## **Scholars Journal of Physics, Mathematics and Statistics**

Sch. J. Phys. Math. Stat. 2017; 4(3):140-144 ©Scholars Academic and Scientific Publishers (SAS Publishers) (An International Publisher for Academic and Scientific Resources)

## ISSN 2393-8056 (Print) ISSN 2393-8064 (Online)

# Coincidence point theorems under F-contraction in Ultrametric Space

Jeyanthi C<sup>1</sup>, Giniswamy<sup>2</sup>

<sup>1</sup>Department of Mathematics, Teresian College, Mysore-570 011, Karnataka <sup>2</sup>PES College of Science, Arts and Commerce, Mandya-571401, Karnataka

## \*Corresponding Author:

Jeyanthi C

**Abstract:** In this paper, we establish some results on coincidence points for a pair of single valued maps with a pair of multivalued maps of an Ultrametric space which satisfy F-contraction. Our theorems generalize and extents the theorem of Wang and Song [13], thereby generalize some known results in the literature.

Keywords: Coincidence point, coincidentally commuting, fixed point, F-contraction and spherically complete

#### INTRODUCTION AND PRELIMINARIES

Roovij [12] introduced the concept of ultra metric space. Gajic studied the fixed point theorems of contractive type maps on spherically complete ultra metric spaces which are generalizations of the Banach fixed point theorems. In 2007 Rao *et al.* obtained coincidence point theorems for three and four self maps in Ultra metric space. Kubiaczyk and Mostafa [5] extended to the set-valued maps. In 2013, Wang and Song obtained some results on coincidence and common fixed point for a pair of single valued and a pair of multivalued maps. Many researchers took interest in generalizing and improving fixed point theorems, recently Wardowski [14] gave a generalization by introducing a new contractive map called Fcontraction, which was generalized and improved [4, 7, 8, 11].

The aim of this paper is to establish the existence of coincidence and common fixed point for a pair of single valued maps and a pair of multi valued maps in ultrametric using F-contraction.

**Definition 1.1.** [12] Let (X, d) be a metric space. If the metric *d* satisfies strong triangle inequality  $d(x, y) \le max\{d(x, z), d(z, y), \text{ for all } x, y, z \text{ in } X\}$  then *d* is called an ultrametric on X and (X, d) is called an ultra metric space.

**Definition 1.2**. [12] An ultra metric space is said to be spherically complete if every shrinking collection of balls in X, has a non empty intersection.

**Definition 1.3**. An element  $x \in X$  is said to be a coincidence point of  $f: X \to C(X_{n})$  and  $T: X \to X$ , if  $Tx \in fx$ .

**Definition 1.4**. [9] Let (X, d) be an ultra metric space and C(X) denote the class of all non empty compact subsets of X, a multivalued map  $f: X \to C(X)$  and a self map  $T: X \to X$  are said to be coincidentally commuting at  $z \in X$  if  $Tz \in fz$  implies  $Tfz \subseteq fTz$ .

**Definition 1.5.** [1] An element  $x \in X$  is a common fixed point of  $f, g : X \to C(X)$  and  $T : X \to X$ If,  $x = Tx \in fx \cap gx$ .

Let F be the set of all functions  $F : (0,\infty) \to R$  satisfying the following conditions: (a) F is strictly increasing, that is, for all  $\alpha, \beta \in (0,+\infty)$  if  $\alpha < \beta$  then  $F(\alpha) < F(\beta)$ . (b) For each sequence  $\{\alpha_n\}$  of positive numbers, the following holds:

 $\lim_{n\to\infty} \alpha_n = 0 \text{ if and only if } \lim_{n\to\infty} F(\alpha_n) = -\infty.$ 

(c) There exist  $k \in (0, \infty)$  such that  $\lim_{n \to 0^+} (\alpha^k F(\alpha)) = 0$ .

