Scholars Journal of Physics, Mathematics and Statistics

Sch. J. Phys. Math. Stat. 2017; 4(3):113-120 ©Scholars Academic and Scientific Publishers (SAS Publishers) (An International Publisher for Academic and Scientific Resources)

ISSN 2393-8056 (Print) ISSN 2393-8064 (Online)

More on gbsb*-Closed Sets in Topological Spaces

P. Selvan¹*, M.J. Jeyanthi²

¹M. Phil scholor, Department of Mathematics, Aditanar college of Arts and Science, Tiruchendur, Tamilnadu, India ²Department of Mathematics, Aditanar college of Arts and Science, Tiruchendur, Tamilnadu, India

*Corresponding Author:

P. Selvan Email: asokselvan93@gmail.com

Abstract: Using the concept of gbsb* -open sets and gbsb*-closed sets, we introduce and study the topological properties of gbsb*- interior and gbsb*-closure of a set, gbsb*-derived sets, gbsb*-border, gbsb*-frontier and gbsb*- exterior.

Keywords: gbsb*-interior, gbsb*-closure, gbsb*-limit point, gbsb*-derived set, gbsb*-border, gbsb*-frontier, gbsb*-exterior

INTRODUCTION

The notion of generalized b-strongly b*-closed set and its different characterizations are given in [4]. In this paper, we introduce the notions of gbsb*-limit points, gbsb*-derived sets, gbsb*-interior and gbsb*-closure of a set, gbsb*-interior points, gbsb*-border, gbsb*-frontier and gbsb*-exterior by using the concept of gbsb*-open sets and gbsb*-closed sets, and study their topological properties.

PRELIMINARIES

Throughout this paper (X, τ) represents a topological space on which no separation axiom is assumed unless otherwise mentioned. (X, τ) will be replaced by X if there is no changes of confusion. For a subset A of a topological space X, cl(A) and int(A) denote the closure of A and the interior of A respectively. We recall the following definitions and results.

Definition 2.1.[1] Let (X, τ) be a topological space. A subset A of the space X is said to be b-open if $A\subseteq int(cl(A))\cup cl(int(A))$ and b-closed if $int(cl(A))\cap cl(int(A))\subseteq A$.

Definition 2.2.[1] Let (X, τ) be a topological space and $A \subseteq X$. The b-closure of A, denoted by bcl(A) and is defined by the intersection of all b-closed sets containing A.

Definition 2.3.[1] Let (X, τ) be a topological space and $A \subseteq X$. The b-interior of A, denoted by bint(A) and is defined by the union of all b-open sets contained in A.

Definition 2.4.[2] A subset A of a topological space (X, τ) is said to be generalized b-closed (briefly gb-closed) if bcl(A) \subseteq U whenever A \subseteq U and U is open in (X, τ) . The collection of all gb-closed sets of X is denoted by gb-C(X, τ).

Definition 2.5.[2] Let (X, τ) be a topological space and $A \subseteq X$. The gb-closure of A, denoted by gb-cl(A) and is defined by the intersection of all gb-closed sets containing A.

Definition 2.6.[2] Let (X, τ) be a topological space and $A \subseteq X$. The gb-interior of A, denoted by gb-int(A) and is defined by the union of all gb-open sets contained in A.

Definition 2.7.[3] Let (X, τ) be a topological space. A subset Aof X is said to be strongly b*-closed (briefly sb*-closed) if $cl(int(A))) \subseteq U$ whenever $A \subseteq U$ and U is b-open in (X, τ) .

Definition 2.8.[4] A subset A of a topological space (X, τ) is called a generalized b-strongly b*-closed set (briefly,gbsb*closed) if bcl(A) \subseteq U whenever A \subseteq U and U is sb*-open in (X, τ) . The collection of all gbsb*-closed sets of X is denoted by gbsb*-C(X, τ).

Theorem 2.9. [4]

- (i) Every closed set is gbsb*-closed.
- (ii) Every b-closed set is gbsb*-closed.
- (iii) Every gbsb*-closed set is gb-closed.

Theorem 2.10.[4]

- (i) Arbitrary intersection of gbsb*-closed sets is gbsb*-closed.
- (ii) Arbitrary union of gbsb*-open sets is gbsb*-open.

Remark 2.11.[4]

- (i) The union of gbsb*-closed sets need not be a gbsb*-closed set.
- (ii) The intersection of gbsb*-open sets need not be a gbsb*-open sets.

The generalized b-strongly b*-interior operator

Definition 3.1. Let A be a subset of a topological space (X, τ) . Then the union of all gbsb*-open sets contained in A is called the gbsb*-interior of A and it is denoted by gbsb*int(A). That is, gbsb*int(A)= $\bigcup\{V:V\subseteq A \text{ and } V \in gbsb*-O(X)\}$.

Remark 3.2. Since the union of gbsb*-open subsets of X is gbsb*-open in X, gbsb*int(A) is gbsb*-open in X.

Definition 3.3. Let A be a subset of a topological space X. A point $x \in X$ is called a gbsb*-interior point of A if there exists a gbsb*-open set G such that $x \in G \subseteq A$.

Theorem 3.4. Let A be a subset of a topological space (X, τ) . Then

- (i) gbsb*int(A) is the largest gbsb*-open set contained in A.
- (ii) A is gbsb*-open if and only if gbsb*int(A)=A.
- (iii) gbsb*int(A) is the set of all gbsb*-interior points of A.
- (iv) A is gbsb*-open if and only if every point of A is a gbsb*-interior point of A.

Proof:

- (i) Being the union of all gbsb*-open sets, gbsb*int(A) is gbsb*-open and contains every gbsb*-open subset of A. Hence gbsb*int(A) is the largest gbsb*-open set contained in A.
- (ii) Necessity: Suppose A is gbsb*-open. Then by Definition 3.1, A⊆gbsb*int(A). But gbsb*int(A)⊆A and therefore gbsb*int(A)=A. Sufficiency: suppose gbsb*int(A)=A. Then by Remark 3.2, gbsb*int(A) is gbsb*-open set. Hence A is gbsb*-open.
- (iii) $x \in gbsb*int(A) \Leftrightarrow there exists a gbsb*-open set G such that <math>x \in G \subseteq A$.

