u(x,t) with respect to the variable x,

$$u(x,t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} a(y,t) \sin(xy) dy.$$
 (32)

It is easy to prove that

$$f(y,t) = \frac{1}{2} \{ a_t^{2}(y,t) + y^4 a^2(y,t) \},$$
(33)

is a first integral for every y, that is, $\frac{d}{dt} f(y,t) = 0$.

Another form is

$$f(y,t) = \frac{1}{2} \{ (\frac{1}{2\pi} \int_{-\infty}^{+\infty} u_t(x,t) \sin(xy) dx)^2 + y^4 (\frac{1}{2\pi} \int_{-\infty}^{+\infty} u(x,t) \sin(xy) dx)^2 \}.$$
 (34)

This first integral is just the energy of the y-th mode. They constitute a set of the first integrals with uncountably infinite elements.

DISCUSSION

By the infinite-dimensional Liouville theorem, we prove that the free vibration problems of a beam are infinitedimensional Liouville integrable by two cases including discrete spectrum and continuous spectrum. For the infinitedimensional Neumann models, as pointed out by Liu [3], if we consider the constraints on the solution u, we will deal with the infinite genus Riemann surfaces. Our models can be considered as the trivial infinite-dimensional Neumann models without any constraints.

Chun-yan Wang et al.; Sch. J. Phys. Math. Stat., 2016; Vol-3; Issue-4 (Sep-Nov); pp-139-143

ACKNOWLEDGMENTS

This project is supported by Natural Science Foundation of Heilongjiang Province of China under Grant No.A201308.

REFERENCES

- 1. Arnold VI. Mathematical methods of classical mechanics. Translated from the 1974 Russian original by K. Vogtmann and A. Weinstein. Corrected reprint of the second (1989) edition. Graduate Texts in Mathematics.;60:229-34.
- Calogero F. Integrable systems: overview. In Encyclopaedia of mathematical physics. Vol 3, Integrable system; Classical, conformal and topological field theory. J. P. Francoise, G. L Naber, Tsou Sheung Tsun (Eds). Elsvier Inc. 2007.
- 3. Liu CS. How many first integrals imply integrability in infinite-dimensional Hamilton system. Reports on Mathematical Physics. 2011 Feb 28;67(1):109-23.
- 4. Magri F. A simple model of the integrable Hamiltonian equation. Journal of Mathematical Physics. 1978 May 1;19(5):1156-62.
- 5. Wadati M. Invariances and Conservation Laws of the Korteweg-de Vries Equation. Studies in Applied Mathematics. 1978 Oct 1;59(2):153-86.
- 6. Magri F. Eight lectures on integrable systems. In: Kosmann-Schwarzbach Y et al.(eds.) Integrability of nonlinear systems. Lectures notes in Physics. Berlin:Springer .1996;495: 256-296.
- 7. Andrianov IV, Danishevs'kyy VV. Asymptotic approach for non-linear periodical vibrations of continuous structures. Journal of Sound and Vibration. 2002 Jan 17;249(3):465-81.
- 8. Andrianov IV, Awrejcewicz J. Analysis of jump phenomena using Padé approximations. Journal of sound and vibration. 2003 Feb 20;260(3):577-88.