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Abstract: In this paper, a new hybrid conjugate gradient method for solving unconstrained optimization problems is 

presented. Under strong Wolfe line search conditions, the global convergence of this method is established. The 

numerical results show that the proposed method is effective. 
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INTRODUCTION 

Conjugate gradient method is an efficient algorithm for the numerical solution of unconstrained optimization. We 

consider the following unconstrained optimization problem 

 ( )min
nx R

f x


                                        (1) 

where ( ) : nf x R R  is a smooth nonlinear function, whose gradient will be denoted by ( )( ) f xg x  . The iterative 

formula is 

1 ,          0,1,2 ,k k kkx x d k                                (2) 

where 0k  is obtained by line search and the directions kd  are generated as 
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where ( )kk f xg  , and k  is a scalar. In general, the step length k  is chosen by the Wolfe line search or Armijo-type 

linear search. Here, we use the strong Wolf line search condition, i.e., the step size k  satisfies 
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where 
1

0 , 1.
2

and         

As you know, different choices of k  result in different nonlinear conjugate gradient methods. Some famous formulae 

for k  are defined as follows: 
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where 11   kkk ggy , the symbol  be the Euclidean norm. Although all these methods are equivalent in the 

linear case, namely, when ( )f x is a strictly convex quadratic function and k are determined by exact line search, their 

behaviors for general objective functions may be far different [7]. 

 

  In recent years, hybrid conjugate gradient methods are regarded as the best performing conjugate gradient 

methods in practice because of dynamically adjustment of 
k as the iterations evolve. Dai and Yuan [8] combined the 

DY algorithm with the HS algorithm, proposing the following two hybrid methods 

max{ c ,  min{ , }},

max{0,  min{ , }},

hDY DY DY HS

hDY z DY HS

b b b b

b b b

= -

=
 

where c is a scalar. For the weak Wolfe conditions, they established the global convergence of these hybrid 

computational schemes. Combining between PRP and DY conjugate gradient methods, N. Andrei [9] proposed the 

following hybrid method: 

(1 ) ,PRP DYb q b qb= - +  

where the parameter in the convex combination is computed in such a way that the conjugacy condition is satisfied, 

independently of the line search. 

 

Because LS has good computational properties, on one side, and CD has strong convergence properties, on the other 

side. In this paper, we propose another hybrid conjugate gradient as a convex combination of LS and CD conjugate 

gradient algorithms. By this method, we hope to obtain a more efficient conjugate gradient algorithm. The iterates 

0 1 2,  , , ,x x x  of our algorithms are computed by means of the recurrence (2) where the stepsize 0k  is obtained by 

Wolfe conditions, and the directions  are generated as  

0 0

1

 = 

, 1,  LSCD

k k k k

d g

d g d k 




                        (6) 

Where max{0,min{ , }}LS CD

k k k   .                        

The rest of this paper is organized as follows. The algorithm is presented in Section 2. In Sections 3 the global 

convergence is analyzed. We give the numerical experiments in Section 4 

 

1. Description of algorithm 

Now we state our algorithm as follows. 

Algorithm A:  
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 Step 0:  Initialization:  Given a starting point
nRx 0 , choose parameters 

0 0

1
0 1,0 , 1, , : 0

2
d g k             

Step 1:  If |||| kg , STOP, else go to Step 2; 

Step 2： Let kkkk dxx 1 , where kd  is followed by (6), and k is defined by the strong Wolf line search (4). 

 

Step 3：Let : 1.k k  , and go to Step 2. 

 

Global convergence of Algorithm 

At first, the following basic assumptions on the objective function are assumed, which have been widely used in the 

literature to analyze the global convergence of the conjugate gradient methods.  

H3.1 

 i) The objective function ( )f x  is continuously differentiable and has a lower bound on the level set 

0 0{ | ( ) ( )}nL x R f x f x   , where 0x  is the starting point. 

ii)  The gradient ( )g x  of ( )f x  is Lipschitz continuous in some neighborhood U of L0, namely, there exists a constant L 

> 0 such that 

, ,( ) ( ) .    x g y L x y x y Ug
 

Lemma 3.1[7] Suppose that Assumption H3.1 holds. If the conjugate method satisfies  0k

T

k dg , then we have that 
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Theorem 3.1 Suppose that Assumption H3.1 holds and the sequence }{ kx is generated by Algorithm A, then 0k

T

k dg

. 

Proof:  For 0n , 0|||| 2

000  gdg T
. 

When 1k    multiplying
T

kg  by 
1

LS CD

k k k kd g d 

   , we obtain that 
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it follows from 0LSCD

k
   and 

1 0T

k kg d   that 
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k k kg d g    

Therefore, the result is true. 

In view of Theorem 3.1 and[10] [11], we may obtain the following results. 

 

Theorem 3.2 Suppose that Assumption H3.1 holds and the sequence }{ kx is generated by Algorithm A. Then  

.0||||inflim 


k
k

g

 
Numerical experiments 

In this section, we give the numerical results of Algorithm A to show that the method is efficient for unconstrained 

optimization problems. The problems that we tested are from [12] and [13]. Table 1 show the computation results, where 

the columns have the following meanings: 

kx —the final point； 

*f —the final value of the objective function； 

 

Table-1: Comparative numerical results of Algorithm A 

Problem 
kx  *f  

Beale (2.99998081854872, 0.50000717055051) 3.339569051726135e-009 

Trigonometric (0.24309754927761, 0.61287060083150) 4.316579730575097e-008 

Brown (0.99968107296011, 1.00056330601065) 6.519072115070798e-008 
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