**Definition 1.6.** [14] Let (X, d) be a metric space. A self map *T* on *X* is an F-contraction, if  $F \in F$  and there exist  $\tau > 0$  such that

 $\tau + F(d(Tx, Ty)) \le F(d(x, y))$ 

Available Online: http://saspjournals.com/sjpms

(1)

for all *x*,  $y \in X$  with  $Tx \neq Ty$ 

#### MAIN RESULT

In this section, we prove the existence of coincidence point for pair single valued maps with a pair of multivalued maps.

The Hausdorff metric is defined as  $H(A, B) = max\{sup_{x \in A} d(x, B), sup_{y \in B} d(y, A)\}$  where  $d(x,A) = \inf\{d(x, a) : a \in A\}$ 

**Theorem 2.1.** Let (X, d) be an Ultra metric space. If S,  $T: X \rightarrow C(X)$  be a pair of multi valued maps and f,  $g: X \to X$  be a pair of single valued maps satisfying,

(a) fgX is spherically complete.

(b)  $\tau + F(H(Sx, Ty)) < F(max\{d(Sx, fx), d(Ty, gy), d(fx, gy)\}), \text{ for all } x, y \in X, Sx \neq Ty, fx \neq gy$ 

(c) fS=Sf, fg=gf, fT=Tf, gS=Sg, gT=Tg, ST=TS.

(d)  $SX \subseteq fX, TX \subseteq gX.$ 

Then there exists points u, v in X such that  $fu \in Su$ ,  $gv \in Tv$ , fu=gv, Su=Tv.

**Proof.** For  $\alpha \in X$ , let  $B_{\alpha} = B(fg\alpha, max\{d(fg\alpha, Sg\alpha), d(fg\alpha, Tf\alpha)\})$  denote the closed ball with center at  $fg\alpha$  and radius  $max{d(fga, Sga), d(fga, Tfa)}.$ 

Let A be the collection of these balls for all  $\alpha \in fgX$ . Then the relation  $B_{\alpha} \leq B_{\beta}$  if  $B_{\beta} \subseteq B\alpha$  is a partial order on A. Now, consider a totally ordered subfamily  $A_1$  of A. Since fgX is spherically complete we have that  $\bigcap_{B_\alpha \in A_1} B_\alpha = B \neq \phi$ , Let  $fg\beta \in B = \bigcap B_{\alpha}$  where  $\beta \in fgX$  and  $B_{\alpha} \in A_{1}$ . Then  $fg\beta \in B_a$ . Hence

$$d(fg\beta, fg\alpha) \le max\{d(fg\alpha, Sg\alpha), d(fg\alpha, Tf\alpha)\}$$
(2)

If  $\alpha = \beta$  then  $B_{\alpha} = B_{\beta}$ .

Let  $\alpha \neq \beta$  and  $x \in B_{\beta}$ . Then  $d(x, fg\beta) \leq max\{d(fg\beta, Sg\beta), d(fg\beta, Tf\beta)\}$ . Since Sg $\beta$  is non empty compact set, there exist  $u \in B_{\beta}$ . Sga such that d(fga, u) = d(fga, Sga).

And since  $Tf\alpha$  is non empty compact set, there exist  $v \in Tf\alpha$  such that  $d(fg\alpha, v) = d(fg\alpha, Tf\alpha)$ 

Consider  $\tau + F(H(Tf\alpha, Sg\beta)) \le F(max\{d(Sg\beta, fg\beta), d(Tf\alpha, gf\alpha), d(fg\beta, gf\alpha)\})$  $F(H(Tf\alpha, Sg\beta)) \leq F(max\{d(Sg\beta, fg\beta), d(Tf\alpha, gf\alpha), d(fg\beta, gf\alpha)\}) - \tau$  $< F(max\{d(Sg\beta, fg\beta), d(Tf\alpha, gf\alpha), d(fg\beta, gf\alpha)\})$ 

