Scholars Journal of Physics, Mathematics and Statistics

Sch. J. Phys. Math. Stat. 2017; 4(4):211-217 ©Scholars Academic and Scientific Publishers (SAS Publishers) (An International Publisher for Academic and Scientific Resources)

Marcinkiewicz Integral Associated with Schrödinger Operator on Weighted Herz Spaces with Variable Exponent

Yao Demin, Zhao Kai*

School of Mathematics and Statistics, Qingdao University, Qingdao 266071, China

	Abstract: Set $L = -\Delta + V$ be a Schrödinger operator, where V is a non-negative
*Corresponding author	potential belonging to some reverse Hölder class. In this paper, using the properties
Zhao Kai	of the Marcinkiewicz integrals associated with operators and the estimate of the
	classical inequalities and Muckenhoupt weighted functions, the authors obtained the
Article History	boundedness of Marcinkiewicz integrals associated with Schrödinger operators on
Received: 19.12.2017	$I_{\mu}^{(1)}(x) = 1$ $I_{\mu}^{(1)}(x) = 1$ $I_{\mu}^{(1)}(x) = 1$
Accepted: 25.12.2017	$L^{r(\omega)}(\omega)$, where $p(\cdot) \in [1,\infty)$ and $\omega \in A_{p(\cdot)}$. Then, the boundedness of
Published: 30.12.2017	Marcinkiewicz integrals associated with Schrödinger operator μ^L on weighted Herz
	Matchikiewicz integrals associated with Schrödinger operator μ_j on weighted herz
DOI	spaces with variable exponent is established.
10.21276/sinms 2017.4.4.10	Keywords: Schrödinger operator, Marcinkiewicz integral, variable exponent,
10.21270/Sjpiiis.2017.4.4.10	weighted, boundedness, Herz space
[비운영식]티	INTRODUCTION
	Function spaces with variable exponent are studied with keen interest not in
	real analysis, but also in partial differential equations. They are applicable to the
6359576	image restoration and modeling for electror- heological fluids. We know that the
HER BERGER	theory of function spaces with variable exponent and its applications has made
巴哈爾爾	rapidly progress in the past twenty years. In particular, Muckenhoupt [1] has
	f abtained the theory on weights called the Muckenbount A theory in the study of
	botamed the theory on weights caned the widekenhoupt A_p theory in the study of

weighted function spaces.

In this paper, we will consider the Schrödinger operator $L = -\Delta + V(x)$, in \mathbb{R}^n , and V(x) is a non-negative potential belonging to the reverse Hölder class RH_q , where $q \ge n/2$, and exists a constant C > 0, such that the reverse Hölder inequality

$$\left(\frac{1}{|B|}\int_{B}V^{q}dx\right)^{\frac{1}{q}} \leq C\left(\frac{1}{|B|}\int_{B}Vdx\right),$$

holds for every ball in \mathbb{R}^n .

The Marcinkiewicz integral operator μ is defined by

$$\mu(f) = \left(\int_0^\infty |\int_{|x-y| < t} \frac{\Omega(x-y)}{|x-y|^{n-1}} f(y) dy |^2 \frac{dt}{t^3}\right)^{\frac{1}{2}}.$$

Stein [2] first introduced the operator μ for higher dimension and proved that μ are of type (p, p) (1 and of weak type <math>(1,1), in the case of $\Omega \in \operatorname{Lip}_{\gamma}(S^{n-1})$. Then, Benedek *et al.* [3] extended Stein's results, proved that $\Omega \in C^1(S^{n-1})$, and then μ is of type (p, p) (1 . Similarly, the Marcinkiewicz integral associated with the Schrödinger operator*L*is defined by

$$\mu_{j}^{L}f(x) = \left(\int_{0}^{\infty} \left|\int_{|x-y|$$

Where, $K_j^L(x, y) = \tilde{K}_j^L(x, y) |x - y|$, $\tilde{K}_j^L(x, y)$ is the kernel of $R_j = (\partial/\partial x_j) L^{-1/2}$, $j = 1 \cdots n$. In particular, when V = 0, $K_j^{\Delta}(x, y) = \tilde{K}_j^{\Delta}(x, y) |x - y| = ((x_j - y_j)/|x - y|)/|x - y|^{n-1}$, and $\tilde{K}_j^{\Delta}(x, y)$ is the kernel of

