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Abstract: Consider two linear models with missing data, where the covariates are not missing and response variables are 

missing at random (MAR). The inverse probability weighted imputation is used to impute the missing data of response 

variables. We construct the empirical log-likelihood ratios on mean differences of two response variables. And the 

asymptotic distributions for the empirical log-likelihood ratios of mean differences of response variables are standard 
2

1
  comparing with the results of previous studies. The empirical likelihood confidence intervals for mean differences of 

response variables is more accurate because the errors caused right of the coefficient estimates is reduced. 
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INTRODUCTION 

In data mining and machine learning, identifying the mean differences between two populations is useful in predicting 

the properties of a group using one another [1]. For example, in medical research, it is an important means to compare the 

mean value of prolonging patient’s life between a group using a new product (medicine) and a group with another 

product. In this paper we study empirical likelihood confidence intervals for mean differences between two linear models 

with missing data. 

    

Consider the following two linear regression models:  
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y  is missing, otherwise. Throughout this paper, we assume that YX ,  are 

missing at random (MAR). That is,  
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  Denote the distribution function of X is F , the distribution function of Y is G , mean of X is )=( EX , mean 

of Y is EY , EXEY  = , that is =EY . 

 

In this paper, we focus on constructing EL confidence regions on mean differences (  ) of response variables X  and Y  

in two linear models with missing data. The EL ratio statistics are constructed based on the inverse probability weighted 

imputation approach, which asymptotically have tape
2

1
  distributions.  
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Our work is closely related with Wang and Rao [2-4], Xue [5], Qin and Lei [6], but it is different in a number of ways, 

and the research contents have not been studied at present. Wang and Rao [3] developed an imputed empirical likelihood 

(EL) method to construct confidence intervals for the mean. The main idea is to impute the missing values by their 

predicted values. Then a complete data EL method is used from the imputed data set as if they were i.i.d. observations. 

But the EL ratio statistic for EY  has a limiting distribution of a scaled 
2

  with unknown weight, which cannot be 

applied directly to make inference for mean. An adjusted EL is thus needed to obtain a confidence interval for mean. This 

also would lead to a loss of the accuracy of the confidence interval. To solve this problem, Xue [5] combined the EL 

method and the inverse probability weighted imputation technique to study the construction of confidence intervals and 

regions for mean. It is shown that the EL ratios based on the inverse probability weighted imputation are asymptotically 

standard chi-squared, which can be used directly to construct confidence intervals and regions for mean. This is a nice 

feature. However, somewhat strong conditions are required, which restrict the applicable scope of the approach. Then 

Qin and Lei [6] constructed empirical likelihood statistics on mean which have the tape
2

1
  limiting distributions 

under some new conditions based on Xue [5], their results broaden the applicable scope of the approach combined with 

Xue [5].  

 

The inverse weighted approaches are widely used in the situation of missing covariates [7, 8]. The EL method to 

construct confidence intervals, proposed by Owen [9-11], has many advantages over its counterparts like the normal-

approximation-based method and the bootstrap method [12, 13]. In particular, the prior constraints on region shape are 

not needed to impose, the construction of a pivotal quantity is not required, and the constructed region is range 

preserving and transformation-respecting.  

 

The rest of the paper is organized as follows. In Section 2, we introduce two imputation methods: linear regression 

imputation and inverse probability weighted imputation. In Section 3, we develop EL approach based on the inverse 

probability weighted imputation technique, and show that the resulting empirical log-likelihood is asymptotically 

standard chi-squared under some conditions, which is used to obtain EL confidence intervals on mean differences. A 

short discussion on bandwidth selection is given in Section 4. Section 5 reports some simulation results to study the 

performance of the proposed confidence intervals. 

 

Imputation methods 

    To implement regression imputation, we need an initial estimators of   and   first. Then two imputation methods 

are introduced, namely, linear regression imputation and inverse probability weighted imputation.  