Since F is increasing,

$$H(Tf\alpha, Sg\beta) < max\{d(Sg\beta, fg\beta), d(Tf\alpha, gf\alpha), d(fg\beta, gf\alpha)g$$
(3)

And

 $\tau + F(H(Sg\alpha, Tf\beta)) \leq F(max\{d(Sg\alpha, fg\alpha), d(Tf\beta, gf\beta), d(fg\alpha, gf\beta)\})$  $F(H(Sg\alpha, Tf\beta)) \leq F(max\{d(Sg\alpha, fg\alpha), d(Tf\beta, gf\beta), d(fg\alpha, gf\beta)\} - \tau$  $< F(max\{d(Sg\alpha, fg\alpha), d(Tf\beta, gf\beta), d(fg\alpha, gf\beta)\})$ Since F is increasing,  $H(Sg\alpha, Tf\alpha) < max\{d(Sg\alpha, fg\alpha), d(Tf\beta, gf\beta), d(fg\alpha, gf\beta)\}$ (4) Now  $max\{d(fg\beta, Sg\beta), d(fg\beta, Tf\beta)g = max\{inf_{c \in Sg\beta}d(fg\beta, c), inf_{l \in Sg\beta}d(fg\beta, l)\}$  $\leq max\{d(fg\beta, fg\alpha), d(fg\alpha, v)\}, inf_{l \in Sg\beta}d(v, c), d(fg\beta, fg\alpha),$  $d(fg\alpha, u), inf_{d \in TfB}d(u, d)$  $\leq max\{d(fg\beta, fg\alpha), d(fg\alpha, Tf\alpha)\}, H(Tf\alpha, Sg\beta),$  $d(fg\beta, fg\alpha), d(fg\alpha, Sg\alpha), H(Sg\alpha, Tf\beta)g$  $< max\{d(fg\beta, fg\alpha), d(fg\alpha, Tf\alpha)), d(fg\alpha, Sg\alpha),$  $max\{d(Sg\beta, fg\beta), d(Tf\alpha, gf\alpha), d(fg\beta, gf\alpha)\},\$  $max\{d(Sg\alpha, fg\alpha), d(Tf\beta, gf\beta), d(fg\alpha, fg\beta)\}\}$  $= max\{d(Sg\alpha, fg\alpha), d(fg\alpha, Tf\alpha)\}$ (5)Therefore,  $d(x, fg\alpha) \le max\{d(x, fg\beta), d(fg\beta, fg\alpha)\}$ (6)

 $\leq max\{d(fga, Sga), d(fga, Tfa)\}$ Thus,  $x \in B_q$ . Hence  $B\beta \subset B_q$  for any  $B_q$  in  $A_1$ . Thus  $B\beta$  is the upper bound for the family  $A_1$ .

