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Abstract: Set L =—A+V be a Schrodinger operator, where V is a non-negative
potential belonging to some reverse Holder class. In this paper, using the properties
of the Marcinkiewicz integrals associated with operators and the estimate of the
classical inequalities and Muckenhoupt weighted functions, the authors obtained the
boundedness of Marcinkiewicz integrals associated with Schrédinger operators on

L’'(w) , where p(-)€[l,) and @€ A,.,. Then, the boundedness of

Marcinkiewicz integrals associated with Schrédinger operator ,uf on weighted Herz

spaces with variable exponent is established.
Keywords: Schrodinger operator, Marcinkiewicz integral,
weighted, boundedness, Herz space

variable exponent,

INTRODUCTION

Function spaces with variable exponent are studied with keen interest not in
real analysis, but also in partial differential equations. They are applicable to the
image restoration and modeling for electror- heological fluids. We know that the
theory of function spaces with variable exponent and its applications has made

rapidly progress in the past twenty years. In particular, Muckenhoupt [1] has
obtained the theory on weights called the Muckenhoupt A , theory in the study of

weighted function spaces.

In this paper, we will consider the Schrédinger operator L = —A 4+ V(x), in R", and V(x) is a non-negative

potential belonging to the reverse Holder class RH , » Where ¢ 2 n/ 2 , and exists a constant C >0 , such that the

[|B|j V‘fdj SC(“EIBW"J»

holds for every ball in R".
The Marcinkiewicz integral operator u is defined by

u<f>=[j oo s ] :

reverse Holder inequality

Stein [2] first introduced the operator £ for higher dimension and proved that 4 are of type (p, p) (1 <p< 2) and of

weak type (L1), in the case of QeLip, (S"") . Then, Benedek er al. [3] extended Stein's results, proved
that Qe C'(S"™"), and then ¢ is of type (p, p) (1< p <o) . Similarly, the Marcinkiewicz integral associated with the

Schrddinger operator L is defined by

1

f(m)f(y)dy\ ?}

1 f(x) =[ Nl
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Where, Kf (x,y)= Kf (x,y)|x -y, sz (x,y) is the kernel of R, = (8/6xj )Lf%, j =1---n.In particular,

whenV =0, K_/.A(x,y)=I§f(x,y)|x—y|=((xj —yj)/|x—y|)/\x—y|"",and Ig‘f(x,y) is the kernel of

1
R} =(6/8xj)A_5, j=L,--,n. Therefore

1

[ Ky \ ?j .

w1 (x) = (j:

We write K;(x,y)= KjA (x,y) and u; = ,uf . Obviously, 4, f(x) is the classic Marcinkiewicz integral.

For a given potential V' € RH , where ¢ > n/2. we introduce the auxiliary function

1 1
=sup<r:—— V(y)dy <1, xeR".
my, (x r>£){ 2 IB(Xﬂ ()dy }

p(x) =
The above assumption p(x) are finite, for all x€ R".

Throughout this paper, we denote the Lebesgue measure, and the characteristic function for a measurable set
EcR’, by |E| and y,, respectively. C denotes the positive constant which is independent of the main parameters

involved, but the value may change from line to line.

Preliminaries
A measurable function p(x), x € R” is said to be a variable exponent, if 0 < p(x) < co. Denote by P(R") to be
the set of all variable exponents p(-) such that

I<p” :essinf{p(x):xe]R”}Sesssup{p(x):xeR”}:p+ < o0,

In what follow, for any p(-) e P(R"), we use p'(-) to denote its conjugate variable exponent, that is to say, for any
xeR", 1/p(x)+1/p'(x) =1. The variable Lebesgue spaces L*’(R") consists of all measurable functions f defined
on R" satisfying that there exists a constant 4 >0 such that p, ,(f /A) <o . Where P, associated with p(-) is
given by

P ()= 1) V.
For p(-)e P(R"), I’ (R") is a Banach space equipped with the norm.

Definition 2.1 A measurable function () : R" — (O,oo) , 1s said to be globally log-Holder continuous, if there exists
C >0 , such that

|a(x)—a(y)|sm (Ix-yl<1/2),
C n
|a(x)—a(oo)|§m (xeR ),

for some consant a () . The sets of globally log-Hélder continuous is denoted by LH (R").

Shen [4] gave the following kernel estimate that we needed .

Lemma 2.2 If V' € RH ,, then, for every N, there exists a constant C, such that
C+(x—z|/p(x)) ™"

| Y—2z |nfl

L
| K (x,2) [<

The classical Marcinkiewicz integral has the following bounded result (Ding et al [5]).

Available Online: http://saspjournals.com/sjpms 212



http://saspjournals.com/sjpms

Yao Demin & Zhao Kai .; Sch. J. Phys. Math. Stat., 2017; Vol-4; Issue-4 (Oct-Dec); pp-211-217

Lemma 2.3 Set Qe L/(S"") andl1<g<oo.Let I< p<oo and we 4,,,- Then yf are bounded on L7 (@,R"), this is
i 1@, <ClFG

The following lemma is very important for our main results (Gao and Tang [6]).

