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Abstract: In this paper, A numerical method based on an  set of general, orthonormal Bernstein functions coupled with 

Block-Pulse Functions on the interval [0,1] to solve non linear Volterra integral equations of the second kind, 

numerically.   First we introduced the  proposed  hybrid method, then we used it to transform  the  integral  equations  to  

the system  of  algebraic equations.  The obtained numerical results of the proposed methods are compared with exact 

solution to show the convergence and advantages of the new method. the operational matrix of integration together with 

Newton-Cotes nodes are utilized to reduce the computation of nonlinear Volterra integral equations into some algebraic 

equations, the numerical example illustrate the efficiency and accuracy of this method. 

Keywords: Orthonormal Bernstein functions; Block-pulse functions; nonlinear Volterra integral equations; integration of 
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INTRODUCTION 

The nonlinear Volterra integral equations arise from various physical and biological models. The essential features of 

these models are of wide applicable [1]. In recent years, much work has been done in the study of numerical solutions to 

Volterra integral equations using collocation methods [1-3]. Benitez and Bolos [4] pointed out that collocation methods 

have proven to be a very suitable technique for approximating solutions to nonlinear integral equations because of their 

stability and accuracy. Other authors such as [5–7] used quadrature rules like repeated trapezoidal and repeated 

Simpson’s rule to solve linear Volterra integral equations. 

 

Existence of solutions for nonlinear integral equations, which contain particular cases of important integral and 

functional equations such as nonlinear Volterra integral equation, Urysohn integral equation, and integral equations of 

Chandrasekhar type, have been considered in many papers and books [8-10]. 

 

In this study, the basic ideas of the previous works are developed and applied to the nonlinear Volterra integral equations: 

 
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where 
1

, bxa  are scalar parameters, ),(,)( txkxf  are continuous functions  and )( xu is the unknown function 

to be determined. The advantage of this method to other existing methods is its simplicity of implementation besides 

some other advantages.  

 

This paper is organized as follows: In section 2, we introduce Bernstein polynomials and their properties.  Also we 

orthonormal these polynomials and hybrid them with Block-Pulse functions (HOBB) to obtain new basis.  In section 3, 

these new basis together with collocation method are used to reduce the Volterra integral equation to a linear system that 

can be solved by various method. In section 4 we apply these set of HOBB for approximating the solution of non linear 

Volterra integral equations. Using the properties of HOBB together with collocation method, we reduce non linear 

Volterra integral equations to a non linear system of linear equations; these equation can be solved using Newton 

method.   In section 5, numerical experiments are conducted to demonstrate the viability and the efficiency of the 

proposed method computationally. Finally, section 6 concludes the paper. 
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Brief review of Hybrid Orthonormal Bernstein and Block-Pulse Functions 

In this section we introduce Bernstein polynomials and their properties to get better approximation, we orthonormal these 

polynomials and hybrid them with Block-Pulse functions. 

 

Bernstein polynomials 

B-polynomials (Bernstein polynomials basis) of nth-degree were introduced in the approximation of continuous 

functions f(x) on an interval [0, 1] ;see [28]. 
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There are (n +1) nth-degree polynomials and for convenience, 

we set 0)(
,

xB
ni

, if 0i  or ni  . 

A recursive definition also can be used to generate the B-polynomials over this interval, so that the ith nth degree B-

polynomial can be written as; 
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The explicit representation of the orthonormal Bernstein polynomials, denoted by ( )(
,

xOB
ni

) here, was discovered by 

analyzing the resulting orthonormal polynomials after applying the Gram-Schmidt process on sets of Bernstein 

polynomials of varying degree n . For example, for 4n , using the Gram-Schmidt process on )(
4,

xOB
i

 normalizing, 

and simplifying the resulting functions, we get the following set of orthonormal polynomials; 
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We can see from these equations that the orthonormal Bernstein polynomials are, in general, a product of a factorable 

polynomial and a non-factorable polynomial. For the factorable part of these polynomials, there exists a pattern of the 

form 
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While it is less clear that there is a pattern in the non-factorable part of these polynomials, the pattern can be determined 

by analyzing the binomial coefficients present in Pascal’s triangle.  In doing this, we have determined the explicit 

representation for the orthonormal Bernstein polynomials to be 
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Block-Pulse functions (BPFs) and their properties 

BPFs are studied by many authors and applied for solving different problems, for example see [12]. 