Available Online: http://saspjournals.com/sjpms

#### Jeyanthi C et al.; Sch. J. Phys. Math. Stat., 2017; Vol-4; Issue-3 (Jul-Sep); pp-140-144

in A and hence by Zorn's lemma A has a maximum element say  $B_{\tau_i} z \in fgX$ . There exists  $w \in X$  such that z = fgw. Now to prove that  $f(gfgw) \in S(gfgw)$  and  $f(ffgw) \in T(ffgw)$ . Suppose that  $f(gfgw) \notin f(gfgw)$ S(gfgw) and  $f(ffgw) \notin T(ffgw)$ . Since Sgfgw, T $\beta$ gw are non empty compact sets, there exist  $k \in$  Sgfgw,  $t \in$  Tffgw, such that d(fgfgw, Sgfgw) = d(fgfgw, k), d(fgfgw, Tffgw) = d(fgfgw, t)We have,  $d(Sgfgw, TSfgw) = inf_{e \in TSfgw} d(Sgfgw, e)$  $\leq max\{d(Sgfgw, fgfgw), d(fgfgw, k), inf_{e \in TSfgw}d(k, e)\}$  $\leq max\{d(Sgfgw, fgfgw), d(fgfgw, Sgfgw), inf_{e \in TSfgw}d(k, e)\}$  $\leq max\{d(Sgfgw, fgfgw), H(Sgfgw, TSfgw)\}$ (7)< max{d(Sgfgw, fgfgw), max{d(Sgfgw, fgfgw), d(TSfgw, gSfgw), d(fgfgw, gSfgw)}} = max{d(Sgfgw, fgfgw), maxfd(Sgfgw, fgfgw), d(TSfgw, Sgfgw), d(fgfgw, Sgfgw)}} = d(Sgfgw, fgfgw)And also we have  $d(Tffgw, STfgw) = inf_{h \in STfgw} d(Tffgw, h)$  $\leq max\{d(Tffgw, fgfgw), d(fgfgw, t), inf_{h \in TSfgw}d(k, e)\}$  $\leq max\{d(Sgfgw, fgfgw), d(fgfgw, Sgfgw), inf_{e \in TSfgw}d(k, e)\}$  $\leq max\{d(Sgfgw, fgfgw), H(Sgfgw, TSfgw)\}$ (8) < max{d(Sgfgw, fgfgw), maxfd(Sgfgw, fgfgw), d(TSfgw, gSfgw), d(fgfgw, gSfgw)}} = max{d(Sgfgw, fgfgw), maxfd(Sgfgw, fgfgw), d(TSfgw, Sgfgw), d(fgfgw, Sgfgw)}} = d(Sgfgw, fgfgw)And  $d(fggSw, SggSw) = inf_{m \in SggSw} d(fggSw,m)$  $\leq max \{ d(fggSw, TSfgw), d(TSfgw, Tffgw), d(Tffgw, fgfgw), d(fgfgw, t), inf_{m \in SeeSw} d(t,m) \}$ (9) $\leq max\{d(gSfgw, TSfgw), d(Tffgw, fgfgw), H(Tffgw, SggSw)\}$ < max{d(Sgfgw, fgfgw), d(Tffgw, fgfgw), maxfd(SggSw, fggSw),d(Tffgw, gffgw), d(fggSw,gffgw)}} = max{d(Sgfgw, fgfgw), d(Tffgw, fgfgw)} Also  $d(fgfTw, TffTw) = inf_{n \in TffTw} d(fgfTw, n)$  $\leq max\{d(fgfTw, STfgw), d(STfgw, Sgfgw), d(Sgfgw, fgfgw), d(fgfgw, k), inf_{m \in TffTw}d(k, n)\}$  $\leq max\{d(ffTgw, STfgw), d(fgfgw, Sgfgw), H(Sgfgw, TffTw)\}$ (10)< max{d(Tffgw, fgfgw), d(fgfgw, Sgfgw), maxfd(Sgfgw, fgfgw),d(TffTw, gffTw), d(fgfgw,gffTw)}} = max{d(Tffgw, fgfgw), d(fgfgw, Sgfgw)} From the equation (7) and (9) max{d(Sgfgw, TSfgw), d(fggSw, SggSw)} < max{d(fgfgw, Sgfgw), max{d(fgfgw, Sgfgw), d(fgfgw, Tffgw)}} = max{d(fgfgw, Sgfgw), d(fgfgw, Tffgw)} (11)From the equation (8) max{d(STfgw, Tffgw), d(fgfTw, TffTw)} < max{d(Tffgw, fgfgw), max{d(fgfgw, Tffgw),d(fgfgw, Sgfgw)}} = maxfd(Tffgw, fgfgw), d(fgfgw, Sgfgw)g (12)Case:(i) *If max{d(fgfgw, Sgfgw), d(fgfgw, Tffgw)} = d(fgfgw, Sgfgw)* Then from (11)  $fgfgw \not\in B_{gSw}$  which implies  $fgz \not\in B_{gSw}$ . Therefore  $B_z \not\subset B_{gSw}$ . It is a contradiction to the maximality of  $B_z$ in A. Hence  $qSw \subset qfX = fqX$ . Case:(ii) If max{d(fgfgw, Sgfgw), d(fgfgw, Tffgw)} = d(fgfgw, Tffgw). Then from (12)  $fgfgw \not\in B_{fTw}$  which implies  $fgz \not\in B_{fTw}$  Hence  $B_z \not\subset B_{fTw}$ fgfgw ∈ Sgfgw, gffgw ∈ Tffgw (13)and f(gfgw) = fgfgw = g(ffgw). Using (b), (c) and equation (13), we have  $\tau + F(H(Sgfgw, Tffgw)) < F(max\{d(Sgfgw, fgfgw), d(Tffgw, gffgw), d(fgfgw, gffgw)\})$  $F(H(Sgfgw, Tffgw)) < F(max\{d(Sgfgw, fgfgw), d(Tffgw, gffgw), d(fgfgw, gffgw)\}) - \tau$ < F(max{d(Sgfgw, fgfgw), d(Tffgw, gffgw), d(fgfgw, gffgw)}) = 0Hence Sgfgw = Tffgw which implies If u = gfgw, v = ffgw then Su = Tv, fu = gv,  $fu \in Su$ ,

