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Abstract: According to the infinite-dimensional Liouville theorem, we give the infinite-dimensional conservation law 

and the Liouville integrability of a forth order free vibration equation of a beam by two cases including discrete spectrum 

and continuous spectrum. This equation can be considered as the infinite-dimensional Neumann models without any 

constraints. 
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INTRODUCTION 

It is well-known that the finite-dimensional Liouville theorem [5] means that if there exist n  independent first 

integrals in evolution, and the liouville integrability is just based on the Liouville theorem [1]. For a given infinite 

dimensional Hamilton system, a necessary condition to make such system integrable is that it has an infinity number of 

first integrals. However, Calogero [2] pointed out that due to the ambiguities in the counting of infinities, this condition is 

not sufficient. A natural problem is how many constants of motion are sufficient to ensure that such system is solvable. In 

[3], Liu proved an infinite-dimensional liouville theorem based on the infinite-dimensional Hamilton-Jacobi theory, and 

gave a definition of the infinite-dimensional Liouville integrability. In some degree, Liu’s theorems and definitions 

clarify some relations between the first integrals and solvability of infinite-dimensional Hamitonian systems. As 

example, Liu [3] discussed the second order wave equation and Neumann model. For other respects of integrable 

systems, we can see the Refs [4-7].  

 

In the present paper, our aim is to study a model of the forth order vibration equation of a beam, and obtain its 

infinite-dimensional Liouville integrability. We discuss the problem by two cases: one is to consider the discrete 

spectrum, another is continuous spectrum. We construct the complete set of first integrals and prove that these 

Hamitonian systems are the Liouville integrable.  

 

INFINITE-DIMENSIONAL LIOUVILLE THEOREM AND LIOUVILLE INTEGRABILITY  

Consider the case of countably infinite variables. 1( )nP p p     and 1( )nQ q q     are a pair of 

canonical variables. Here, ( )H H P Q t    is the Hamilton function. The Hamilton canonical equations are given by  

 
i

i

dq H

dt p


 


 (1) 

 

 
i

i

dp H

dt q


  


 (2) 

for 1 2i      S  denotes the action function which takes its value on the classical path. We have 
i

S
i q

p 


  for 

1 2i     and denote them by 
S
Q

P 


  for simplicity. We write the Hamilton-Jacobi equation as follows  

 ( )
S S

H Q t
t Q

 
    

 
 (3) 
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If there exists a general integral ( )S S Q    for the H-J equation, where 1 2( )     , we can solve the 

Hamilton canonical equation. A crucial step is to solve out ( )Q Q t      from the following system of equations  

 i

i

S





 


 (4) 

for 1 2i    , where 1 2( )     . In the finite dimensional case, this condition can be represented as 

2

det 0
i j

S
q



 . In the infinite dimensional case, we use the invertible property of the operator 
2

i j

S
q 



 instead of 

2

det 0
i j

S
q



 (see,[3]). Liu[3] proved the following results.  

 

Theorem 1[3]. If the operator 
2

i j

S
q 

  is invertible,  

 ( )Q Q t       (5) 

 

 ( )P P t       (6) 

are the solutions of the Hamilton canonical equations (1) and (2).  

 

Theorem 2[3]. Suppose that the Hamilton system has an infinite number of first integrals (or motion constants)  

 ( ) 1 2i if P Q t i         (7) 

If these first integrals satisfy the following conditions, the Hamilton system is integrable.  

01 . [ ] 0i jf f  , where 
1

[ ] ( )j ji i

k k k k

f ff f

i j q p p qk
f f

   

   
    is the Poisson bracket.  

02 . The operator ( )i

j

f

p



  is invertible, where ( )i

j

f

p



  denotes the infinite-dimensional matrix with the general element 
i

j

f

p



 .  

Based on the above theorem, Liu[3] gave the following definitions.  

 

Definition 1. An infinite number of motion constants (or first integrals) (13) is called a complete set of motion constants 

if the condition 
02  is satisfied.  

 

Definition 2. If a Hamilton system has a complete set of motion constants, the system is called to possess the Liouville 

integrability or to be Liouville integrable.  

 

THE LIOUVILLE INTEGRABILITY OF THE FREE VIBRATION EQUATION OF A BEAM: DISCRETE 

SPECTRUM 

We consider free vibrations of a beam. When the influence of the dynamical axial force 
2

2 0

l
ES

xx xl
w w dx  is 

neglected, the governing equation of free vibration is given by  

 0xxxx ttELw Sw    (8) 

where w  is the lateral displacement, E  is the Young’s modulus,   is the density of the beam, S  is the area of the 

cross section, and I  is the moment of inertia of the cross section. Furthermore, by re-scaling of t x  and w , we get a 

forth order equation (see, for example, [7,8])  

 0tt xxxxu u    (9) 

with the corresponding initial and boundary conditions  

 (0 ) (2 ) 0u t u t      (10) 

 

 ( 0) ( ) (0 ) ( )tu x t u x t        (11) 