 \Leftrightarrow x is a gbsb*-interior point of A.

- Hence gbsb*int(A) is the set of all gbsb*-interior points of A.
- (iv) It directly follows from (ii) and (iii).

Theorem 3.5. Let A and B be subsets of (X, τ) . Then the following results hold.

- (i) $gbsb*int(\phi) = \phi$ and gbsb*int(X) = X.
- (ii) If B is any gbsb*-open set contained in A, then $B\subseteq gbsb*int(A)$.
- (iii) If $A \subseteq B$, then $gbsb*int(A) \subseteq gbsb*int(B)$.
- (iv) $int(A) \subseteq bint(A) \subseteq gbsb*int(A) \subseteq gbint(A) \subseteq A$.
- (v) gbsb*int(gbsb*int(A))=gbsb*int(A).

Proof:

- (i) Since ϕ is the only gbsb*-open set contained in ϕ , then gbsb*int(ϕ)= ϕ . Since X is gbsb*-open and gbsb*int(X) is the union of all gbsb*-open sets contained in X, gbsb*int(X)=X.
- (ii) Suppose B is gbsb*-open set contained in A. Since gbsb*int(A) is the union of all gbsb*-open set contained in A, then we have $B\subseteq gbsb*int(A)$.

Available Online: http://saspjournals.com/sjpms

- (iii) suppose A⊆ B. Let x∈gbsb*int(A). Then x is a gbsb*-interior point of A and hence there exists a gbsb*-open set G such that x∈G⊆A. Since A⊆B, then x∈G⊆B. Therefore x is a gbsb*-interior point of B. Hence x∈gbsb*int(B). This proves (iii).
- (iv) Since every gbsb*-open set is gb-open, gbsb*int(A)⊆gbint(A). Since every b-open set is gbsb*-open, bint(A)⊆gbsb*int(A). Every open set is b-open, int(A)⊆bint(A). Therefore int(A)⊂bint(A)⊂gbsb*int(A)⊂gbint(A)⊂A.
- (v) By Remark 3.2, gbsb*int(A) is gbsb*-open and by Theorem 3.4(ii), gbsb*int(gbsb*int(A))=gbsb*int(A).

Theorem 3.6. Let A and B are the subsets of a topological space X. Then,

(i) gbsb*int(A)∪gbsb*int(B)⊆gbsb*int(A∪B).

(ii) $gbsb*int(A \cap B) \subseteq gbsb*int(A) \cap gbsb*int(B)$.

Proof:

- (i) Let A and B be subsets of X. By Theorem 3.5(iii), gbsb*int(A)⊆gbsb*int(A∪B) and gbsb*int(B)⊆gbsb*int(A∪B) which implies, gbsb*int(A)∪gbsb*int(B)⊆gbsb*int(A∪B).
- (ii) By Theorem 3.5(iii), $gbsb*int(A \cap B) \subseteq gbsb*int(A)$ and $gbsb*int(A \cap B) \subseteq gbsb*int(B)$ which implies $gbsb*int(A \cap B) \subseteq gbsb*int(A) \cap gbsb*int(B)$.

Theorem 3.7. For any subset A of X,

- (i) int(gbsb*int(A))=int(A)
- (ii) gbsb*int(int(A))=int(A).

Proof:(i) Since $gbsb*int(A)\subseteq A$, $int(gbsb*int(A))\subseteq int(A)$. By Theorem 3.5(iv), $int(A)\subseteq (gbsb*int(A))$, and so $int(A)=int(int(A))\subseteq int(gbsb*cl(A))$. Hence int(gbsb*int(A))=int(A). (ii)Since int(A) is open and hence gbsb*-open, by Theorem 3.4(ii), gbsb*int(int(A))=int(A).

The generalized b-strongly b*-closure operator

Definition 4.1. Let A be a subset of a topological space (X, τ) . Then the intersection of all gbsb*-closed sets in X containing A is called the gbsb*-closure of A and it is denoted by gbsb*cl(A). That is, gbsb*cl(A)= \cap {F: A \subseteq F and F \in gbsb*-C(X)}.

Remark 4.2. Since the intersection of gbsb*-closed set is gbsb*-closed, gbsb*cl(A) is gbsb*-closed.

Theorem 4.3. Let A be a subset of a topological space (X, τ) . Then

- (i) gbsb*cl(A) is the smallest gbsb*-closed set containing A.
- (ii) A is gbsb*-closed if and only if gbsb*cl(A)=A.

Theorem 4.4. Let A and B be two subsets of a topological space (X, τ) . Then the following results hold.

- (i) $gbsb*cl(\phi) = \phi and gbsb*cl(X) = X.$
- (ii) If B is any gbsb*-closed set containing A, then $gbsb*cl(A) \subseteq B$.
- (iii) If $A \subseteq B$, then $gbsb*cl(A) \subseteq gbsb*cl(B)$.
- (iv) $A \subseteq gb-cl(A) \subseteq gbsb*cl(A) \subseteq bcl(A) \subseteq cl(A)$.
- (v) gbsb*cl(gbsb*cl(A))=gbsb*cl(A).

Theorem 4.5. Let A and B be subsets of a topological space (X, τ) . Then,

- (i) $gbsb*cl(A) \cup gbsb*cl(B) \subseteq gbsb*cl(A \cup B)$.
- (ii) $gbsb*cl(A \cap B) \subseteq gbsb*cl(A) \cap gbsb*cl(B)$.

Theorem 4.6. For a subset A of X and $x \in X$, $x \in gbsb*cl(A)$ if and only if $V \cap A \neq \phi$ for every gbsb*-open set V containing x.