 $R_j^{\Delta} = \left(\partial/\partial x_j\right) \Delta^{-\frac{1}{2}}, \ j = 1, \dots, n$. Therefore

$$\mu_{j}^{\Delta}f(x) = \left(\int_{0}^{\infty} \left| \int_{|x-y| < t} K_{j}^{\Delta}(x, y) f(y) dy \right|^{2} \frac{dt}{t^{3}} \right)^{\frac{1}{2}}$$

We write $K_j(x, y) = K_j^{\Delta}(x, y)$ and $\mu_j = \mu_j^{\Delta}$. Obviously, $\mu_j f(x)$ is the classic Marcinkiewicz integral.

For a given potential $V \in RH_q$, where q > n/2. we introduce the auxiliary function

$$\rho(x) = \frac{1}{m_{V}(x)} = \sup_{r>0} \left\{ r : \frac{1}{r^{n-2}} \int_{B(x,r)} V(y) dy \le 1 \right\}, \qquad x \in \mathbb{R}^{n}.$$

The above assumption $\rho(x)$ are finite, for all $x \in \mathbb{R}^n$.

Throughout this paper, we denote the Lebesgue measure, and the characteristic function for a measurable set $E \subset \mathbb{R}^n$, by |E| and χ_E , respectively. *C* denotes the positive constant which is independent of the main parameters involved, but the value may change from line to line.

Preliminaries

A measurable function p(x), $x \in \mathbb{R}^n$ is said to be a variable exponent, if $0 < p(x) < \infty$. Denote by $P(\mathbb{R}^n)$ to be the set of all variable exponents $p(\cdot)$ such that

$$1 < p^{-} = \operatorname{essinf}\left\{p(x) : x \in \mathbb{R}^{n}\right\} \leq \operatorname{esssup}\left\{p(x) : x \in \mathbb{R}^{n}\right\} = p^{+} < \infty.$$

In what follow, for any $p(\cdot) \in P(\mathbb{R}^n)$, we use $p'(\cdot)$ to denote its conjugate variable exponent, that is to say, for any $x \in \mathbb{R}^n$, 1/p(x) + 1/p'(x) = 1. The variable Lebesgue spaces $L^{p(\cdot)}(\mathbb{R}^n)$ consists of all measurable functions f defined on \mathbb{R}^n satisfying that there exists a constant $\lambda > 0$ such that $\rho_{p(\cdot)}(f/\lambda) < \infty$. Where $\rho_{p(\cdot)}$ associated with $p(\cdot)$ is given by

$$\rho_{p(\cdot)}(f) = \int_{\mathbb{R}^n} |f(x)|^{p(x)} dx.$$

For $p(\cdot) \in P(\mathbb{R}^n)$, $L^{p(\cdot)}(\mathbb{R}^n)$ is a Banach space equipped with the norm.

Definition 2.1 A measurable function $\alpha(\cdot) : \mathbb{R}^n \to (0, \infty)$, is said to be globally log-Hölder continuous, if there exists C > 0, such that

$$|\alpha(x) - \alpha(y)| \leq \frac{-C}{\log(|x - y|)} \qquad (|x - y| < 1/2),$$
$$|\alpha(x) - \alpha(\infty)| \leq \frac{C}{\log(e + |x|)} \qquad (x \in \mathbb{R}^n),$$

for some constant $\alpha(\infty)$. The sets of globally log-Hölder continuous is denoted by $LH(\mathbb{R}^n)$.

Shen [4] gave the following kernel estimate that we needed .

Lemma 2.2 If $V \in RH_d$, then, for every N, there exists a constant C, such that

$$|K_{j}^{L}(x,z)| \le \frac{C(1+(|x-z|/\rho(x)))^{-N}}{|x-z|^{n-1}}$$

The classical Marcinkiewicz integral has the following bounded result (Ding et al [5]).

