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Abstract: This work proposed a strategy for fitting a subset form of a vector bilinear model. In this case, lower triangular 

portion of the vector linear and non-linear components of a vector autoregressive bilinear structure was considered. The 

workability of the method was illustrated using a 3 – dimensional vector of time series. The models were found to fulfil 

the assumptions of model adequacy and each time dependent variable depended only on a subset of lagged time varying 

quantities under consideration. Apart from being parsimonious, the fitted models were found to perform better than the 

parent vector bilinear autoregressive models as revealed by some statistical comparative analysis. 

Keywords: Lower triangular matrix, Vector bilinear autoregressive models, White noise process and residual 

autocorrelation 

 

INTRODUCTION 
Recently, there has been an increasing interest in models that extend the classical time series framework 

developed by Box and Jenkins [1] and others. An important assumption that is made in the classical theory is that the 

structure of the series can be described by a linear model such as an autoregressive, moving average or mixed 

autoregressive moving average model. Sometimes, however, such specifications are made just for technical convenience 

but may not be appropriate. The interaction of effects can cause problems beyond the sum of the individual 

complications [3]; thus demanding an extension to non-linear models. The theory of Voltera [2] and Weiner [4] on 

functional series representation has provided a great stimulus to the development of non-linear models. One of such time 

series models allowing for non-linearity is the bilinear model introduced by Granger and Anderson [5], and extended by 

Tong [6], Guegan and Pham [7]. The interesting feature of a bilinear system is that though it is non-linear, its structural 

theory is analogous to that of linear systems [6]. According to Rao [6], a bilinear time series model    (       ) is 

given by the difference equation: 

              ( )  ∑    (   )
 
    ∑    (   ) 

    ∑ ∑      (   ) (    ) 
    

 
            (1) 

Where  * ( )+  is an independent white noise process and      . * ( )+  is termed the bilinear process. The 

autoregressive moving average model      (   ) is obtained from (1) by setting                      .The idea put up 

by Rao [6] considered only a single time series variable. However, there are several situations where two or more 

variables could be related. In such situation, a bilinear structure that captures the interaction among the variables is 

required. Consequent to this, Boonchai and Eivind [8] gave the general form of multivariate bilinear time series models 

as: 

              ( )  ∑   (   )  ∑   (   )  ∑∑∑    
 (   )  (   )   ( )           (2) 

Here, the state  ( ) and noise   ( )  are     vectors and the coefficients                   
 are       matrices. If 

all    
  , we have the class of well - known vector ARMA models. Iwok and Etuk [9] established a vector form of 

autoregressive moving average (VARMA) models comprising linear and non-linear components that could compete with 

the pure vector linear VARMA models. General bilinear vector autoregressive moving average (BIVARMA) was 

presented as an extension of the univariate bilinear model.  The results showed that the BIVARMA model established 

perform best and provide better estimates than the VARMA models. Clifford [5] fitted a full Vector Bilinear 

Autoregressive (VEBIA) Time Series Models to three economic series. The fitted models were found to be adequately 

fitted to the three sets of data. However, Clifford [5] highlighted that the procedure of fitting the full VEBIA model is 

sometimes boring and complicated; hence a subset fit with optimum result is necessary. In line with the suggestion by 

Clifford [5] that a subset VEBIA model is necessary; this work proposes a strategy for reducing the number of estimated 

parameters such that an adequate fit of Vector Bilinear Autoregressive Time Series Models is obtained. 

 

METHODOLOGY 

Lower Triangular Matrix 

      A lower triangular matrix      of an       matrix is a matrix of the form: 
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        where                . 

 

Vector Bilinear Autoregressive (VEBIA) Time Series Models 

        Consider an     dimensional time series vector   

                  
  ,            - .                                                             (4) 

         Let    be the set of all autoregressive (AR) orders of the elements of the vector     . 

         Then,       and    *          + and the VEBIA model is of the form: 

                     ∑         
     
    ∑     

( )
 .          / 

     
                       (5) 

         Where,   

                 1.  All underlined alphabets represent vectors and matrices. 

                   2.        is a vector of parameters of the linear part of the model 

                   3.        is a vector of parameters of the non-linear component of the model. 

                   4.           is a vector of white noise innovation 

                   5.          is a vector of residuals obtained from the model (5). 

                   6.         
( )

  is a diagonal matrix and    is the lag. 

The model (5) can explicitly be expressed with the orders of the matrices indicated as shown: 

    *   +    ∑ {     }   
  *     +    ∑ *     +   

( )     
   0{      }   

 *     +   1  
     
   

*   +     (6) 

where, 

              1.                           And                       

              2.                            and                     . 