A k - set of BPFs over the interval [0, T)  are defined as 
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with a positive integer value for k . In this paper, it is assumed that T = 1 , so BPFs are defined over [0, 1) .  BPFs have 

some main properties, the most important of these properties are disjointness, orthogonality, and completeness. 

(1)  The disjointness property can be clearly obtained from the definition of BPFs 

1,....,1,0,
,0

),(
)()( 








 kji

ji

jitB
tBtB

i

ji

                                                       (5) 

(2)  The orthogonality property of these functions is 
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(3)  The third property is completeness. For every ),1,0[
2

Ly   when k  approaches to the         infinity, Parseval’s 

identity holds, that is 
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Some properties of hybrid functions 

Hybrid functions of block-pulse and Orthonormal Bernstein polynomials 

We define HOBB  on the interval [0; 1] as follows: 
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where Mi ,....2,1  and nj ,....2,1,0 . Thus our new basis is },...,,{
,1,10,1 nM

HOBBHOBBHOBB  and we can 

approximate function with this base. For example, for M = 2 and n = 1 
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Function approximation by using OBH functions  

Any function )( ty which is square integrable in the interval )1,0[  can be expanded in a hybrid orthonormal Bernstein 

and Block-Pulse functions  

),1,0[,,...,2,1,0,,...,2,1),()(

1 0

  








tjitHOBBcty

i

ij

j

ij
                            (9) 

where the hybrid orthonormal Bernstein and Block-Pulse coefficients 
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In Eq. (10), ).,.( denotes the inner product.  Usually, the series expansion Eq. (9) contains an infinite number of terms 

for a smooth ).( ty  If ).( ty is piecewise constant or may be approximated as piecewise constant, then the sum in Eq. (9) 

may be terminated after nm terms, that is 

)()()(

1 0

tHOBBCtHOBBcty
T

M

i

ij

n

j

ij
  

 

                                                                        (11) 

where 
T

nM
HOBBHOBHHOBBtHOBB ],....,,[)(

,1,10,1
 ,and 

T

nM
cccC ],....,,[

,1,10,1
  

Therefore, we have 

 )(),()(),( tHOBBtutHOBBtHOBBC
T

 

Then ,)(),(
1




tHOBBtuDC  where 

,)(),(  tHOBBtHOBBD  

    dttHOBBtHOBB
T

)().(

1

0

                                                                                          (12) 

     





























M
D

D

D









00

0

00

00

2

1

 

then by using (7) ),...,2,1( MiD
i

  are defined as follows: 

dxjMxBiMxBD
nj

M

i

M

i

nijin
)1()1()(

,

1

,1,1
 




 

dxxBxB
M

njni
)()(

1

,

1

0

,  

                 
















































ji

n
nM

j

n

i

n

2
)12(

 

We can also approximate the function ]1,0[),( Ltxk   as follows: 
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Integration of OBH functions 

In HOBB function analysis for a dynamic system, all functions need to be transformed into HOBB functions. Since the 

differentiation of HOBB functions always results in impulse functions which must be avoided, the integration of HOBB 

functions is preferred. The integration of HOBB functions should be expandable into HOBB functions with the 

coefficient matrix P.  
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where the )1( mn -square matrix P is called the operational matrix of integration, and )(
))1((

tHOBB
mn 

 is defined 

in Eq. (8). A subscript )1()1(  mnmn  of P  denotes its dimension and P is given as: 
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and H  is the operational matrix of integration  and can be obtained as: 
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The integration of the cross product of two HOBB function vectors can be obtained as 
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where L  is an )1(  nM diagonal matrix given by 
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Eqs. (14-18) are very important for solving N Volterra integral equation, because the D and P matrix can increase the 

calculating speed, as well as save the memory storage. 

 

Multiplication of HOBB functions 

It is always necessary to evaluate the product of )(HOBB x  and )(HOBB x
T

, that is called the product matrix of 

HOBB functions. Let 
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Let R is )1()1((  nMnM matrix. Multiplying the matrix R by vector )(HOBB x   

and multiplying the matrix )(HOBB x by the resulted matrix )(HOBB xR  we obtain 
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where R
~

 is )1(1(  nM matrix and called the coefficient matrix With the powerful properties of Eq. (20) We can 

achieve R
~

by a way like C
~

 we can convert the Volterra part of integral and Integro-Differential equations System 

equations to an algebraic equation. 
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Fig-1: Patterns of the matrices R (right) and C (left). 