Lemma 2.3 Set $\Omega \in L^q(S^{n-1})$ and $1 < q \le \infty$. Let $1 and <math>\omega \in A_{p/q'}$. Then μ_j^L are bounded on $L^p(\omega, \mathbb{R}^n)$, this is $\|\mu_j^L f(x)\|_{L^p(\omega, \mathbb{R}^n)} \le C \|f(x)\|_{L^p(\omega, \mathbb{R}^n)}$.

The following lemma is very important for our main results (Gao and Tang [6]).

Lemma 2.4 $\mu_i^L f(x) \le CM(f)(x) + \mu_i f(x)$, there M is the Hardy-Littlewood maximal operator.

Izuki [7] introduce the definition of the Muckenhoupt weight with variable exponent.

Definition 2.5 Set $p(\cdot) \in P(\mathbb{R}^n)$. A weight ω is said to be an $A_{p(\cdot)}$ weight, if

$$\sup_{\text{B:ball}} \frac{1}{|B|} \left\| \omega^{1/p(\cdot)} \chi_B \right\|_{L^{p(\cdot)}(\mathbb{R}^n)} \left\| \omega^{-1/p(\cdot)} \chi_B \right\|_{L^{p'(\cdot)}(\mathbb{R}^n)} < \infty .$$

The sets of $A_{p(\cdot)}$ weight is denoted by $A_{p(\cdot)}$.

Definition 2.6 Set $p(\cdot) \in P(\mathbb{R}^n)$. A weight ω is said to be an $\tilde{A}_{p(\cdot)}$ weight, if

$$\sup_{\text{B:ball}} |B|^{-pB} \| \omega \chi_B \|_{L^1(\mathbb{R}^n)} \| \omega^{-1/p(\cdot)} \chi_B \|_{L^{p'(\cdot)/p(\cdot)}(\mathbb{R}^n)} < \infty.$$

Where, p_B is defined by

$$p_{B} = (1/|B| \int_{B} 1/p(x) \, dx)^{-1}$$

The sets of $\tilde{A}_{p(\cdot)}$ weight is denoted by $\tilde{A}_{p(\cdot)}$.

Definition 2.7 Let $p(\cdot) \in P(\mathbb{R}^n)$ and ω be a weight. The weight Lebesgue space with variable exponent $L^{p(\cdot)}(\omega)$ is defined by

$$L^{p(\cdot)}(\omega) = L^{p(\cdot)}(\mathbb{R}^n, \omega^{1/p(\cdot)}).$$

Namely, the space $L^{p(\cdot)}(\omega)$ is a Banach function space equipped with the norm

$$\left\|f\right\|_{L^{p(\cdot)}(\omega)} = \left\|f\omega^{1/p(\cdot)}\right\|_{L^{p(\cdot)}(\mathbb{R}^n)}.$$

The following lemmas can be found in (Izuki [7]).

Lemma 2.8 Set $p(\cdot) \in P(\mathbb{R}^n) \cap LH(\mathbb{R}^n)$. then the following three conditions are equivalent:

(i)
$$\omega \in A_{p(\cdot)}$$
.

(ii) $\omega \in \tilde{A}_{p(\cdot)}$.

(iii) The Hardy-Littlewood maximal operator is bounded on the weighted variable Lebesgue space.

Lemma 2.9 Suppose that X is a Banach function space. Let the Hardy-Littlewood maximal operator M be weakly on X. Then, for all balls $B \subset \mathbb{R}^n$ and all measurable sets $E \subset B$,

$$\frac{|E|}{|B|} \leq C \frac{\|\chi_E\|_X}{\|\chi_B\|_X}.$$

Next, we introduce the definition of the weighted Herz spaces with variable exponent. Suppose $k \in \mathbb{Z}$, we write $B_k = \{ |x| \le 2^k \}$, $D_k = B_k \setminus B_{k-1}$ and $\chi_k = \chi_{D_k}$. The symbol \mathbb{N}_0 is the set of all non-negative integers. For $k \in \mathbb{N}_0$, we denote $\tilde{\chi}_k = \chi_{D_k}$, if $k \ge 1$, and $\tilde{\chi}_0 = \chi_{D_0}$.

