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Abstract: Stochastic Gradient Descent (SGD) is an attractive choice for SVM training. SGD leads to a result that the 

probability of choosing majority class is far greater than that of minority class for imbalanced classification problem. In 

order to deal with the large-scale imbalanced data classification problems, a method named stochastic gradient descent 

algorithm with SVM for imbalanced data classification is proposed. First, to deal with imbalanced data classification 

problems, we define the weight according to the size of positive and negative dataset. Then, a fast learning algorithm on 

large datasets called the weighted stochastic gradient descent algorithm with SVM is proposed, which helps to reduce the 

hyperplane offset to the minority class, thus solve the large-scale imbalanced data classification problems. Experimental 

results on real datasets show that the proposed method is effective. 
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INTRODUCTION 

Recent advances in large-scale learning resulted in many algorithms for training SVMs using large data. CVM [1, 2] 

and parallel SVMs are the successful methods to train SVM from large data. SGD
 
is a recently popularized approach that 

can be used for online training of SVM, in which the solver is based on the SGD algorithm and have demonstrated its 

effectiveness for the classification of large datasets with fast convergence and small memory requirements. Pegasos [5] 

performed stochastic gradient descent on the primal objective with a carefully chosen step size, which improves and 

guarantees convergence. Krzysztof [3] proposed stochastic gradient descent with Barzilai-Borwein update step for SVM. 

Wang [4] gives budgeted stochastic gradient descent for large-scale SVM training. This is achieved by controlling the 

number of SVs through one of the several budget maintenance strategies. Nicolas [5] proposed a bi-level stochastic 

gradient for large-scale support vector machine with automatic selection of the hyperparameter. Recently there are many 

improved approaches for SGD [6-12], such as quasi-Newton stochastic gradient descent, accelerated proximal stochastic 

dual coordinate ascent, stochastic dual coordinate ascent methods, SGD based on smart sampling techniques. 

 

In the real world, these training samples are not always balanced. In an imbalanced dataset, the majority class have 

a large percentage for all the samples, while the samples in minority class just occupy a small part of all the samples. 

Many researchers have worked to solve this problem so that the classification performance of the majority class and that 

of minority class are good at the same time. To solve this problem, two kinds of methods have been proposed: one is 

based on sampling method and the other one is based on sample weighting method [13-16]. Sampling method includes: 

under sampling method and oversampling method. The sample weighting approach to the imbalanced data classification 

problem is to apply the weights to the training data points. 

 

In this paper, we focus on the large and imbalanced datasets effective classification problem, a stochastic gradient 

descent algorithm with SVM for imbalanced data classification is proposed. It consists of two stages. The first stage is to 

obtain the weight according to the size of positive and negative dataset. In the second stage, a fast learning algorithm on 

large datasets called the weighted stochastic gradient descent algorithm with SVM (WSGD) is proposed, which helps to 

reduce the hyperplane offset to the minority class, thus solve the large scale imbalanced data classification problems. 

Experiments on large classification datasets also demonstrated that the proposed method has comparable performance. 

 

WEIGHTED STOCHASTIC GRADIENT DESCENT FOR SVM 

In order to deal with the large scale imbalanced data classification problems, we describe the algorithms of 

weighted stochastic gradient descent for SVM. 
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The weighted linear stochastic gradient descent for SVM (WLSGD) 

Consider a binary classification problem with examples   = , , 1, ,i iS y i Nx , where instance d

i Rx  is a d-

dimensional input vector and  1, 1iy    is the label. Training an SVM classifier ( ) sgn( )Tf x w x using S, where w is 

a vector of weights associated with each input, which is formulated as solving the following optimization problem 

    
2

min ; ,
2

t t t tp s l y


  w w w x ,                                              (1) 

where     ; , max 0,1 T

t t t tl y y w x w x   is the hinge loss function and 0   is a regularization parameter used to 

control model complexity. ts  is the weight, which is set according to the size of positive and negative dataset. See the 

section of setting the weight for imbalanced problem in detail. 

 

SGD works iteratively. It starts with an initial guess of the model weight 1w , and at t-th round it updates the current 

weight tw as 

1 ( ) (1 ) [y , 1]yt t t t t t t t t t t t t t tp s          w w w w 1 w x x                                 (2) 

where  

1, y , 1
[y , 1]

0, .

t t t

t t t

if

otherwise

 
  



w x
1 w x                                                           

which is the indicator function which takes a value of one if its argument is true (w yields non-zero loss on the example 

(x, y)), and zero otherwise. We then update using a step size of 1/ ( t)t  . After a predetermined number T of 

iterations, we output the last iterate wt+1.  