 $gv \in Tv$ . Hence the proof.

**Corollary 2.2**. Theorem 2.1 holds if the condition (b) is replaced by

 $\tau + F(H(Sx, Ty)) < F(max\{d(Sx, fx), d(Ty, gy), d(fx, gy), d(gy, Sx), d(Ty, fx)\})$ for all x,  $y \in X$ ,  $Sx \neq Ty$ ,  $fx \neq fy$ .

**Proof.** By strong triangle inequality,  $d(Sx, gy) \le max\{d(Sx, fx), d(fx, gy)\}$  and  $d(Ty, fx) \le max\{d(Ty, gy), d(gy, fx)\}$  it follows that (14) implies condition (b) of Theorem 2.1.

**Theorem 2.3.** Let (X, d) be an Ultra metric space. If  $S, T : X \to C(X)$  be a pair of multi-valued maps and  $f : X \to X$  be a single valued map satisfying,

(a) fX is spherically complete.

(b)  $\tau + F(H(Sx, Ty)) \leq F(max\{d(Sx, fx), d(Ty, fy), d(fx, fy)\})$ , for all  $x, y \in X$ ,  $Sx \neq Ty$ ,  $fx \neq fy$ 

(c) fS=Sf, fT=Tf, ST=TS.

(d)  $SX \in fX$ ,  $TX \in fX$ .

Then *f*, *S* and *T* have a coincidence point in X. If *f* and *S*, *f* and *T* are coincidentally commuting at  $z \in C(f, T)$  and ffz = fz then *f*, *S* and *T* have a common fixed point in *X*.

**Proof.** If f = g in the theorem 2.1 then we have the points u and v such that  $fu \in Su$ ,  $fv \in Tv$ , fu = fv, Su = Tv.

As  $u \in C(f, S)$ , f and S are coincidentally commuting at u and ffu = fu. Let w = fu, then  $w \in Su$ ,  $w \in Tv$  implies  $w \in Su \cap Tv$ . Therefore fw = w and  $w = fw \in fSu \subseteq Sfu = Sw$ . Hence  $w = fw \in Sw$ .

Also, since  $u \in C(f, T)$ , f and T are coincidentally commuting at u and ffu = fu. Take w = fu, then  $w \in Su$ ,  $w \in Tv$ . Then we have fw = w and  $w = fw \in f(Su) \subseteq S(fu) = Sw$ . Now, since also  $u \in C(f, T)$ , f and T are coincidentally commuting at u and ffu = fu. We have  $w = fw \in f(Tv) \subseteq T(fv) = Tw$ . Thus, we have proved that  $w = fw \in Sw \cap Tw$ , that is, w is the common fixed point of f, S and T.