Definition 2.10 Let $\alpha \in \mathbb{R}$, $p(\cdot) \in P(\mathbb{R}^n)$, $0 < q < \infty$ and ω be a weight. The homogeneous Herz spaces $\dot{K}^{\alpha,q}_{p(\cdot)}(\omega)$ and non-homogeneous Herz spaces $K^{\alpha,q}_{p(\cdot)}(\omega)$ are defined, respectively, by

$$\dot{K}_{p(\cdot)}^{\alpha,q}(\omega) = \left\{ f \in L^{p(\cdot)}_{\text{loc}}(\mathbb{R}^n \setminus \{0\}, \omega^{1/p(\cdot)}) : \left\| f \right\|_{\dot{K}^{\alpha,q}_{p(\cdot)}(\omega)} < \infty \right\}$$

and

$$K_{p(\cdot)}^{\alpha,q}(\omega) = \left\{ f \in L_{\text{loc}}^{p(\cdot)}(\mathbb{R}^n, \omega^{1/p(\cdot)}) : \left\| f \right\|_{K_{p(\cdot)}^{\alpha,q}(\omega)} < \infty \right\},$$

where

$$\begin{split} \left\|f\right\|_{\dot{K}^{\alpha,q}_{p(\cdot)}(\omega)} &= \left(\sum_{k=-\infty}^{\infty} \left\|2^{\alpha k} f \chi_{k}\right\|_{L^{p(\cdot)}(\omega)}^{q}\right)^{1/q},\\ \left\|f\right\|_{K^{\alpha,q}_{p(\cdot)}(\omega)} &= \left(\sum_{k=0}^{\infty} \left\|2^{\alpha k} f \tilde{\chi}_{k}\right\|_{L^{p(\cdot)}(\omega)}^{q}\right)^{1/q}. \end{split}$$

The following lemma is essential for our main result (Izuki [8]).

Lemma 2.11 Suppose that X is a Banach function space. Let the Hardy-Littlewood maximal operator M be weakly on X. Then

$$\sup_{\text{B:ball}} \frac{1}{|B|} \|\chi_B\|_X \|\chi_B\|_{X'} < \infty$$

The following lemma can be found in (Cruz-Uribe and Wang [9]).

Lemma 2.12 Suppose that there exists a constant $1 < p_0 < \infty$, such that for every $\omega_0 \in A_{p_0}$

$$\|f\|_{L^{p_0}(\omega_0)} \le C \|g\|_{L^{p_0}(\omega_0)}$$

Where, for all $f \in L^{p_0}(\omega_0)$ and all measurable functions g. Soppose $p(\cdot) \in P(\mathbb{R}^n)$ and ω is a weight. If the Hardy-Littlewood maximal operator M is bounded on $L^{p(\cdot)}(\omega)$ and on $L^{p'(\cdot)}(\omega^{-1/p(\cdot)-1})$. then, for all $f \in L^{p(\cdot)}(\omega)$ and all measurable functions g

$$\left\|f\right\|_{L^{p(\cdot)}(\omega)} \leq C \left\|g\right\|_{L^{p(\cdot)}(\omega)}.$$

Proposition 2.13 Set $p(\cdot) \in P(\mathbb{R}^n) \cap LH(\mathbb{R}^n)$ and $\omega \in A_{p(\cdot)}$. Then, the Marcinkiewicz integral associated with Schrödinger operator μ_i^L is bounded on $L^{p(\cdot)}(\omega)$.

Proof: It is easy to see that $(x_j - y_j)/|x - y| \in L^{\infty}(S^{n-1})$. Thus, for the classical Marcinkiewicz integral operator μ_j , by applying Lemma 2.3, we have μ_j are bounded on weighted Lebesgue space $L^p(\omega)$. By using Lemma 2.8 and Lemma 2.12, we obtain that μ_j are bounded on $L^{p(\cdot)}(\omega)$. Thanks to Lemma 2.4 we have that the Marcinkiewicz integral associated with Schrödinger operator is bounded on $L^{p(\cdot)}(\omega)$.