Proof: Necessity: Suppose $x \in gbsb*cl(A)$. If there is agbsb*-open set V containing x such that $V \cap A = \phi$, then $A \subseteq X \setminus V$ and $X \setminus V$ is gbsb*-closed and hence $gbsb*cl(A) \subseteq X \setminus V$. Since $x \in gbsb*cl(A)$, then $x \in X \setminus V$ which contradicts to $x \in V$.

Sufficiency: Assume that $V \cap A \neq \phi$ for every gbsb*-open set V containing x. If $x \notin gbsb*cl(A)$, then there exists a gbsb*closed set F such that $A \subseteq F$ and $x \notin F$. Therefore $x \in X \setminus F$, $A \cap (X \setminus F) = \phi$ and $X \setminus F$ is gbsb*-open. This is a contradiction to our assumption. Hence $x \in gbsb*cl(A)$.

Theorem 4.7. For any subset A of X,

- (i) cl(gbsb*cl(A))=cl(A)
- (ii) gbsb*cl(cl(A))=cl(A).

Generalized b-strongly b*-derived set

Definition 5.1. Let A be a subset of a topological space X. A point $x \in X$ is said to be a gbsb*-limit point of A if $G \cap (A \setminus \{x\}) \neq \phi$, for every gbsb*-open set G containing x.

Definition 5.2. The set of all gbsb*-limit points of A is called a gbsb*-derived set of A and is denoted by $D_{gbsb}(A)$.

Remark 5.3. For a subset A of X, a point $x \in X$ is not a gbsb*-limit point of A if and only if there exists a gbsb*-open set G in X such that $G \cap (A \setminus \{x\}) = \phi$, equivalently $x \in G$ and $G \cap A = \phi$ or $G \cap A = \{x\}$.

Theorem 5.4. Let τ_1 and τ_2 be topologies on X such that $gbsb^*-O(X, \tau_1) \subseteq gbsb^*-O(X, \tau_2)$. For any subset A of X, every $gbsb^*$ -limit point of A with respect to $gbsb^*-O(X, \tau_2)$ is a $gbsb^*$ -limit of A with respect to $gbsb^*-O(X, \tau_1)$.

Proof: Let A be any subset of X and $x \in X$ be a gbsb*-limit point of A with respect to gbsb*-O(X, τ_2). Then $G\cap(A\setminus\{x\})\neq \phi$, for every gbsb*-open set G in (X, τ_2) containing x. But gbsb*-O(X, τ_1) \subseteq gbsb*-O(X, τ_2), so in particular $G\cap(A\setminus\{x\})\neq \phi$, for every gbsb*-open set G in (X, τ_1) containing x. Hence x is a gbsb*-limit point of A with respect to gbsb*-O(X, τ_1).

Theorem 5.5. Let A and B be subsets of (X, τ) . Then the following are valid:

- (i) $D_{gbsb^*}(\phi) = \phi$
- (ii) $x \in D_{gbsb*}(A)$ implies $x \in D_{gbsb*}(A \setminus \{x\})$
- (iii) If $A \subseteq B$, then $D_{gbsb}(A) \subseteq D_{gbsb}(B)$
- (iv) $D_{gbsb*}(A) \cup D_{gbsb*}(B) \subseteq D_{gbsb*}(A \cup B)$ and $D_{gbsb*}(A \cap B) \subseteq D_{gbsb*}(A) \cap D_{gbsb*}(B)$
- (v) $D_{gbsb*}(D_{gbsb*}(A)) \setminus A \subseteq D_{gbsb*}(A)$
- (vi) $D_{gbsb*}(A \cup D_{gbsb*}(A)) \subseteq A \cup D_{gbsb*}(A)$

Proof:

- (i) Obviously $D_{gbsb*}(\phi) = \phi$.
- (ii) Let x∈ D_{gbsb*}(A). Then x is a gbsb*-limit point of A. That is, every gbsb*-open set containing x contains atleast one point of A other than x. Therefore x is a gbsb*-limit point of A\{x}. This proves (ii).
- (iii) Suppose A B. Let $x \in D_{gbsb^*}(A)$. Then $G \cap (A \setminus \{x\}) \neq \phi$, for every $gbsb^*$ -open set G in (X, τ) containing x. Since A B, $A \setminus \{x\} \subseteq B \setminus \{x\}$ and hence $G \cap (B \setminus \{x\}) \neq \phi$. Therefore $x \in D_{gbsb^*}(B)$. This proves (iii).
- (iv) Let A and B be subsets of X. By part (iii), $D_{gbsb*}(A) \subseteq D_{gbsb*}(A \cup B)$ and $D_{gbsb*}(B) \subseteq D_{gbsb*}(A \cup B)$ which implies that, $D_{gbsb*}(A) \cup D_{gbsb*}(B) \subseteq D_{gbsb*}(A \cup B)$. Again by part(iii), $D_{gbsb*}(A \cap B) \subseteq D_{gbsb*}(A)$ and $D_{gbsb*}(A \cap B) \subseteq D_{gbsb*}(B)$ which implies $D_{gbsb*}(A \cap B) \subseteq D_{gbsb*}(A \cap B) \subseteq D_{gbsb*}(B)$.
- (v) Let $x \in (D_{gbsb^*}(A)) \setminus A$. Then $G \cap (D_{gbsb^*}(A) \setminus \{x\}) \neq \phi$, for every $gbsb^*$ -open set G in (X, τ) containing x. Let $y \in G \cap (D_{gbsb^*}(A) \setminus \{x\})$. This implies $y \in G$ and $y \in D_{gbsb^*}(A)$ with $y \neq x$ and hence $G \cap (A \setminus \{y\}) \neq \phi$. Take $z \in G \cap (A \setminus \{y\})$, then $x \neq z$ because $x \notin A$. Hence $G \cap (A \setminus \{x\}) \neq \phi$ and therefore $x \in D_{gbsb^*}(A)$. This proves (v).
- (vi) Let $x \in D_{gbsb^*}(A \cup D_{gbsb^*}(A))$. If $x \in A$, then the result is obvious. Assume $x \notin A$. Since $x \in D_{gbsb^*}(A \cup D_{gbsb^*}(A))$, then $G \cap ((A \cup D_{gbsb^*}(A)) \setminus \{x\}) \neq \phi$, for every $gbsb^*$ -open set G containing x. Hence either $G \cap (A \setminus \{x\}) \neq \phi$ or $G \cap (D_{gbsb^*}(A) \setminus \{x\}) \neq \phi$. If $G \cap (A \setminus \{x\}) \neq \phi$, then $x \in D_{gbsb^*}(A)$. If $G \cap (D_{gbsb^*}(A) \setminus \{x\}) \neq \phi$, then $x \in (D_{gbsb^*}(A) \setminus \{x\}) \neq \phi$, then $x \in (D_{gbsb^*}(A) \setminus \{x\}) \neq \phi$, then $x \in (D_{gbsb^*}(A) \cup D_{gbsb^*}(A)) \subseteq A \cup D_{gbsb^*}(A)$. Since $x \notin A$ gives that $x \in (D_{gbsb^*}(A) \cup D_{gbsb^*}(A)) \setminus A$ and by part (v), $x \in D_{gbsb^*}(A)$. Hence $D_{gbsb^*}(A \cup D_{gbsb^*}(A)) \subseteq A \cup D_{gbsb^*}(A)$.

