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Abstract: In this paper, we consider an M/G/1 retrial queue with two vacation policies which comprise single working 

vacation, vacation interruption and multiple vacations, denoted by SWVI+MV. Only the customer at the head of the orbit 

queue is allowed access to the server. When the orbit becomes empty at the end of each regular service period, the server 

goes for a working vacation during which the server continues to serve the customers with a slower rate. At a service 

completion instant in the working vacation period, if there are customers in the system at that moment, the server will 

come back to the normal busy period which means that vacation interruption happens. At the end of each working 

vacation, the server starts a new busy period if there are customers in the system. Otherwise, the server begins an 

ordinary vacation during which the server stops the service completely. If the system is empty at the instant of an 

ordinary vacation completion, the server takes another new ordinary vacation. Using the matrix-analytic method, we 

obtain the necessary and sufficient condition for the system to be stable. By applying the supplementary variable 

technique, we obtain the steady state joint distribution of the server and the number of customers in the orbit. Various 

interesting performance measures are also derived. Finally, some numerical examples are presented. 
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INTRODUCTION 

Retrial queueing systems are described by the feature that the arriving customers who find the server busy join 

the retrial orbit to try again for their requests. In the past years, retrial queueing systems with server vacations have 

attracted considerable attentions and successfully applied in manufacturing and production systems, service systems and 

communication systems. For more details we refer the readers to the surveys of Artalejo [1], Yang et al. [2], Lakshmi and 

Ramanath [3], Padmavathi et al. [4] and Jain and Bhagat [5].  

 

On the basis of ordinary vacation, Servi and Finn [6] first introduced the concept of working vacation, where the 

server provides service at a lower speed during the vacation period rather than stopping service completely. Recently, 

retrial queueing system with working vacation has become an important aspect. Do [7] first studied an M/M/1 retrial 

queue with working vacations which is motivated by the performance analysis of a Media Access Control function in 

wireless networks. Using the matrix-analytic method, Liu and Song [8] introduced non-persistent customers into the 

discrete time Geo/Geo/1 retrial queue with working vacations. Using the method of a supplementary variable, 

Arivudainambi et al. [9] and Jailaxmi et al. [10] both generalized the model of [7] to an M/G/1 retrial queue with 

working vacation and constant retrial policy. In order to utilize the server effectively, Li and Tian [11] introduced 

working vacation interruption policy. During the working vacation period, if at least one customer is present in the 

system at a service completion epoch, the server will interrupt the vacation and resume regular service. The retrial 

queueing systems with working vacations and vacation interruption have also been investigated extensively. Gao et al. 

[12] discussed an M/G/1 retrial queue with general retrial times and working vacation interruption, the discrete-time 

    /G/1 queue was analyzed by Gao and Wang [13]. Rajadurai et al. [14] introduced negative customers into an M/G/1 

retrial queue with unreliable server, working vacation and vacation interruption.  

 

In light of the classical vacation and working vacation, Ye and Liu [15] first considered a queue with single 

working vacation and vacations which is characterized by the following features: When the system becomes empty in 

regular service period, the server takes a working vacation during which the possible arriving customers are served with a 

lower rate. After that, if there are customers left in the system, the system will resume to the regular service period, 

otherwise, the server will enter an ordinary vacation during which the server stops the service completely. At the end of 

each ordinary vacation, the server takes another new ordinary vacation if the system is empty. Recently, Ye and Liu [16] 

extended the M/M/1 queue to the GI/M/1 queue. In this paper, we introduce this new vacation policy into an M/G/1 
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retrial queue with general retrial times. Moreover, vacation interruption policy is also considered, i.e., if there are 

customers in the orbit at a service completion instant in the working vacation period, the server will stop the vacation and 

come back to the normal working level. To the authors’ best of knowledge, no special work focused on this model has 

appeared in open literatures.  

 

This paper is organized as follows. A brief description of this model is given in Section 2. The stability 

condition is obtained by the matrix-analytic method in Section 3. In Section 4, we deal with the steady state joint 

distribution of the server and the number of customers in the orbit. Various performance measures of this model are also 

discussed. Section 5 presents some numerical examples and Section 6 concludes the paper.  