 

Lower Triangular Vector Bilinear Autoregressive (LOTVEBIA) Time Series Models 
From the definition of lower triangular matrix; the lower triangular VEBIA model can only capture the lower 

triangular parameters of the VEBIA model and all other parameters are set equals to zero. That is, to obtain the 

LOTVEBIA time series model, we must set 

                    And                     . 

 

White Noise Process 

          A process *  + is said to be a white noise process with mean 0 and variance   
   written 

   *  +   (    
  ), if it is a sequence of uncorrelated random variables from a fixed distribution. The residual of an 

adequate model is expected to follow a white noise process as a fulfilment of the assumption of model adequacy.  

 

Diagnostic Checks of the Models 

The diagnostic checks shall be based on the analysis of the residuals. Under the assumption of model adequacy, the 

residuals obtained from each model are examined whether they are uncorrelated at the various lags. This is easily 

detected by the Autocorrelation Function (ACF) plot of the residuals. If the Autocorrelation Function (ACF) plot does 

not show any spike above or below the 95% confidence interval, then the residuals of each model are uncorrelated at 

various lags and the fitted model is adequate. This simply means that the residuals follow a white noise process. Also, the 

performance of the fitted models shall be assessed by examining the combined plots of the actual values of the series and 

the predicted values. If the models are adequate, the actual and the predicted values at each time point will be closed to 

each other; and this can easily and clearly be detected if the two superimposed plots move in the same direction. For 

comparative purpose, the performance of models will be based on mean absolute error (MAE) or residual variance given 

as 

                                         
 

 
∑ (    ̂ )

  
                                       (7) 

and the mean absolute percentage error (MAPE) given as 

                                         0
  

 
∑ |

    ̂ 

  
| 

   1                             (8)         

where    are the observed values and   ̂  are the estimated values. Of course, the model with the smallest error is chosen 

as the best model. 
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ANALYSIS AND RESULTS 

The VEBIA Models 
The data used for this work is the revenue series used by Iwok and Etuk [9]. The orders identified for each series were:  

AR (3) for   , AR (2) for       and AR (1) for   . As noted in Iwok [10], fitting a full vector bilinear autoregressive time 

series model described in section 2.2 of the methodology results in the following vector bilinear autoregressive models: 

                                                                           

                                                                        

                                                                       

                                                                                                   (9) 

                                                                            

                                                                        

                                                                                                    (10) 

                                                                              

                                                                                                      (11) 

            

The residual variances obtained in fitting vector bilinear models in equations (9), (10) and (11) were 16.36 for    , 22.90 

for      and 21.96 for     respectively. 

 

The LOTVEBIA Models 

 From matrix expression (6) and the ‘orders’ identified for each series, the Lower Triangular Vector Bilinear 

Autoregressive (LOTVEBIA) Time Series Models can be expressed explicitly as: 
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This can further be expressed as: 
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  The above expanded matrix can be compressed as: 

                 ∑ ∑      
 
   

 
         ∑ ∑            

 
   

 
                                     (12) 

                                                                                                     and                     . 

 

Estimates of the LOTVEBIA Models 

         Fitting the above LOTVEBIA time series model (12) to the three series generated the following parametric 

equations: 

                                                                      

                                                                                                                              (13) 

                                                                              

                                                                                                               (14) 
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Diagnostic Checks 

Residual Autocorrelation (ACF) 
The autocorrelation functions (ACF) of the residuals obtained by fitting the LOTVEBIA models (13), (14) and (15) are 

displayed in figures 1, 2 and 3 of the appendix. As clearly seen in the figures, there is no significant spike at any lag. This 

is an indication that the residuals are uncorrelated and resembles a white noise process. Hence, the models are adequately 

fitted.  

 

Actual and Predicted Values Plots 
The actual and predicted values plots of the fitted LOTVEBIA models (13), (14) and (15) are displayed for each series in 

figures 4, 5 and 6 of the appendix. Each figure contains two graphs (the actual and its estimates plots). Examination of 

this plots shows that there is no significant difference between the actual values and the predicted values. The two plots 

on each figure are intertwined and move in the same direction. This shows that the estimates provided by each model are 

good. Hence the models are adequate. 