Theorem 5.6. For any subset A of X, we have $D_{gbsb*}(A) \subseteq gbsb*cl(A)$.

Proof: Let $x \in D_{gbsb^*}(A)$. Then $G \cap (A \setminus \{x\}) \neq \phi$, for every $gbsb^*$ -open set G in (X, τ) containing x. That is, $G \cap A \neq \phi$, for every $gbsb^*$ -open set G in (X, τ) containing x. By Theorem 4.6, $x \in gbsb^*cl(A)$. Hence $D_{gbsb^*}(A) \subseteq gbsb^*cl(A)$.

Theorem 5.7. Let A be a subset of X. Then $gbsb*cl(A)=A\cup D_{gbsb*}(A)$.

Proof: Let $x \in gbsb*cl(A)$. If $x \in A$, then the result is obvious. Suppose $x \notin A$. Since $x \in gbsb*cl(A)$, then by Theorem 4.6, $G \cap A \neq \phi$, for every gbsb*-open set G in (X, τ) containing x. Since $x \notin A$, then we have $G \cap (A \setminus \{x\}) \neq \phi$ and therefore $x \in D_{gbsb*}(A)$. Hence $gbsb*cl(A) \subseteq A \cup D_{gbsb*}(A)$. On the other hand, we know that $A \subseteq gbsb*cl(A)$ and by Theorem 5.6, $D_{gbsb}^{*}(A) \subseteq gbsb^{*}cl(A)$, then we conclude that $A \cup D_{gbsb}^{*}(A) \subseteq gbsb^{*}cl(A)$. Hence $gbsb^{*}cl(A) = A \cup D_{gbsb}^{*}(A)$.

Theorem 5.8. Let A and B be subsets of X. If $A \in gbsb^*-O(X)$ and $gbsb^*-O(X)$ is topology on X, then $A \cap gbsb*cl(B) \subseteq gbsb*(A \cap B).$

Proof: Suppose $A \in gbsb^*-O(X)$ and $gbsb^*-O(X)$ is topology on X. Let $x \in A \cap gbsb^*cl(B)$. Then $x \in A$ and $x \in gbsb^*cl(B)$. By Theorem 5.7, $x \in B \cup D_{ghsh^*}(B)$. Then we have two cases,

- a) If $x \in B$, then $x \in A \cap B \subset gbsb*cl(A \cap B)$.
- b) If $x \notin B$, then $x \in D_{gbsb^*}(B)$ and so $G \cap B \neq \phi$, for every $gbsb^*$ -open set G in (X, τ) containing x. Since A, $G \in gbsb^*$ -O(X) and gbsb*-O(X) is a topology on X, then $A \cap G$ is also a gbsb*-open set containing x. Hence $G \cap (A \cap B) = (G \cap A) \cap B \neq \phi$. That implies, $x \in D_{gbsb} (A \cap B)$. By Theorem 5.6, $x \in gbsb cl(A \cap B)$

Hence $A \cap gbsb*cl(B) \subseteq gbsb*(A \cap B)$.

 $A \cap gbsb*cl(B) \not\subseteq gbsb*cl(A \cap B).$

Remark 5.9. If gbsb*-O(X, τ) is not a topology on X, then the above theorem need not be true which is shown in the following example.

Example 5.10. Let X={a,b,c,d} with a topology $\tau = \{\phi, \{a\}, \{b\}, \{a,b\}, \{a,b,c\}, X\}$. Here gbsb*-O(X, τ)={ $\phi, \{a\}, \{b\}, \{a,b\}, \{a,b,c\}, X\}$. $\{a,b\}, \{a,c\}, \{a,d\}, \{b,c\}, \{b,d\}, \{a,b,c\}, \{a,b,d\}, \{a,c,d\}, \{b,c,d\}, X\}$. Then gbsb*-O(X, τ) is not a topology on X. Let $A=\{a, b, d\}$ and $B=\{a,c,d\}$. Then $A\cap gbsb*cl(B)=\{a, b, d\}$ and $gbsb*cl(A \cap B) = \{a,d\}.$

Theorem 5.11. If A is a subset of a discrete topological space X, then $D_{gbsb*}(A) = \phi$.

Proof: Let A be a subset of a discrete topological space X and x be any element of X. Since X is a discrete topology, every subset of X is open and so gbsb*-open. In particular the singleton set $G=\{x\}$ is gbsb*-open and therefore $G \cap (A \setminus \{x\}) = \phi$. Then we conclude that x is not a gbsb*-limit point of A. Since x \in X is arbitrary, then every element of X is not a gbsb*-limit point of A. Hence $D_{gbsb*}(A) = \phi$.