 

Solution of nonlinear Volterra integral equation of the second kind via hybrid       functions 

Consider the following integral equation: 
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()(HOBB
~~

)(HOBB                                                                  

YYtty
qTq 1

)
~

()(HOBB)(


 ,                                                                                           

with substituting in Eq. (24) 

)25()
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()(HOBB)()(

)()(

0

1








x

qTT

TT

dtYYttHOBBKxHOBB

xHOBBFxHOBBY








x

qTTTT
dtYYttHOBBKxHOBBxHOBBFxHOBBY

0

1
)

~
()(HOBB)()()()(   

where )(HOBB))
~

(()(HOBB))
~

(()
~

()(HOBB)(HOBB

0

~

1

~

1

0

1
xPYYdttYYdtYYtt

x

PP

x

PT




  

Applying the above Eqs.  to Eq. (25) and Eq.(25) becomes  

)(HOBB))
~

(()(HOBB)()(

~

1
xPYYKxxHOBBFxHOBBY

PTTT 
                                         (26)        

If we approximate )(HOBB
~

)(HOBB))
~

(()(HOBB
1

1
xRxPYYKx

PT



, 

We can achieve )
~

( R by a way like C
~

, and we see that for element of 
1

~
R is obtained by the sum of column elements of

PUUK
P

))
~

((
1

1


with respect to coefficient R

~
in Eq. (23) at each column. By using this property and omitting hybrid 

vector functions in Eq. (26), we will have 

            )(HOBB
~

)()( xRxHOBBFxHOBBY
TT

                                                               (27) 
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In order to find Y  we collocate Eq. (27) in )1( nM  nodal points of Newton-Cotes [13] as 
)1(2

12






nM

i
t

i
                                                                                                            

(28) 

From Eqs. (27) and (28), we have a system of )1( nM nonlinear equations and )1( nM  unknowns. After solving 

above nonlinear system using Newton method, we can achieve the unknown vectors Y . The required approximated 

solution )( xy for nonlinear Volterra integral Eq. (1) can be obtained by using Eqs.(22), (26) and (27) as follows 

)()( xHOBBYxy
T

  

 

Numerical Examples 

We applied the presented schemes to the following Volterra integral equation of second kind.  For this purpose, we 

consider an example. 

Example 1 

1
6

5

3

2

4

1
)(

)25()()1()()(

2345

0

2



 

xxxxxf

dttyxtxfxy

x

 

With the exact solution 1)(  xxy . 

 In Table 1 the exact and approximate solutions of Example 1 for M=4 and n=3 which confirms that the HOBB method 

gives almost higher accuracy than the other method. The average relative errors of our method
6

109872.2


 . Better 

approximation is expected by choosing the higher values of M and n.  

              

Table-1: The comparison among HOBB and analytic solutions for Example 1 
x  HOBB solution Analytic solution 

 

Absolute error 

0.1 1.10000103 1.1 6
1003.1


  

0.2 1.19999645 1.2 6
1055.3


  

0.3 1.30000453 1.3 6
1053.4


  

0.4 1.40005202 1.4 5
10202.5


  

0.5 1.49999654 1.5 6
10458.3


  

0.6 1.59996374 1.6 5
106255.3


  

0.7 1.69997459 1.7 5
105401.2


  

0.8 1.80000251 1.8 6
10514.2


  

0.9 1.90003121 1.9 5
10121.3


  

 

 

 

CONCLUSION 

In this paper a combination of orthonormal Bernstein and Block-Pulse functions is proposed to obtain an 

approximate numerical solution of the nonlinear Volterra integral equations. The method is based upon reducing the 

system into a set of algebraic equations. The generation of this system needs just sampling of functions multiplication 

and addition of matrices and needs no integration. The main advantage of this method is its efficiency and simple 

applicability. The matrix D and P are sparse; hence are much faster than other functions and reduces the CPU time and 

the computer memory, at the same time keeping the accuracy of the solution. The numerical examples support this claim. 

Also we noted that when the degree of Hybrid Orthonormal Bernstein and Block-Pulse Functions is increasing the errors 

decreasing to smaller values. The advantages of these hybrid functions are that the values of n and m are adjustable as 
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well as being able to yield more accurate numerical solutions than the piecewise constant orthogonal function, for the 

solutions of integral equations. 
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