**Corollary 2.4.** Theorem 2.3 holds if the condition (b) is replaced by  $\tau + F(H(Sx, Ty)) < F(max\{d(Sx, fx), d(Ty, fy), d(fx, gy), d(fy, Sx), d(Ty, fx)\})$ (15) for all  $x, y \in X$ ,  $Sx \neq Ty$ ,  $fx \neq fy$ .

**Proof.** By strong triangle inequality,  $d(Sx, fy) \le max\{d(Sx, fx), d(fx, fy)\}\)$  and  $d(Ty, fx) \le max\{d(Ty, fy), d(fy, fx)\}\)$  it follows that (15) implies condition (b) of Theorem 2.3.

**Corollary 2.5.** Let (X, d) be a spherically complete ultra metric space. Let  $T, S : X \to C(X)$  be a pair of multi-valued maps satisfying:

(a)  $\tau + F(H(Sx, Ty)) < F(max\{d(x, y), d(x, Sx), d(y, Ty)\})$  for all  $x, y \in X$ ,  $Sx \neq Ty, x \neq y$ . (b) ST = TS.

Then, there exist a point z in X such that  $z \in Sz \cap Tz$  and Sz = Tz.

#### REFERENCES

- 1. Damjanović B, Samet B, Vetro C. Common fixed point theorems for multi-valued maps. Acta Mathematica Scientia. 2012 Mar 1;32(2):818-24.
- 2. Gajic L. On ultrametric space. Novi Sad J. Math. 2001;31(2):69-71.
- 3. Gajić L. A multivalued fixed point theorem in ultrametric spaces. Matematički vesnik. 2002 Jan;54(3-4):89-91.
- 4. Cosentino M, Vetro P. Fixed point results for *F*-contractive mappings of Hardy-Rogers-type. Filomat. 2014 Jan 1;28(4):715-22.
- 5. Kubiaczyk J, Ali NM. A multivalued fixed point theorem in non-Archimedean vector spaces. Novi Sad J. Math. 1996;26(2):111-6.
- 6. Mishra SN, Pant R. Generalization of some fixed point theorems in ultrametric spaces. Advances in Fixed Point Theory. 2013 Mar 12;4(1):41-7.

(14)

#### Jeyanthi C et al.; Sch. J. Phys. Math. Stat., 2017; Vol-4; Issue-3 (Jul-Sep); pp-140-144

- 7. Minak G, Helvaci A, Altun I. Ćirić type generalized *F*-contractions on complete metric spaces and fixed point results. Filomat. 2014 Jan 1;28(6):1143-51.
- 8. Piri H, Kumam P. Some fixed point theorems concerning F-contraction in complete metric spaces. Fixed Point Theory and Applications. 2014 Dec 1;2014(1):210.
- 9. Rao KP, Kishore GN. Common fixed point theorems in Ultra Metric Spaces. Journal of Mathematics. 2008;40:31-5.
- 10. Rao KP, Kishore GN, Rao TR. Some coincidence point theorems in ultra metric spaces. Int. J. Math. Analysis. 2007;1(18):897-902.
- 11. Tomar A, Jeyanthi C, Maheshwari PG. On coincidence and common fixed point of six maps satisfying F-contractions. Journal of Applied and Engineering Mathematics. 2016 Jul 1;6(2):224-32.
- 12. Van Rooij AC, van Rooij AC, van Rooij AC, Mathematician N, van Rooij AC, Mathématicien PB. Non-Archimedean functional analysis. New York: Dekker; 1978.
- 13. Wang Q, Song M. Common fixed point theorems of multi-valued maps in ultra metric space. Applied Mathematics. 2013 Feb 22;4(02):417.
- 14. Wardowski D. Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl., 2012 (2012), Art.