Theorem 5.12. For any subset A of X, $gbsb*int(A)=A\setminus D_{gbsb*}(X\setminus A)$.

Proof: Let $x \in gbsb*int(A)$. Then there exists a gbsb*-open set G such that $x \in G \subseteq A$. That implies, $G \cap (X \setminus A) = \phi$ where G is a gbsb*-open set containing x and hence $x \notin D_{gbsb^*}(X \setminus A)$. Therefore $x \in A \setminus D_{gbsb^*}(X \setminus A)$. Hence $gbsb^*int(A) \subseteq A \setminus D_{gbsb^*}(A)$. Let $x \in A \setminus D_{gbsb}(X \setminus A)$. Then $x \notin D_{gbsb}(X \setminus A)$ and therefore there exists a gbsb*-open set G containing x such that $G \cap (X \setminus A) = \phi$. That is, $x \in G \subset A$. Hence x is a gbsb*-interior point of A. Therefore $x \in gbsb*int(A)$ and so $A \setminus D_{gbsb}(X \setminus A) \subseteq gbsb*int(A)$. Hence $gbsb*int(A) = A \setminus D_{gbsb}(X \setminus A)$.

- Theorem 5.13. For any subset A of X,
- (i) $X \otimes b^{int}(A) = gbsb^{cl}(X A)$
- (ii) X = gbsb = int(X A) = gbsb = cl(A)
- (iii) $X \ bsb \ cl(A) = gbsb \ int(X \ A)$
- (iv) X gbsb*cl(X A) = gbsb*int(A)

Proof. (i) X\gbsb*int(A)=X\(A\D_{gbsb*}(X\A)) = (X\A) \cup D_{gbsb*}(X\A)=gbsb*cl(X\A). (ii) Replace A by X\A in part(i), X\gbsb*int(X\A)=gbsb*cl(A). (iii) $gbsb*int(X A)=(X A) D_{gbsb*}(A)=X (A \cup D_{gbsb*}(A)) = X gbsb*cl(A)$. This proves (iii). (iv) Replace A by X\A in part(iii), X\gbsb*cl(X\A)=gbsb*int(A).

gbsb*-border and gbsb*-frontier of a set

Definition 6.1. Let A be a subset of X. Then the set $B_{ebsh^*}(A) = A \ b^*(A) = A \ b^*(A)$ is called the gbsb*-border of A and the set $Fr_{obsh}(A) = gbsb*cl(A) \setminus gbsb*int(A)$ is called the gbsb*-frontier of A.

Example 6.2. Let X={a,b,c,d} with a topology $\tau = \{\phi, \{a\}, \{b\}, \{a,b\}, \{a,b,c\}, X\}$. Here gbsb*-O(X)={ $\phi, \{a\}, \{b\}, \{a,b,c\}, X\}$. $\{a,b\}, \{a,c\}, \{a,d\}, \{b,c\}, \{b,d\}, \{a,b,c\}, \{a,b,d\}, \{a,c,d\}, \{b,c,d\}, X\}$. Let A= $\{a, b, c\}$. Then gbsb*cl(A)=X and

Available Online: http://saspjournals.com/sjpms

Hence

 $gbsb*int(A)=\{a, b, c\}. Therefore B_{gbsb*}(A)=A\gbsb*int(A)=\{a, b, c\}\addle a, b, c\}=\phi and Fr_{gbsb*}(A)=gbsb*cl(A)\gbsb*int(A)=X\addle a, b, c\}=\{d\}.$

Theorem 6.3. If a subset A of X is gbsb*-closed, then $B_{gbsb*}(A) = Fr_{gbsb*}(A)$. Proof: Let A be a gbsb*-closed subset of X. Then by Theorem 4.3, gbsb*cl(A)=A. Now, $Fr_{gbsb*}(A) = gbsb*cl(A) \setminus gbsb*int(A) = A \setminus gbsb*int(A) = B_{gbsb*}(A)$.

Theorem 6.4. For a subset A of X, the following statements are hold:

- (i) $A=gbsb*int(A)\cup B_{gbsb*}(A)$
- (ii) $gbsb*int(A) \cap B_{gbsb*}(A) = \phi$
- (iii) A is gbsb*-open if and only if $B_{gbsb*}(A) = \phi$
- (iv) $B_{gbsb*}(gbsb*int(A)) = \phi$
- (v) $gbsb*int(B_{gbsb*}(A)) = \phi$
- (vi) $B_{gbsb*}(B_{gbsb*}(A)) = B_{gbsb*}(A)$

Proof:

- (i) Let x∈A. If x∈gbsb*int(A), then the result is obvious. If x∉gbsb*int(A), then by the definition of B_{gbsb*}(A), x∈B_{gbsb*}(A). Hence x∈gbsb*int(A)∪B_{gbsb*}(A) and so A⊆gbsb*int(A)∪B_{gbsb*}(A). On the other hand, since gbsb*int(A)⊆A and B_{gbsb*}(A)⊆A, then we have gbsb*int(A)∪B_{gbsb*}(A)⊆A. This proves (i).
- (ii) Suppose gbsb*int(A)∩B_{gbsb*}(A)≠ φ. Let x∈gbsb*int(A)∩B_{gbsb*}(A). Then x∈gbsb*int(A) and x∈B_{gbsb*}(A). Since B_{gbsb*}(A)=A\gbsb*int(A), then x ∈ A but x ∈ gbsb*int(A), x ∉ A. There is a contradiction. Hence gbsb*int(A)∩B_{gbsb*}(A)=φ
- (iii) Necessity: Suppose A is gbsb*-open. Then by Theorem 3.4, gbsb*int(A)=A. Now, $B_{gbsb*}(A)=A \setminus B = \phi$. Sufficiency: Suppose $B_{gbsb*}(A)=\phi$. This implies, $A \setminus gbsb*int(A)=\phi$. Therefore A=gbsb*int(A) and hence A is gbsb*-open.
- (iv) By the definition of gbsb*-border of a set, $B_{gbsb*}(gbsb*int(A))=gbsb*int(A)\setminus gbsb*int(gbsb*int(A))$. By Theorem 3.4, gbsb*int(gbsb*int(A))=gbsb*int(A) and hence $B_{gbsb*}(gbsb*int(A))=\phi$.
- (v) Let x ∈ gbsb*int(B_{gbsb*}(A)). Since B_{gbsb*}(A)⊆A, by Theorem 3.5, gbsb*int(B_{gbsb*}(A))⊆gbsb*int(A). Hence x∈gbsb*int(A). Since gbsb*int(B_{gbsb*}(A))⊆B_{gbsb*}(A), then x∈B_{gbsb*}(A). Therefore x∈gbsb*int(A)∩B_{gbsb*}(A). By part (ii), x= φ. This proves (v).
- (vi) By the definition of gbsb*-border of a set, $B_{gbsb*}(B_{gbsb*}(A))=B_{gbsb*}(A)\setminus gbsb*int(B_{gbsb*}(A))$. By part (v), $gbsb*int(B_{gbsb*}(A))=\phi$ and hence $B_{gbsb*}(B_{gbsb*}(A))=B_{gbsb*}(A)$.