L’ (o,R")

Lemma 2.4 ,uf S(x)SCM(f)(x)+p, f(x) , there M is the Hardy-Littlewood maximal operator.

Izuki [7] introduce the definition of the Muckenhoupt weight with variable exponent.

Definition 2.5 Set p(-) e P(R") . A weight @ is said tobe an 4, | weight, if

sup——[o
Baball | B |

The sets of 4, weight is denoted by 4, , .

/p()

-1/p()
T L B

7OR")

Definition 2.6 Set p(-) e P(R"). A weight o is said to be an ;lp(_) weight, if

-1/p ()

L”"”“’“‘(R”) <oo.

sup | B oz, e, [ 25
B:ball

Where, p, is defined by
Py =/ BIf Y p(x)dx)".

The sets of ;lp(l) weight is denoted by ;lp(l) .

Definition 2.7 Let p(-) € P(R") and @ be a weight. The weight Lebesgue space with variable exponent L (@) is
defined by
Lp(-)(w) :Lp(-)(Rn wl/p(-)).

Namely, the space L’ (@) is a Banach function space equipped with the norm

”f 20 (w) = ||fa)l/p(l)

The following lemmas can be found in (Izuki [7]).

Lm-)(Rn) °

Lemma 2.8 Set p(-) e P(R")(N1LH(R"). then the following three conditions are equivalent:
() wed,,.
(i) we .le(,) .

(iii) The Hardy-Littlewood maximal operator is bounded on the weighted variable Lebesgue space.

Lemma 2.9 Suppose that X is a Banach function space. Let the Hardy-Littlewood maximal operator M be weakly
on X . Then, for all balls B = R" and all measurable sets £ c B,

1E] ozl
1Bl sl
Next, we introduce the definition of the weighted Herz spaces with variable exponent. Suppose k € Z, we write
B, = {| x[< Zk}, D, =B, \B, | and y, = x,, . The symbol N is the set of all non-negative integers. For k e N, we
denote 7, =y, ,if k=1,and ¥, =%, .

Definition 2.10 Letax € R, p(-) e P(R") ,0 < g < and @ be a weight. The homogeneous Herz spaces K:(”g (w) and

non-homogeneous Herz spaces KZ(‘_% (w) are defined, respectively, by
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K9 (@) = { feBYR V0L ) |f |, < oo}

and

K% (w) = {f e PV (Rn,wl/p(») . "f

1401 loc

< o0
Ky (@) }

where

s

- 1/q
_ ak 9
K (@) _(/Z 2% f Lp<->(w)] >

()
fe=—00

- 1/q
_ ak ~ |9
|7 Ko (@) _(kz(; 2k LP"’(w)j '

The following lemma is essential for our main result (Izuki [8]).

Lemma 2.11 Suppose that X is a Banach function space. Let the Hardy-Littlewood maximal operator M be weakly on
X. Then

sup— |z, [l <=
Biball | B | Fllad sy

The following lemma can be found in (Cruz-Uribe and Wang [9]).

Lemma 2.12 Suppose that there exists a constant 1< p, < oo, such that for every @, € 4,
1712y <€ lg
Where, for all f € L™ (w,) and all measurable functions g. Soppose p(-) € P(R") and @ is a weight. If the Hardy-

L0 (ay)

, _1
Littlewood maximal operator M is bounded on I” (@) and on L’ (@ % O™, then, forall f e L’ (@) and all
measurable functions g

|7

v SClle

Lp(‘)(a)) .

Proposition 2.13 Set p(-) e P(R")(1 LH(R") and w € A4, , . Then, the Marcinkiewicz integral associated with

Schrédinger operator ,uf is bounded on L (w) .

Proof: 1t is easy to see that (xj -, ) / | x—y|eL”(S"™"). Thus, for the classical Marcinkiewicz integral operator U, by
applying Lemma 2.3, we have g, are bounded on weighted Lebesgue space L7 (®) . By using Lemma 2.8 and Lemma
2.12, we obtain that g, are bounded on L” “(w) . Thanks to Lemma 2.4 we have that the Marcinkiewicz integral

associated with Schrodinger operator is bounded on L (@) .

THE MAIN RESULT

In this section, we prove that the Marcinkiewicz integral associated with Schrédinger operator y; are bounded on

K& (@) and K& (o).

Theorem 3.1 Suppose p(-) e P(R") N LH(R") and0 < g <oo.Let I/p <r<1, we 4 yand né <a <n(l-r), where

(-
0 < 0 <1 is a constant, satisfying

"7(3,

LP(')(a))
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forall k,/ € Z and k <1.Then, y‘f are bounded on K;f(q) (») and K} (®) .

Proof: We only prove the homogeneous case. The non-homogeneous case can be proved in the similar way. We
decompose f € KZ(") (@) as

f :fZBk+l\Bk,2 +fZBH +f)(IR"\B,M :
Thus, we have that

”'UJL 4 Kyt (@) =€ [kizakq ""‘JL U b5 )%

L"")(w)

]/

> Ak L 7 %
+[ > 2wt (s D j
k=—0

Lp(')(a))
Ja
ks q
akq L
" {k-z‘;o 2 # (fZR” \Bia 22 L""’(w)j

<C{,+1,+1,).