THE MAIN RESULT

In this section, we prove that the Marcinkiewicz integral associated with Schrödinger operator μ_j^L are bounded on $\dot{K}_{p(\cdot)}^{\alpha,q}(\omega)$ and $K_{p(\cdot)}^{\alpha,q}(\omega)$.

Theorem 3.1 Suppose $p(\cdot) \in P(\mathbb{R}^n) \cap LH(\mathbb{R}^n)$ and $0 < q < \infty$. Let $1/p_- < r < 1$, $\omega \in A_{rp(\cdot)}$ and $n\delta < \alpha < n(1-r)$, where $0 < \delta < 1$ is a constant, satisfying

$$\frac{\left|\chi_{B_{k}}\right|_{L^{p(\cdot)}(\omega)}}{\left|\chi_{B_{l}}\right|_{L^{p(\cdot)}(\omega)}} \leq C2^{\delta n(k-1)},$$

Available Online: http://saspjournals.com/sjpms

for all $k, l \in \mathbb{Z}$ and $k \leq 1$. Then, μ_j^L are bounded on $\dot{K}_{p(\cdot)}^{\alpha,q}(\omega)$ and $K_{p(\cdot)}^{\alpha,q}(\omega)$.

Proof: We only prove the homogeneous case. The non-homogeneous case can be proved in the similar way. We decompose $f \in \dot{K}^{\alpha,q}_{p(\cdot)}(\omega)$ as

$$f = f \chi_{B_{k+1} \setminus B_{k-2}} + f \chi_{B_{k-2}} + f \chi_{\mathbb{R}^n \setminus B_{k+1}}$$

Thus, we have that

$$\begin{aligned} \left\| \mu_{j}^{L} f \right\|_{\dot{K}_{p(\cdot)}^{\alpha,q}(\omega)} &\leq C \left\{ \left(\sum_{k=-\infty}^{\infty} 2^{\alpha k q} \left\| \mu_{j}^{L} (f \chi_{B_{k+1} \setminus B_{k-2}}) \chi_{k} \right\|_{L^{p(\cdot)}(\omega)}^{q} \right)^{\frac{1}{q}} \\ &+ \left(\sum_{k=-\infty}^{\infty} 2^{\alpha k q} \left\| \mu_{j}^{L} (f \chi_{B_{k-2}}) \chi_{k} \right\|_{L^{p(\cdot)}(\omega)}^{q} \right)^{\frac{1}{q}} \\ &+ \left(\sum_{k=-\infty}^{\infty} 2^{\alpha k q} \left\| \mu_{j}^{L} (f \chi_{\mathbb{R}^{n} \setminus B_{k-2}}) \chi_{k} \right\|_{L^{p(\cdot)}(\omega)}^{q} \right)^{\frac{1}{q}} \right\} \end{aligned}$$

$$\leq C(I_1 + I_2 + I_3).$$

Firstly, we estimate I_1 . Using the boundedness of μ_j^L on $L^{p(\cdot)}(\omega)$, we obtain

$$I_{1} \leq C \left(\sum_{k=-\infty}^{\infty} 2^{\alpha kq} \left\| (f \chi_{B_{k+1} \setminus B_{k-2}}) \right\|_{L^{p(\cdot)}(\omega)}^{q} \right)^{1/q} \leq C \left\| f \right\|_{\dot{K}^{\alpha,q}_{p(\cdot)}(\omega)}.$$

Secondly, we estimate I_2 .

$$I_{2} \leq \left(\sum_{k=-\infty}^{\infty} 2^{\alpha k q} \left(\sum_{l=-\infty}^{k-2} \left\| \mu_{j}^{L}(f \chi_{l}) \chi_{k} \right\|_{L^{p(\cdot)}(\omega)} \right)^{q} \right)^{\frac{1}{q}}$$