Theorem 6.5. Let A be a subset of X. Then,

(i) $B_{gbsb*}(A) = A \cap gbsb*cl(X \setminus A)$

(ii) $B_{gbsb*}(A) = A \cap D_{gbsb*}(X \setminus A)$.

Proof:

- (i) Since $B_{gbsb*}(A)=A\setminus gbsb*int(A)$ and by Theorem 5.13, $B_{gbsb*}(A)=A\setminus (X\setminus gbsb*cl(X\setminus A))$ = $A\cap (X\setminus (X\setminus gbsb*cl(X\setminus A))=A\cap gbsb*cl(X\setminus A).$
- (ii) By Theorem 6.5 and Theorem 5.7, we have $B_{gbsb*}(A) = A \cap gbsb*cl(X \setminus A) = A \cap ((X \setminus A) \cup D_{gbsb*}(X \setminus A)) = (A \cap (X \setminus A)) \cup (A \cap D_{gbsb*}(X \setminus A)) = \phi \cup (A \cap D_{gbsb*}(X \setminus A)) = A \cap D_{gbsb*}(X \setminus A).$

Theorem 6.6. Let A be a subset of X. Then A is gbsb*-closed if and only if $Fr_{gbsb*}(A) \subseteq A$.

Proof: Necessity: Suppose A is gbsb*-closed. Then by Theorem 4.3, gbsb*cl(A)=A. Now, $Fr_{gbsb*}(A)=gbsb*cl(A)\gbsb*int(A)=A\gbsb*int(A)_A$. Hence $Fr_{gbsb*}(A)_A$. Sufficiency: Assume that, $Fr_{gbsb*}(A)_A$. Then gbsb*cl(A)\gbsb*int(A)_A. Since gbsb*int(A)_A, then we conclude that gbsb*cl(A)_A. Also A $_$ gbsb*cl(A). Therefore gbsb*cl(A)=A and hence A is gbsb*-closed.

Theorem 6.7. For a subset A of X, we have the following

- (i) $gbsb*cl(A)=gbsb*int(A)\cup Fr_{gbsb}*(A)$.
- (ii) $gbsb*int(A) \cap Fr_{gbsb*}(A) = \phi$.
- (iii) $B_{gbsb*}(A) \subseteq Fr_{gbsb*}(A)$.
- (iv) $Fr_{gbsb*}(A) = B_{gbsb*}(A) \cup (D_{gbsb*}(A) \setminus gbsb*int(A)).$
- (v) If A is gbsb*-open then $Fr_{gbsb*}(A)=B_{gbsb*}(X\setminus A)$.

Available Online: http://saspjournals.com/sjpms

(vi) $Fr_{gbsb*}(A)=gbsb*cl(A)\cap gbsb*cl(X\backslash A)$.

Proof:

- (i) Since gbsb*int(A) ⊆gbsb*cl(A) and Fr_{gbsb*}(A) ⊆gbsb*cl(A), then gbsb*int(A) ∪ Fr_{gbsb*}(A) ⊆gbsb*cl(A). Let x ∈ gbsb*cl(A). Suppose x ∉ Fr_{gbsb*}(A). Since, then x ∈ gbsb*int(A). Hence x ∈ gbsb*int(A) ∪ Fr_{gbsb*}(A) and hence gbsb*cl(A) ⊆gbsb*int(A) ∪ Fr_{gbsb*}(A). This proves (i).
- (ii) Suppose gbsb*int(A)∩Fr_{gbsb*}(A)≠ φ. Let x∈gbsb*int(A)∩Fr_{gbsb*}(A). Then x∈gbsb*int(A) and x∈Fr_{gbsb*}(A), which is impossible to x belongs to both gbsb*int(A) and Fr_{gbsb*}(A), sinceFr_{gbsb*}(A)=gbsb*cl(A)\gbsb*int(A). Hence gbsb*int(A)∩Fr_{gbsb*}(A)=φ.
- (iii) Since $A \subseteq gbsb*cl(A)$, then $A \setminus gbsb*int(A) \subseteq gbsb*cl(A) \setminus gbsb*int(A)$. That implies, $B_{gbsb*}(A) \subseteq Fr_{gbsb*}(A)$.
- (iv) Since $\operatorname{Fr}_{gbsb*}(A)=gbsb*cl(A)\backslash gbsb*int(A)$ and by Theorem 5.7, $\operatorname{Fr}_{gbsb*}(A)=(A \cup D_{gbsb*}(A))\backslash gbsb*int(A) =(A\backslash gbsb*int(A))\cup(D_{gbsb*}(A)\backslash gbsb*int(A))=B_{gbsb*}(A)\cup(D_{gbsb*}(A)\backslash gbsb*int(A))$. This proves (iv).
- (v) Assume that a is gbsb*-open. Then by Theorem 3.4, gbsb*int(A)=A and by Theorem 6.4, $B_{gbsb*}(A)=\phi$. By part (iv), $Fr_{gbsb*}(A)=B_{gbsb*}(A)\cup(D_{gbsb*}(A)\setminus gbsb*int(A)) = \phi \cup (D_{gbsb*}(A)\setminus A) = D_{gbsb*}(A)\setminus A = D_{gbsb*}(A)\cap(X\setminus A)$. Then by Theorem 6.5, $Fr_{gbsb*}(A)=B_{gbsb*}(X\setminus A)$.
- (vi) Since $gbsb*cl(X\setminus A)=X\setminus gbsb*int(A)$, $gbsb*cl(A) \cap gbsb*cl(X\setminus A) = gbsb*cl(A) \cap (X\setminus gbsb*int(A)) = (gbsb*cl(A)\cap X)\setminus (gbsb*cl(A)\cap gbsb*int(A)) = gbsb*cl(A)\setminus gbsb*int(A) = Fr_{gbsb}*(A)$.