 

SYSTEM MODEL 

In this paper, we consider an M/G/1 retrial queue with single working vacation, vacation interruption and 

multiple ordinary vacations. The customers arrive according to a Poisson process with rate  , and there is no waiting 

space in front of the server. If the customer finds the server busy when he arrives, he will join the orbit and wait for his 

service again later. If the customer finds the server idle, on the other hand, the arriving customer will commence his 

service immediately, and the normal service time    has a distribution function              ∫  
 

 
      . We 

assume that only the customer at the head of the orbit queue is allowed to the server, and the retrial time   has a 

distribution function             ∫  
 

 
      . The server takes a working vacation when the system becomes 

empty, and the lower service time    has a distribution function              ∫  
 

 
      . We assume the 

working vacation time   follows an exponential distribution with parameter  . At a service completion instant in the 

working vacation period, if there are customers in the system at that moment, the server will stop the vacation and come 

back to the normal working level. The working vacation will continue if the system is empty. At the end of each working 

vacation, the server starts a new busy period if there are customers in the system. Otherwise, the server begins an 

ordinary vacation during which the server completely stops working, and the ordinary vacation time   has a distribution 

function             ∫  
 

 
      . If there are customers in the system at the instant of an ordinary vacation 

completion, the server will resume to a regular serving level with normal service rate. If the system is empty, on the other 

hand, the server takes another new ordinary vacation.  

 

We assume that all the random variables defined above are independent. Throughout the rest of the paper, for a 

distribution function     , we define            ,  ̃    ∫      

 
      and  

 
    ∫      

 
      . Clearly, 

we have  
 
    

   ̃   

 
.  

 

Let      represent the number of customers in the retrial group at time  , and      denote the server state: if 

      , the server is in a working vacation period at time   and the server is free; if       , the server is in a working 

vacation period at time   and the server is busy; if       , the server is in an ordinary vacation period at time   and the 

server is free; if       , the server is during a normal service period at time   and the server is free; if       , the 

server is during a normal service period at time   and the server is busy    
 

At time    , we define the random variable      as follows: if     =1,      denotes the elapsed lower service 

time; if     =2,      represents the elapsed ordinary vacation time; if     =3,      stands for the elapsed retrial time; if 

    =4,      denotes the elapsed normal service time. Therefore, the system can be described by Markov process 

                      with state space  

                                                             
Let {  ;        } be the sequence of epoches at which a service completion occurs or an ordinary vacation time 

ends. Then the sequence of random variables         
       

    forms an embedded Markov chain with state space 

                           .  
 

STABLE CONDITION 

To develop the transition matrix of {  ;    }, we introduce a few definitions:  

(1) Define  

   ∫
     

  

 

 

                 

which explains the probability that   customers arrive during   , and we have  
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     ∑  

 

   

   ∫          
 

 

        ̃                 

       ∫  
 

 

                 ∫   
 

 

        

(2) Define  

   ∫
     

  

 

 

                     

which represents the probability that      and   customers arrive during   , and we get  

     ∑  

 

   

   ∫            
 

 

        ̃                 ̃      

       ∫  
 

 

                     ∫   
 

 

            

(3) Define  

   ∫
     

  

 

 

                       

which explains the probability that      and   customers arrive during  , and we obtain  

     ∑  

 

   

      

 
         

 

      
[      ]   

        ̃           
 

 
(   ̃    )         

         
 

 
      ̃        

 

 
               

(4) Define  

   ∫
     

  

 

 

                

which represents the probability that   customers arrive during  , and we derive  

     ∑  

 

   

   ∫          
 

 

       ̃                

       ∫  
 

 

                ∫   
 

 

       

(5) Define  

   ∑  

 

   

           

which explains the probability that      and   customers arrive during   plus   , and we have  

     ∑  

 

   

                              ̃      

                         ,                                           
 

Using the lexicographical sequence for the states, the transition probability matrix of {      } can be written 

as the block-Jacobi matrix  

  

(

 
 

         
         

       

     

  )

 
 
  

where  

   (

 

   
       

 

   
   

)      (

 

   
       

  

)        

     ̃             ̃           ̃        
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Theorem 1. The embedded Markov chain {      } is ergodic if and only if        ̃   .  