Thus, for $x \in \mathbb{Z}$, $l \le k-2$, $x \in D_k$ and Lemma 2.2, we deduce that $|x - y| \sim |x|$ and

$$|\mu_{j}^{L}(f\chi_{l})| \leq C \int_{\mathbb{R}^{n}} \frac{|f(y)|}{|x-y|^{n-1}} \chi_{l}(y) \left(\int_{|x-y| \leq t} \frac{dt}{t^{3}} \right)^{1/2} dy \leq C |x|^{-n} \left(\int_{D_{l}} |f(y)| dy \right).$$

Thus, for $x \in D_k$, by the generalized Hölder inequality and Lemma 2.11, we have that

$$\begin{split} \mu_{j}^{L}(f\chi_{l}) &|\leq C |x|^{-n} \left\| f \omega^{1/p(\cdot)} \chi_{l} \right\|_{L^{p(\cdot)}(\mathbb{R}^{n})} \left\| \omega^{-1/p(\cdot)} \chi_{l} \right\|_{L^{p'(\cdot)}(\mathbb{R}^{n})} \\ &\leq C |x|^{-n} \left\| f \omega^{1/p(\cdot)} \chi_{l} \right\|_{L^{p(\cdot)}(\mathbb{R}^{n})} \left\| \chi_{B_{l}} \right\|_{(L^{p(\cdot)}(\omega))'} \\ &\leq C \frac{|B_{l}|}{|B_{k}|} \left\| f \chi_{l} \right\|_{L^{p(\cdot)}(\omega)} \left\| \chi_{B_{l}} \right\|_{L^{p(\cdot)}(\omega)}^{-1}. \end{split}$$

Then

$$I_{2} \leq C \left(\sum_{k=-\infty}^{\infty} 2^{\alpha k q} \left(\sum_{l=-\infty}^{k-2} \frac{|B_{l}|}{|B_{k}|} \frac{\|\chi_{B_{k}}\|_{L^{p(\cdot)}(\omega)}}{\|\chi_{B_{l}}\|_{L^{p(\cdot)}(\omega)}} \|f\chi_{l}\|_{L^{p(\cdot)}(\omega)} \right)^{q} \right)^{1/q}.$$

For every $k, l \in \mathbb{Z}$, $k \ge l+2$ and $rp(\cdot) \in P(\mathbb{R}^n) \cap LH(\mathbb{R}^n)$. Applying Lemma 2.9, we obtain

$$\left\|\chi_{B_{k}}\right\|_{L^{p(\cdot)}(\omega)} / \left\|\chi_{B_{l}}\right\|_{L^{p(\cdot)}(\omega)} = \left\|\chi_{B_{k}}\right\|_{L^{p(\cdot)}(\omega)} / \left\|\chi_{B_{l}}\right\|_{L^{p(\cdot)}(\omega)} \le C\left(|B_{k}|/|B_{l}|\right)^{r} = C2^{(k-l)nr}.$$

Then we deduce that

$$I_{2} \leq C \left(\sum_{k=-\infty}^{\infty} 2^{\alpha k q} \left(\sum_{l=-\infty}^{k-2} 2^{n(k-l)(r-1)} \| f \chi_{l} \|_{L^{p(\cdot)}(\omega)} \right)^{q} \right)^{1/q}.$$

Yao Demin & Zhao Kai .; Sch. J. Phys. Math. Stat., 2017; Vol-4; Issue-4 (Oct-Dec); pp-211-217

When $0 < q \le 1$, by the Jeason's inequality and $\alpha < n(1-r)$, we have that

$$\begin{split} &I_{2} \leq C \Biggl(\sum_{k=-\infty}^{\infty} 2^{\alpha kq} \sum_{l=-\infty}^{k-2} 2^{nq(k-l)(r-1)} \left\| f \chi_{l} \right\|_{L^{p(\cdot)}(\omega)}^{q} \Biggr)^{l/q} \\ &\leq C \Biggl(\sum_{l=-\infty}^{\infty} 2^{\alpha lq} \left\| f \chi_{l} \right\|_{L^{p(\cdot)}(\omega)}^{q} \sum_{k=l+2}^{\infty} 2^{q(k-l)(\alpha-n(1-r))} \Biggr)^{l/q} \\ &\leq C \Biggl(\sum_{l=-\infty}^{\infty} 2^{\alpha lq} \left\| f \chi_{l} \right\|_{L^{p(\cdot)}(\omega)}^{q} \Biggr)^{l/q} \leq C \left\| f \right\|_{\dot{K}^{\alpha,q}_{p(\cdot)}(\omega)}. \end{split}$$