Firstly, we estimate /, . Using the boundedness of ,uf on I’ (w), we obtain

)i

q q
L) =l
Secondly, we estimate 7, .

© k-2 q %
ake
L<| 3 2™ [Z et (202 ()j .
k=—x I=—0
Thus, for xeZ, [<k-2, xe D, and Lemma 2.2, we deduce that | x— y|~| x| and

12
| Jc{()}/}|)n|—1 Zi (y)('[)c—yQ%j @ =Clxl (IDI /0] dy).

Thus, for x € D, , by the generalized Holder inequality and Lemma 2.11, we have that
L -n 1/p() -1/p()
1 Sz CIx " |10 1 o @72

I < C[ i 20k “(f)(sm\sk,z)
[

Ko (@)

|l (f2)IC],

LI"(’)(]R")
- 1/p()
<Clx 70" 2 o 8
‘ BI | -1
<=t
- C|Bk |||f;(l||Lﬂ()(w) ZB, Lp()(a)) :
Then
N\
0 k-2 B ‘13 ’()
12 SC Z 2akq z ‘Bl| kNP0 (w) lf/l/[ 0
ke ]:7QO| k | ‘;{B/ '(w)

Forevery k,l € Z, k>1+2 and rp(-) e P(R")(\ LH(R"). Applying Lemma 2.9, we obtain

ro_ (k=l)nr
0 (w) /HXB/ Lf”"’(w)/HZBI ”Ul’“(m) < C(| BB |) =C2 )
Then we deduce that

) i N\
I, < C[ Z yak (sz k=) =1) |IfZl||L”“(“’)j ] .

k=-o0 =—0

HXB,( L”")(w) = HZB/(
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When 0 < g <1, by the Jeason’s inequality and o < n (1 - r) we have that

1/q
I < C( 3 ok Z 21D I (w)j

[=—0

g
< C( z Dol ||f;(1 "L‘( (@) z 2@(k1)(an(lr))j
I 2

=—0 k=Il+

o Z2 1

=—x

IA

Kyh(@)*

Vg
] <l

When 1< g <o, take1 < s < oo, such thata < n/s - (1 - r). Using the Holder inequality, for every k € Z, we obtain

k=2 kel 1 ’
[ Z 2"k=he=h ”fl/ "L”"’(w)j
qlq
=2 [ 2ty (k=t)-al g’
ip(')(w)j{/—zoo Z[S ] ]

=0
k-

k=2 74 e
) C(zz 27,

_ q(k DD _ ; | (ﬁ i) )*kﬁ(r—l)Jq’ q/q'
<C Zz 27N £ 2o 22

N

1=

’"’(k I(r-1)

<Cr akg ( Z 2s el "f l"L“ ’(w)j

I=—0

Thus, we have that

< C( Zw: Dala ”f Zw: 2’1q(k I 1)]]/q
J=—»
w I/q
c( > 2Nzl j <c|r
I=—» PV (w

170 () =

IN

Finally, to estimate I,

K@)
I,< { 3 ok ( >
k=—o0 I1=k+2

N\
Lﬂ(')(w)j °
Take k€Z, [>2k+2, x€ D, and x € D,. Then

t2x—yPRx|-|yz2 -2 =2
Thus, thanks to Lemma 2.2, we have that

1/2
], LD [ 5| arscisr (], 17001 )
i ! |" 1 Zi |x—y|<t t3 - ! D, :
By the Holder 1nequa11ty and Lemma 2.11, we deduce that
1, S CLB T 10" 2] o [0 2] sy S CN il W2 |, -
Thus, we conclude that
Uq

q
. o s | o,
L<c| Y o { 3 e IIL,,HW)}

k=—0 I=k+2 }(B[ 20 (o)
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" " \Va
< C[ z 20:/«]( Z 2§n(k—l) "le L””(w)j } .

k=—0 I=k+2

When 0 < g <1, applying the Jeason’s inequality and —nd < &, we obtain that

© 0 1/‘1
akq Snq(k-1) q
Lec( 32 3 gl
k=-0 I=k+2
1-2 I/q
q q(b'nJra)(kfl)
m)(w)kzz J

g
q
o] =l

<C| > 2 ||f;(,
|=—0

<C| > 2|1z
I=—0

Ko (@)

When 1< g <oo. Using the Holder inequality and —nd < o, we conclude that

0 © q l/q
I < C[ z 204 ( Z 2 "fZl "Lm)(w)2§n(k4)/”’2ﬂ125”(k4)/”j J
k=—0

I=k+2

IA

. . - ala\ Ve
C 2akq ( Zalq 7 ‘]p 2q5n (k—])/yj[ 2—alq '2(1 Sn (k—l)//lJ
[kz;c 1;2 ”f o @ zg;z
© -2 g
alg q qén(k-1)/u'
(S Vil £ 2]

[=—0 k=—0

< c[z 24 £,
[=—0

IA

Vg
q
| 5l

Ko@)

This completes the proof of Theorem3.1.
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