 

Then, the decision function for WLSGD is as follows 

1 1( ) sgn( )T

t tf  x w x                                                                      (3) 

 

Setting the Weight for Imbalanced Problem 

To deal with imbalanced dataset, we simply set the weight according to the size of positive and negative dataset. 

The data in the majority class have to receive lower weight than those in the minority class receives. 

 

When the size of positive dataset is Npos and that of negative dataset is Nneg, the weights are defined as 

1/ 1,

1/

pos i

i

neg

N if y
s

N otherwise


 
 .

                                                                  (4) 

 

To maintain the weight ratio and make the convergence speed faster, we also use the following weighting 

formulation  

1 1, ,

/ 1, ,

/ 1, ,

1 1, .

i pos neg

neg pos i pos neg

i

pos neg i pos neg

i pos neg

if y N N

N N if y N N
s

N N if y N N

if y N N

 


 
 

  
   

 

 

 

                                                   (5) 

The weighted linear stochastic gradient descent for SVM (WLSGD) is given in algorithm 1. 

 

Algorithm 1 WLSGD 

1. Input: data S, regularization parameter  , a predetermined number T of iterations ; 

2. Initialize: 1=w 0 ; 

3. Compute the weight ts  according to the formulation (5); 

4. for 1, ,t T  do 

5.    choose ( , y )t tx  uniformly at random; 

6.    1 (1 )t t t   w w  

7.    if y , 1t t t w x then 

8.        1 +1 yt t t t t ts  w w x ; // compute +1tw according to the formulation (2) 
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9.    else 

10.        
1 1t t w w ; 

11.    end if 

12.  end if 

13. Output: 1 1( ) sgn( )T

t tf  x w x . 

 

The weighted kernelized stochastic gradient descent for SVM (WKSGD) 

SGD for SVM can be used to solve non-linear problems when combined with Mercer kernels. After introducing a 

nonlinear function   that maps x from the input to the feature space and replacing x with ( ) x , the optimization problem 

can be described as 

    
2

min ; ( ),
2

t t t tp s l y


  w w w x                                             (6) 

where     ; ( ), max 0,1 ( )T

t t t tl y y  w x w x   is the hinge loss function. 

At t-th round it updates the current weight tw as 

1 ( ) (1 ) [y , ( ) 1]y ( )t t t t t t t t t t t t t t tp s            w w w w 1 w x x   

It starts with an initial 1 w 0 , update a step size 1/ ( t)t  , and for all t we can rewrite 1tw as 

1

1

1

1

1
[y , ( ) 1]y ( )

1
[j]y ( )

t t t t t

t

t i i t i i i

i

N

j t j j

j

s
t

s
t

 


 










 







w 1 w x x

x

                                                (7) 

 

For each t, let 1

N

t R     be the vector such that 1[j]t  counts how many times example j has been selected so far 

and we had a non-zero loss on it, namely,  

  ' '

'

1[j] : , ( ) 1t j jt t
t t i j y      w x                                                  (8) 

Then, the decision function for WKSGD is as follows: 

1 1 1

1

1
( ) sgn( ( )) [j]y ( , )

N
T

t t j t j j

j

f s k
t

 


  



  x w x x x                                           (9) 

 

Only one element of  is changed at each iteration. The algorithm does not refer to the implicit mapping ( )  and 

only use the kernel function. This WKSGD implementation is given in algorithm 2. 

 

Algorithm 2 WKSGD 

1. Input: data S, regularization parameter  , a predetermined number T of iterations ; 

2. Initialize: 1  0   

3. Compute the weight ts  according to the formulation (5); 

4. for 1, ,t T  do 

5.    choose ( , y )
t ti ix  uniformly at random; 

6.    For all 1, [j] [j]t t tj i set    ; 

7.    if 
1

1
[j]y ( , ) 1

t t

N

i j t j j i

j

y s k
t


 

 x x , then 

8.        1 1[i ] [i ] 1t t t t    ; // count the selected times of example j with a non-zero loss on it. 