 

Comparative Analysis 
Using the mean absolute error (MAE) and the mean absolute percentage error (MAPE) described in section 3; the values 

of each test for the VEBIA and the LOTVEBIA models are displayed in table-1 below: 

 

Table-1:  Comparative Test Values 

Models SERIES MAE MAPE 

 

VEBIA 
    16.36 31.11 

    22.90 34.42 

    21.96 33.77 

 

LOTVEBIA 
    11.43 21.33 

    14.16 23.12 

    13.77 22.58 

  

The above table-1 clearly shows that the errors incurred by the VEBIA models are larger than those incurred by 

the LOTVEBIA model. In simple terms, the LOTVEBIA models perform better than the VEBIA models. 

 

DISCUSSION AND CONCLUSION 
The Lower Triangular Vector Bilinear Autoregressive (LOTVEBIA) Time Series Model is more or less a subset 

fit of the full Vector Bilinear Autoregressive (VEBIA) Time Series Model. As noted in the review, Clifford [5] 

highlighted that the procedure of fitting the full VEBIA model is sometimes boring and complicated; hence a subset fit  

with optimum result is necessary. In line with this demand, this work has considered fitting a part (lower triangular 

portion) of the VERBIA model which is a form of subset VERBIA fit described by Clifford [5]. One of the assumptions 

of model adequacy is that residuals are expected to follow a white noise process. The proposed LOTVEBIA model has 

fulfilled this assumption and therefore be taken as one of the methods of addressing bilinear concepts. Comparative 

analysis carried out has shown that the LOTVEBIA models, despite its simplicity, outperform other bilinear forms. It is 

therefore pertinent to conclude that in most cases, a subset form of a vector bilinear structure can be more adequately 

fitted to a data than the complete bilinear form. 

 

REFERENCES 

1. Box GE, Jenkins GM. Time series analysis, control, and forecasting. San Francisco, CA: Holden Day. 1976; 

3226(3228):10.  

2. Volterra V. Theory of Functionals and of Integral and Integro. Differential Equations. 1930; 61. 

3. Vale TG, Carter IW, McPhie KA, James G, Cloonan MJ. © HUMAN ARBOVIRUS INFECTIONS ALONG 

THE SOUTH COAST OF NEW SOUTH WALES. Australian Journal of Experimental Biology & Medical 

Science. 1986 Jun 1; 64(3). 

4. Weiner N. Norepinephrine, epinephrine, and the sympathomimetic amines. Goodman and Gilman's The 

Pharmacological Basis of Therapeutics. 7th ed. New York: MacMillan Publishing Company. 1985:p145-180.  

5. Görlinger K, Saner FH. Prophylactic plasma and platelet transfusion in the critically Ill patient: just useless and 

expensive or even harmful?. BMC anesthesiology. 2015 Jun 9; 15(1):86. 

6. Rao TS. On the theory of bilinear time series models. Journal of the Royal Statistical Society. Series B 

(Methodological). 1981 Jan 1:244-55.  

http://saspjournals.com/sjpms


 
 
Iberedem A. Iwok.; Sch. J. Phys. Math. Stat., 2017; Vol-4; Issue-2 (Apr-Jun); pp-44-52 

Available Online:  http://saspjournals.com/sjpms   48 

 

7. Guégan D, Pham DT. A note on the estimation of the parameters of the diagonal bilinear model by the method 

of least squares. Scandinavian journal of statistics. 1989 Jan 1:129-36.  

8. Boonchai KS, Eivind S. Multivariate bilinear time series: A stochastic alternative in population dynamics. 

Geophysical Research Bstracts, Vol. 7, 02219.  

9. Iwok IA, Etuk EH. On the Comparative Performance of Pure Vector Autoregressive-Moving Average and 

Vector Bilinear Autoregressive-Moving Average Time Series Models. Asian Journal of Mathematics & 

Statistics. 2009;2(2):33-40. 

10. Iwok IA. Vector bilinear autoregressive time series model and its superiority over its linear autoregressive 

counterpart. Global Journal of Pure and Applied Sciences. 2016 Jan 1; 22(1):51. 

11. Tong H, Lim KS. Threshold autoregression, limit cycles and cyclical data. Journal of the Royal Statistical 

Society. Series B (Methodological). 1980 Jan 1:245-92. 

 

Appendix 

 
Fig-1: Autocorrelation function for Residuals from fitting      
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Fig-2: Autocorrelation function for Residuals from fitting      

 

     

 
Fig-3: Autocorrelation function for Residuals from fitting      
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Key: o (actual plot) and + (estimates plot) 

Fig-4: LOTVEBIA plots of actual and estimates of     

            

 
Key: o (actual plot) and + (estimates plot) 

Fig-5: LOTVEBIA plots of actual and estimates of     
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Key: o (actual plot) and + (estimates plot) 

Fig-6: LOTVEBIA plots of actual and estimates of     
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