 

Proof. It is not difficult to see that {      } is an irreducible and aperiodic Markov chain, so we just need to prove 

that {      } is positive recurrent if and only if        ̃   . Since   ∑   
 
   =1, from the chapter 2 of Neuts 

[17], the embedded Markov chain {      } is positive recurrent if and only if ∑   
        

 
           , i.e., 

       ̃   .      

 

Since the arrival process is Poisson, using PASTA property, it can be showed from Burke’s theorem (see [18], pp.187-

188) that the steady state probabilities of the Markov process      exist if and only if the stable condition        ̃    

holds. Now we define the limiting probability and limiting probability densities:  

        
   

                  

             
   

                                   

             
   

                                   

             
   

                                   

             
   

                                   

 

STEADY STATE ANALYSIS AND PERFORMANCE MEASURES 

By the method of supplementary variable technique, we obtain the following system of equations that govern 

the dynamics of the system  

           ∫     

 

 

          ∫     

 

 

           (1) 

 
 

  
         (        )        (      )                (2) 

 
 

  
                                                  (3) 

 
 

  
                               (4) 

 
 

  
                                                  (5) 

where      is the Kronecker’s symbol. The boundary conditions are  

                                (6) 

               ∫     

 

 

                           (7) 

 
P ,n    ∫ P1,n

 

 

 x   x dx ∫ P ,n

 

 

 x   x dx ∫ P ,n

 

 

 x   x dx,      n 1, 
(8) 

 P ,n     ∫ P1,n x dx
 

 

 (1  n, ) ∫ P ,n x dx
 

 

 ∫ P ,n 1 x   x dx
 

 

, n  , (9) 

and the normalization condition is  

 P ,  ∑ ( 
n  ∫ P1,n

 

 
(x dx ∫ P ,n

 

 
(x dx ∫ P ,n

 

 
(x dx  ∑ ∫ P ,n

 

 

 
n 1 (x dx 1.  (10) 

By introducing the generating functions         ∑     
 
                            , from (1)-(5), we have  

                                (11) 

                 
                   (12) 

                 
              (13) 

                 
         (14) 

                 
               (15) 

From (6)-(7), after some computation, we can get  

                        (16) 

                 
 

    

      (17) 

Using (16)-(17), from (8)-(9), we can obtain  

 P ( ,z   B(z P ,  A(z P ( ,z  
 

1-d 
D(z P , -(  

 

1-d 
 P , ,  (18) 
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                       ̃      
 
              (19) 

Inserting (19) into (18) yields  

         
               

 
    

        

    ̃      
 
         

       
(20) 

And         is given by  

 P ( ,z  

 zC(z  ( ̃(     
 
(  z [ (B(z  1  

 
1 d 
(D(z  1 ]

z ( ̃(     
 
(  z A(z 

P , . 
(21) 

 

Remark 1. If        ̃   , the equation     ̃      
 
            has no root in the range       and has 

the minimal nonnegative root    . (see Lemma 3.1 [12])  

 

Define the marginal generating functions       ∫   
 

 
                 . Substituting (16), (17), (20) and (21) 

into (12)-(15), after some calculations we have the following theorem.  

 

Theorem 2.  

      
 

 
          

      
 

    

      

      
      

      
  

 
                 

 
    

 
 
           

    ̃      
 
         

       

      
         ̃      

 
     [          

 
    

        ]

    ̃      
 
         

      

      
      

 

From Theorem 2, we can obtain some system performance measures.  