9.    else 

10.        1 1[i ] [i ]t t t t   ; 

11.    end if 

12.  end if 

13. Output:
1 1 1

1

1
( ) sgn( ( )) [j]y ( , )

N
T

t t j t j j

j

f s k
t

 


  



  x w x x x . 
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EXPERIMENTAL RESULTS 

In this section, we conduct the performance comparison of the four methods for real problems: MNIST, Ijcnnl, 

Shuttle, Letter, Usps, Adult. Most of the datasets are taken from the UCI machine learning repository [17]. Usps is taken 

from database [18]. The multi-classification dataset are artificially divided into binary classification dataset, which 

constitute the imbalanced dataset. The description of datasets is shown in Table 1.  

The Gaussian function is taken as the kernel function
2

2( , ) exp( / ).i j i jk x x x x     Set the kernel function width

 =1.5, a predetermined number of iterations T = 610 . The regularization parameters are shown in Table 2. 

 

Table 1: Introduction to datasets 

datasets #classes Training size 
Testing size（Npos、Nneg,

） 
#features 

MNIST 10 60000 10000（974、9026） 780 

Ijcnnl 2 91701 49990（4853、45137） 22 

Shuttle 7 43500 14500（2155、12345） 9 

Letter 26 10000 10000（353、9647） 16 

Usps 10 7291 2007（198、1809） 256 

Adult 2 24974 12554（119、12435） 123 

 

Table 2: Parameter setting 

 LSGD WLSGD KSGD WKSGD 

  4-10  4-10  4-10  4-10 (Mnist), -910 (Ijcnn), -810 (Shuttle), -710 (Letter), -1510 (Usps), 4-10 (Adult) 

 

Considering the imbalanced nature of the training datasets, the geometric mean accuracy is adopted to evaluate the 

performance of our algorithms, 

g a a  
 

where  

_

# positive samples correctly classified
100%,

# total positive samples classified

# negative samples correctly classified
100%.

# total negative samples classified

a

a

  

 

 
 

Table 3: Experimental results of the testing geometric mean accuracy 

Algorithms LSGD WLSGD KSGD WKSGD 

MNIST 78.86 72.19 87.60 94.19 

Ijcnnl 51.42 78.35 55.14 72.36 

Shuttle 0 40.51 5.15 94.54 

Letter 23.14 67.51 75.63 86.04 

Usps 90.83 91.35 94.66 94.03 

Adult 0 76.08 9.16 73.21 

 

Twenty trials were conducted for the four algorithms and the average results are shown in Table 3 and Table 4. 

Table 3 shows the performance comparison of accuracy of the four methods in the real-world problems; the testing 

geometric mean accuracy of WLSGD and WKSGD is higher than LSGD and KSGD methods in most datasets. Table 4 

shows the performance comparison of average training and testing time of the four methods in the real-world problems. 

As observed from the Table 4, WLSGD and WKSGD methods compare to LSGD and KSGD methods with almost same 

learning speed in most datasets. 
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Table 4: Experimental results of the average training and testing time 

Algorithms LSGD WLSGD KSGD WKSGD 

MNIST 597.53(s) 600.09(s) 777.34(s) 834.21(s) 

 6.15(s) 5.94(s) 20.94(s) 17.82(s) 

Ijcnnl 22.94(s) 21.21(s) 31.91(s) 46.89(s) 

 1.11(s) 1.09(s) 0.20(s) 0.39(s) 

Shuttle 11.75(s) 3.52(s) 5.03(s) 7.49(s) 

 0.16(s) 0.16(s) 5.03(s) 4.18(s) 

Letter 21.84(s) 20.81(s) 1.9(s) 3.77(s) 

 0.21(s) 0.21(s) 0.11(s) 0.17(s) 

Usps 277.26(s) 280.59(s) 58.74(s) 18.62(s) 

 0.56(s) 0.61(s) 7.84(s) 2.88(s) 

Adult 128.71(s) 97.10(s) 18.85(s) 65.80(s) 

 1.39(s) 1.20(s) 0.45(s) 3.06(s) 

 

CONCLUSION 

We focus on the large and imbalanced datasets effective classification problem, the stochastic gradient descent 

algorithms with SVM for imbalanced data classification are proposed. It consists of two stages. The first stage is to 

obtain the weight according to the size of positive and negative dataset. In the second stage, a fast learning algorithm on 

large datasets called the weighted stochastic gradient descent algorithm with SVM is proposed, which helps to reduce the 

hyperplane offset to the minority class, thus solve the large scale imbalanced data classification problems. Experiments 

on real datasets show that the proposed method is effective. 
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