 

This is an infinite-dimensional problem, and the corresponding Lagrangian function and Hamilton function are  
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2

2 2

0

1
(( ) ( ) )

2
t xxL u u dx



    (12) 

and  

 
2

2 2

0

1
(( ) ( ) )

2
t xxH u u dx



    (13) 

Let q u  and tp u  be a pair of canonical variables. Then Hamiltonian function is given as  

 
2

2 2

0

1
( ) ( ( ) )

2
xxH p q p q dx



     (14) 

Therefore the Hamilton-Jacobi equation is given by  

 
2

2 2

0

1
{( ) ( ) }

2
xx

S S
q dx

t q

 




  

   (15) 

In order to use the method of the separation of variables, we take the Fourier transformation of u  with respect to x ,  

 
1

( ) ( )sin( )n

n

u x t a t nx




    (16) 

and then  

 
1

( ) ( ) sin( )nt

n

u x t t nxa





    (17) 

Hence the Hamiltonian function becomes  

 
4 22

1

1
{ ( ) ( )}

2
n n

n

H t n a ta





    (18) 

Taking the action as  

 1 2 0

1

( ( ) ( ) ) ( ) ( )n n

n

S a t a t S t S a




      (19) 

and substituting it into Hamilton-Jacobi equation yield  

 
2 4 2( ) 1 2n

n n

n

dS
n a E n

da
        (20) 

where nE s  are constants and satisfy the following condition  

 
1

2n

n

E E




   (21) 

Solving Eq.(20), we get  

 
4 2

n n n nS E n a da    (22) 

According to the calculus, we can solve out the solutions of na , for 1 2n    . Hence we can use the Hamilton-Jacobi 

theory to solve the beam free vibration problem.  

Next we obtain the L -integrability of the free vibration of a beam. We first give an infinite number of first integrals  

 
2 2

4 2 2

0 0

1 1
( ) ( ( )sin( ) ) ( ( )sin( ) )

2 2
n t tf u u n u x t nx dx u x t nx dx

 

        (23) 

for 1 2n    . In fact, we have  

 
2 2

4

0 0
( ) ( )sin( ) ( )sin( )n t t

d
f u u n u x t nx dx u x t nx dx

dt

 

      (24) 

 
2 2

0 0
( )sin( ) ( )sin( ) 0t ttu x t nx dx u x t nx dx

 

       (25) 
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where we use 0tt xxxxu u   and integration by part in last step. Rewriting the first integrals in terms of variables na s , 

we have  

 
4 221

( ( ) ( )) 1 2
2

nn nf t n a t na        (26) 

Therefore, every nf  is just the energy of the n th mode. T  

 

Now we prove that these first integrals constitute a complete set. Indeed, in this case, the canonical variables are 

n nq a  and nnp a  . From the set of first integrals represented by  

 
2 4 21

( ( ) ( ))
2

n n nf p t n q t   (27) 

in terms of nq  and np , we can solve out the np s . It follows that this is a complete set. On the other hand, we have  

 
n

m

f
mn

q



 


 (28) 

where mn  is the Dirac sign in infinite dimension, that is, the operator (matrix) ( )n

m

f

q




 is invertible. It is easy to prove 

[ ] 0n mf f  . According to theorem 2, the beam free vibration problem is the infinite-dimensional liouville integrable. If 

we remove some first integrals in the set, for example, 1f , the set will be not complete, since we can’t solve out 1p .  

 

THE LIOUVILLE INTEGRABILITY OF THE FREE VIBRATION OF A BEAM: CONTINUOUS SPECTRUM 
We consider the Cauchy problem for an infinite vibrating beam  

 0tt xxxxu u    (29) 

 

 ( ) ( ) 0u t u t      (30) 

 

 0 1( 0) ( ) ( 0) ( )tu x u x u x u x       (31) 

We take the Fourier transformation of ( )u x t  with respect to the variable x ,  

 
1

( ) ( )sin( )
2

u x t a y t xy dy





     (32) 

It is easy to prove that  

 
2 4 21

( ) { ( ) ( )}
2

tf y t a y t y a y t       (33) 

is a first integral for every y , that is, ( ) 0d
dt

f y t  .  

Another form is  

 
2 4 21 1 1

( ) {( ( )sin( ) ) ( ( )sin( ) ) }
2 2 2

tf y t u x t xy dx y u x t xy dx
 

 

 
        (34) 

 

This first integral is just the energy of the y -th mode. They constitute a set of the first integrals with 

uncountably infinite elements.  

 

DISCUSSION 
By the infinite-dimensional Liouville theorem, we prove that the free vibration problems of a beam are infinite-

dimensional Liouville integrable by two cases including discrete spectrum and continuous spectrum. For the infinite-

dimensional Neumann models, as pointed out by Liu [3], if we consider the constraints on the solution u , we will deal 

with the infinite genus Riemann surfaces. Our models can be considered as the trivial infinite-dimensional Neumann 

models without any constraints.   
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