The probability that the server is in a working vacation period and is busy is given by  

      
 

 
          

The probability that the server is in an ordinary vacation period is given by  

      
 

    

     

 
      

The probability that the server is during a normal service period and is free is given by  

      
  

 
                 

 
    

 
 
        

 ̃         
      

The probability that the server is during a normal service period and is busy is given by  

      
  ̃                       

 
    

     

 ̃         

     

 
      

Moreover,      can be determined by the normalization condition  

                                
which leads to  

     
 ̃         

 ̃           
 
 

            
 

    

     
 

  

The probability that the server is busy is given by  

               

 
 
      ̃            ̃                                

 
    

     
 

     

 ̃         
      

The probability that the server is free is given by  
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   ̃             
 
                 

 
    

 
 
        

 ̃         
      

Let  [  ] denote the average number of customers in the orbit when the server’s state is            . From Theorem 2, 

after some calculations we can get  

 [  ]  
 

 
              [  ]  

 

    

      

  
      

 [  ]  
  

 
                   

 

    
 

 
         

   ̃          
        

   
 
               

   ̃          
        

 [  ]  
         (             )    

 
   (       

 

    
     ) 

 

    
      

   ̃          

     

 
      

      

      
 

   
 
               

   ̃          
        

Clearly, the probability generating function of the number of customers in the orbit is given by  

                                   
The probability generating function of the number of customers in the system is given by  

 ̃                                    
Therefore, the mean orbit length ( [ ]) is given by  

 [ ]   [  ]   [  ]   [  ]   [  ]  
And the mean system length ( [ ̃]) is derived as  

 [ ̃]   [ ]               [ ]      
Let  [ ] ( [ ̃]  be the expected waiting (sojourn  time of a customer in the orbit (system , using Little’s formula,  

 [ ]  
 [ ]

 
   [ ̃]  

 [ ̃]

 
  

 

NUMERICAL RESULTS 

In this section, taking the M/E /1 queue as an especial case, we present some numerical examples to illustrate 

the effect of the varying parameters on the mean orbit length  [ ], where the normal service time (the lower service 

time) follows the Erlang distribution of order 2 with  ̃      
 

   
   ( ̃      

 

   
  ). In order to make a comparison, 

two different retrial time distributions are also considered, it is assumed that the retrial time follows the exponential 

distribution with  ̃    
 

   
 or Erlang distribution of order 2 with  ̃     

 

   
  . We also assume that the ordinary 

vacation time follows the exponential distribution with  ̃    
 

   
. Under the stable condition        ̃   , the various 

parameters of this model are arbitrarily chosen as  =1.2,  =5,  =0.8,  =4,  =0.5 and  =1, unless they are considered as 

variables in the respective figures.  

 

 
Fig-1: The effect of   on  [ ] for different values of   
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Fig- 2: The effect of   on  [ ] for different values of   

 

From Figs.1-2, it is obvious that  [ ] decreases evidently as the values of   increase. Since we assume working 

vacation interruption policy, when   is large, we can see that   has little effect on  [ ] as   increases. As expected, the 

arrival rate   has a noticeable effect on  [ ].  
 

 
Fig-3: The effect of   on  [ ] for different values of   

 

 
Fig-4: The effect of   on  [ ] for different values of   

 

Figs.3-4 illustrate that  [ ] decreases dramatically with   increasing, this is because that as the value of   

increases, the mean retrial time decreases. And the smaller the mean retrial time is, the bigger the probability that the 

server is busy is, which decreases the value of  [ ]. Since the service rate   is less than  , it can be observed that 

increasing   decreases the value of  [ ].  
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Fig-5: The effect of   on  [ ] for different values of   

 

 
Fig-6: The effect of   on  [ ] for different values of   

 

Figs.5-6 indicate that  [ ] decreases with increasing values of  , and the effect of   on  [ ] is more obvious 

when   is smaller, the reason is that the expected ordinary vacation time is    . We can also find that as   increases, 

 [ ] decreases, which agrees with the intuitive expectation.  

 

Furthermore, under the same condition, the mean retrial time with exponential distribution is shorter than that 

with Erlang distribution. Thus, from Figs.1-6, we can see that  [ ] with exponential retrial time is smaller than that with 

Erlang retrial time.  

 

CONCLUSION 

In this work, we investigate an M/G/1 retrial queue with single working vacation, vacation interruption and 

ordinary vacations. Using embedded Markov chain and matrix-analytic method, we get the condition of stability. 

Supplementary variable technique is employed to obtain the expressions for the probability generating functions of the 

server state and the number of customers in the orbit. Various important performance measures are also derived. Finally, 

the effect of various parameters on the mean orbit length are examined numerically. For future research, using the same 

method, one can discuss a similar model but with batch arrival customers.  
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