 

Initial estimator of   and    

    Based on the completely observed pairs njvymiux
jjii

,1,=),,(;,1,=),,(  , define the weighted least square 

estimators of   and   respectively as follows 
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Linear regression imputation 

    For missing
i
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y  respectively use the predicted response of 
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v  to impute is a commonly used method, i.e. 
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Inverse probability weighted imputation 

Denote the probability that X  is not missing by )(u  given u , and Y  is not missing by )(
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can be viewed as the combination of Horvitz-Thompson inverse-selection weighted method and imputation method. But 

in general, s
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So we can obtain the ’complete’ sets for X  and Y  as follows  
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Wang and Rao [3] developed an imputed EL method to construct confidence intervals for the mean EX , where the 

’complete’ set for X  was obtained under linear regression imputation, and the EL ratio statistic for EX  has a limiting 

distribution of a scaled 
2

1
  with unknown weight. Qin and Lei [6] constructed confidence intervals on the mean EX  

using inverse probability weighted imputation, and a scaled tape
2

1
 limiting distribution of the EL ratio statistic for 

EX  is obtained. In this paper, we will use the inverse probability weighted imputation to impute the missing data of X  

and Y , and construct the EL statistics on mean differences of X  and Y , then show that the EL statistics have a 

tape
2

1
  limiting distributions, which are used to construct EL confidence intervals without adjustment. 

 

The EL confidence intervals 

    Throughout this paper, we define 0/0 as 0. Let  
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Similar to Owen (1990), we define the empirical log-likelihood ratio on   as follows  
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 It can be shown, by using the Lagrange multiplier method, that  
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    Use |||| u  and |||| v  to denote the normL 
2

 in 
p
R  and 

q
R  respectively. Assume that the probability density 

functions of U  and V  exist, and )(fu :  and )(gv : . Use 
0

  to denote the true value of  , and 
0

  and   

is an open interval. Similar to Qin and Lei [6] we give some regularity conditions needed of the results in this paper. 

    (C1) )(uf and )( vg all are bounded, and there exist constants 0>,0,>, baba   such that  
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Theorem: Suppose that assumptions (C1) through (C5) are satisfied. Then there exists a root 
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Bandwidth selection 

    Cross-validation method in choosing bandwidths is recommended. We select h  and 
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Simulations 

    We conducted a small simulation study on the finite sample performance of the EL confidence intervals of   

proposed in Section 5. We used the models  
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    We considered the following four cases of response probabilities under the MAR assumption: 
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    For each of the four cases, we generated 3000 random samples of incomplete data  
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for (300,250)}(200,200),(200,150),(150,150),(150,100),,{(100,100)=),( nm  from the model and 

specified response probability functions. For nominal confidence level 0.95=1  . Using the simulated samples, 

we evaluated the coverage probability (CP) and average length (AL) of the EL based confidence intervals on   

proposed in Section 3. Table 1-4 repot the simulation results for   under different cases respectively. 

    

Table-1: The simulation rexults under case 1 Table-2: The simulation rexults under case 2 
*

,(  ) (m,n)      AL CP(%) *
,(   (m,n) AL CP(%) 

),(
*

11
  (100,100) 0.66091 93.4 ),(

*

22
  (100,100) 0.68211 92.8 

(150,100) 0.61369 93.8 (150,100) 0.50028 94.0 

(150,150) 0.54324 94.1 (150,150) 0.53480 94.3 

(200,150) 0.55990 95.7 (200,150) 0.54661 95.6 

(200,200) 0.54522 95.1 (200,200) 0.51006 95.5 

(300,250) 0.50012 95.3 (300,250) 0.48002 96.0 

      

Table-3: The simulation rexults under case 3 Table-4: The simulation rexults under case 4 

*
,(  ) 

(m,n) AL CP(%) *
,(  ) 

   (m,n) AL CP(%) 

),(
*

33
   

(100,100) 0.68993 92.8 
),(
*

44
  

(100,100) 0.71133 93.4 

(150,100) 0.54399 93.7 (150,100) 0.51055 94.6 

(150,150) 0.55002 94.6 (150,150) 0.56511 94.5 

(200,150) 0.60011 94.9 (200,150) 0.52108 95.8 

(200,200) 0.54667 95.2 (200,200) 0.48992 95.7 

(300,250) 0.47802 95.1 (300,250) 0.54005 95.0 

 

The simulation results in tables 1-4 reveal the following facts: 

 For every response rate and sample size, the coverage probabilities (CP) of EL confidence intervals are close to 

the nominal level 0.95, and the average lengths of intervals are small. 

 The coverage probabilities (CP) of EL confidence intervals go closer to the nominal level 0.95 as the sample 

size increases.  

 The coverage probabilities (CP) of EL confidence intervals go closer to the nominal level 0.95 as the response 

rate becomes higher. 

 In almost all situations, the average lengths (AL) of EL confidence intervals become smaller as the sample size 

increases.  

 In almost all situations, the average lengths (AL) of EL confidence intervals become smaller as the response rate 
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becomes higher. 
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