Theorem 6.8. For a subset A of X, we have the following

- (i) $Fr_{gbsb*}(A) = Fr_{gbsb*}(X \setminus A)$.
- (ii) Fr_{gbsb*}(A) is gbsb*-closed.
- (iii) $\operatorname{Fr}_{gbsb*}(\operatorname{Fr}_{gbsb*}(A)) \subseteq \operatorname{Fr}_{gbsb*}(A)$.
- (iv) $Fr_{gbsb*}(gbsb*int(A)) \subseteq Fr_{gbsb*}(A)$.
- (v) $Fr_{gbsb}*(gbsb*cl(A)) \subseteq Fr_{gbsb}*(A)$.
- (vi) $gbsb*int(A)=A Fr_{gbsb*}(A)$.

Proof:

- (i) By Theorem 6.7 (vi), $Fr_{gbsb}(A) = gbsb*cl(A) \cap gbsb*cl(X \setminus A) = Fr_{gbsb}(X \setminus A)$.
- (ii) Now, $gbsb*cl(Fr_{gbsb*}(A))=gbsb*cl(gbsb*cl(A) \cap gbsb*cl(X \setminus A))\subseteq gbsb*cl(A) \cap gbsb*cl(X \setminus A) =Fr_{gbsb*}(A)$. That is, $gbsb*cl(Fr_{gbsb*}(A))\subseteq Fr_{gbsb*}(A)$. Also $Fr_{gbsb*}(A)\subseteq gbsb*(Fr_{gbsb*}(A))$. Therefore $gbsb*cl(Fr_{gbsb*}(A))=Fr_{gbsb*}(A)$ and hence $Fr_{gbsb*}(A)$ is gbsb*-closed.
- (iii) By part (ii), $Fr_{gbsb*}(A)$ is gbsb*-closed and by Theorem 6.6, $Fr_{gbsb*}(Fr_{gbsb*}(A)) \subseteq Fr_{gbsb*}(A)$.
- (iv) By the definition of gbsb*-frontier, $Fr_{gbsb*}(gbsb*int(A)) = gbsb*cl(gbsb*int(A)) \gbsb*int(gbsb*int(A)) \gbsb*int(A) = Fr_{gbsb*}(A)$. Hence $Fr_{gbsb*}(gbsb*int(A)) \gbsb*int(A)$.
- (v) By the definition of gbsb*-frontier, $Fr_{gbsb*}(gbsb*cl(A))=gbsb*cl(gbsb*cl(A))\gbsb*int(gbsb*cl(A))\subseteq gbsb*cl(A)\gbsb*int(A) = Fr_{gbsb*}(A)$. Hence $Fr_{gbsb*}(gbsb*cl(A))\subseteq Fr_{gbsb*}(A)$.
- $(vi) Now A (Fr_{gbsb*}(A) = A (gbsb*cl(A) (gbsb*int(A)) = A \cap (X (gbsb*cl(A)) \cup gbsb*int(A) = \phi \cup gbsb*int(A) = gbsb*int(A).$

gbsb*-exterior and gbsb*-kernel

Definition 7.1. Let A be a subset of a topological space (X, τ) . Then the gbsb*-interior of X\A is called the gbsb*-exterior of A and it is denoted by $Ext_{gbsb*}(A)$. That is, $Ext_{gbsb*}(A)=gbsb*int(X\setminus A)$.

Example 7.2. Let X={a,b,c,d} with a topology $\tau = \{\phi, \{a,b\}, \{a,b,c\},X\}$. Here gbsb*-O(X)={ $\phi, \{a\}, \{b\}, \{a,b\}, \{a,c\}, \{a,d\}, \{b,c\}, \{b,c\}, \{a,b,c\}, \{a,b,d\}, \{a,c,d\}, \{b,c,d\}, X\}$. Let A={c, d}. Then Ext_{gbsb*}(A)=gbsb*int(X\A)={a, b}.

Theorem 7.3. For a subsets A and B of X, the following are valid.

- (i) $Ext_{gbsb*}(A)=X\gbsb*cl(A)$.
- (ii) $\operatorname{Ext}_{gbsb*}(\operatorname{Ext}_{gbsb*}(A))=gbsb*int(gbsb*cl(A))\supseteq gbsb*int(A).$
- (iii) If $A \subseteq B$, then $Ext_{gbsb^*}(B) \subseteq Ext_{gbsb^*}(A)$.
- (iv) $\operatorname{Ext}_{gbsb^*}(A \cup B) _ \operatorname{Ext}_{gbsb^*}(A) \cap \operatorname{Ext}_{gbsb^*}(B)$.
- (v) $\operatorname{Ext}_{gbsb^*}(A \cap B)$ _ $\operatorname{Ext}_{gbsb^*}(A) \cup \operatorname{Ext}_{gbsb^*}(B)$.
- (vi) $\text{Ext}_{\text{gbsb}*}(X) = \phi$ and $\text{Ext}_{\text{gbsb}*}(\phi) = X$.
- (vii) $Ext_{gbsb*}(A) = Ext_{gbsb*}(X \setminus Ext_{gbsb*}(A)).$

Proof.

- (i) Since, $X \ bsb*cl(A) = gbsb*int(X \ A), Ext_{gbsb*}(A) = X \ bsb*cl(A).$
- (ii) $\operatorname{Ext}_{gbsb*}(\operatorname{Ext}_{gbsb*}(A)) = \operatorname{Ext}_{gbsb*}(gbsb*int(X \setminus A)) = gbsb*int(X \setminus gbsb*int(X \setminus A)) = gbsb*int(gbsb*cl(A)) \supseteq gbsb*int(A).$
- (iii) Suppose $A \subseteq B$. Then, $Ext_{gbsb}(B) = gbsb(X \setminus B) \subseteq gbsb(X \setminus A) = Ext_{gbsb}(A)$.
- (iv) $Ext_{gbsb*}(A \cup B) = gbsb*int(X \setminus (A \cup B)) = gbsb*int((X \setminus A) \cap (X \setminus B)) \subseteq gbsb*(X \setminus A) \cap gbsb*cl(X \setminus B) = Ext_{gbsb*}(A) \cap Ext_{gbsb*}(B).$
- (v) Ext_{gbsb^*} $(A \cap B)=gbsb*int(X \setminus (A \cap B))=gbsb*int((X \setminus A) \cup (X \setminus B)) \supseteq gbsb*(X \setminus A) \cup gbsb*cl(X \setminus B)= Ext_{gbsb^*}(A) \cup Ext_{gbsb^*}(B).$
- (vi) $\operatorname{Ext_{gbsb*}(X)=gbsb*int(X\setminus X)=gbsb*int(\phi)}$ and $\operatorname{Ext_{gbsb*}(\phi)=gbsb*int(X\setminus \phi)=gbsb*int(X)}$. Since ϕ and X are gbsb*-open sets, then $gbsb*int(\phi)=\phi$ and gbsb*int(X)=X. Hence $\operatorname{Ext_{gbsb*}(\phi)=X}$ and $\operatorname{Ext_{gbsb*}(X)=\phi}$.

Definition 7.4. Let A be a subset of a topological space X. Then the intersection of all gbsb*-open sets containing A is called the gbsb*-kernel of A. It is denoted by gbsb*ker(A). That is, gbsb*ker(A)= $\cap \{U \in gbsb^*-O(X,\tau) \text{ and } A \subseteq U\}$.

Theorem 7.5. Let A and B be subsets of (X, τ) . Then the following results hold.

- (i) $A \subseteq gbsb*ker(A)$.
- (ii) If $A \subseteq B$, then $gbsb*ker(A) \subseteq gbsb*ker(B)$.
- (iii) If A is gbsb*-open, then gbsb*ker(A)=A.
- (iv) gbsb*ker(gbsb*ker(A))=gbsb*ker(A).

Proof:

- (i) Since gbsb*ker(A) is the intersection of all gbsb*-open sets containing A, then we have $A\subseteq gbsb*ker(A)$.
- (ii) Suppose A⊆B. Let U be any gbsb*-open set containing B. Since A⊆B, then A⊆U and hence by the definition of gbsb*ker(A), gbsb*ker(A)⊆U. Therefore, gbsb*ker(A)⊆∩{U/B⊆U and U is gbsb*-open}=gbsb*ker(B). This proves (ii).
- (iii) Suppose A is gbsb*-open. Then by Definition, $gbsb*ker(A) \subseteq A$. But $A \subseteq gbsb*ker(A)$ and therefore gbsb*ker(A)=A.
- (iv) By part (i) and (ii), gbsb*ker(A)⊆gbsb*ker(gbsb*ker(A)). If x∉gbsb*ker(A), then there exists a gbsb*-open set U such that A⊆U and x∉U. This implies that, gbsb*ker(A) ⊆U, and so we have x∉gbsb*ker(gbsb*ker(A)). Thus gbsb*ker(gbsb*ker(A))=gbsb*ker(A).

Theorem 7.7. Let (X, τ) be a topological space. Then $\cap \{gbsb*cl(\{x\})/x \in X\} = \phi$ if and only if $gbsb*ker(\{x\}) \neq X$ for every $x \in X$.

Proof. Necessity: Suppose that $\cap \{gbsb*cl(\{x\}): x \in X\} = \phi$. Suppose there is a point y in X such that $gbsb*ker(\{y\}) = X$. Let x be any point of X. Then $x \in gbsb*ker(\{y\})$ and therefore $x \in V$ for every gbsb*-open set V containing y. That is, every gbsb*-closed set containing x must contain y and hence $y \in gbsb*cl(\{x\})$ for any $x \in X$. This implies that $y \in \cap \{gbsb*cl(\{x\}): x \in X\}$. This is a contradiction to our assumption. Hence $gbsb*ker(\{x\}) \neq X$ for every $x \in X$.

Sufficiency: Assume that $gbsb*ker({x})\neq X$, for every $x\in X$. If there exists a point y in X such that $y\in \cap \{gbsb*cl(x): x\in X\}$, then every gbsb*-open set containing y must contain every point of X. This implies, the space X is the unique gbsb*-open set containing y. Hence $gbsb*ker({y}) = X$, which is a contradiction. Therefore, $\cap \{gbdb*cl({x}): x\in X\} = \phi$.

REFERENCES

- 1. Al-Omari A, Salmi M, Noorani M. On Generalized b-closed sets. Bull. Malays. math. Sci. Soc. 2009; 32(1):19-30.
- 2. Andrijevic D. On b-open sets, Mat.Vesnik. 1996; 48: 59-64.
- 3. Poongothai A, Parimelazhagan P. sb*-closed sets in a topological spaces, Int. Journal of Math. Analysis. 2012; 3(47):2325-2333.
- 4. Selvan P, Jeyanthi MJ. Generalized b-strongly b*-closed sets in topological spaces, Int. Journal of Math. Archive. 2017;8(5).