When $1 < q < \infty$, take $1 < s < \infty$, such that $\alpha < n/s \cdot (1 - r)$. Using the Hölder inequality, for every $k \in \mathbb{Z}$, we obtain

$$\begin{split} &\left(\sum_{l=-\infty}^{k-2} 2^{n(k-l)(r-1)} \left\| f \chi_l \right\|_{L^{p(\cdot)}(\omega)} \right)^q \\ &\leq C \Biggl(\sum_{l=-\infty}^{k-2} 2^{\frac{nq}{s'}(k-l)(r-1)} 2^{\alpha lq} \left\| f \chi_l \right\|_{L^{p(\cdot)}(\omega)}^q \Biggr) \Biggl(\sum_{l=-\infty}^{k-2} 2^{\left(\frac{n}{s}(r-1)(k-l)-\alpha l\right)q'} \Biggr)^{q/q'} \\ &\leq C \Biggl(\sum_{l=-\infty}^{k-2} 2^{\frac{nq}{s'}(k-l)(r-1)} 2^{\alpha lq} \left\| f \chi_l \right\|_{L^{p(\cdot)}(\omega)}^q \Biggr) \Biggl(\sum_{l=-\infty}^{k-2} 2^{\left(l \left(\frac{n}{s}(r-1)-\alpha\right)-k\frac{n}{s}(r-1)\right)q'} \Biggr)^{q/q'} \\ &\leq C 2^{-\alpha kq} \Biggl(\sum_{l=-\infty}^{k-2} 2^{\frac{nq}{s'}(k-l)(r-1)} 2^{\alpha lq} \left\| f \chi_l \right\|_{L^{p(\cdot)}(\omega)}^q \Biggr). \end{split}$$

Thus, we have that

$$\begin{split} I_{2} &\leq C \Biggl(\sum_{l=-\infty}^{\infty} 2^{\alpha l q} \left\| f \,\chi_{l} \right\|_{L^{p(\cdot)}(\omega)}^{q} \sum_{k=l+2}^{\infty} 2^{\frac{n q}{s'}(k-l)(r-1)} \Biggr)^{1/q} \\ &\leq C \Biggl(\sum_{l=-\infty}^{\infty} 2^{\alpha l q} \left\| f \,\chi_{l} \right\|_{L^{p(\cdot)}(\omega)}^{q} \Biggr)^{1/q} \leq C \left\| f \right\|_{\dot{K}^{\alpha,q}_{p(\cdot)}(\omega)}. \end{split}$$

Finally, to estimate I_3

$$I_{3} \leq \left(\sum_{k=-\infty}^{\infty} 2^{\alpha k q} \left(\sum_{l=k+2}^{\infty} \left\| \mu_{j}^{L}(f \chi_{l}) \chi_{k} \right\|_{L^{p(\cdot)}(\omega)} \right)^{q} \right)^{\frac{1}{q}}.$$

Take $k \in \mathbb{Z}$, $l \ge k+2$, $x \in D_k$ and $x \in D_l$. Then

$$t \ge |x - y| \ge |x| - |y| \ge 2^{l-1} - 2^k \ge 2^{l-2}$$

Thus, thanks to Lemma 2.2, we have that

$$|\mu_{j}^{L}(f\chi_{l})| \leq C \int_{\mathbb{R}^{n}} \frac{|f(y)|}{|x-y|^{n-1}} \chi_{l}(y) \left(\int_{|x-y|\leq t} \frac{dt}{t^{3}} \right)^{1/2} dy \leq C |B_{l}|^{-1} \left(\int_{D_{l}} |f(y)| dy \right).$$

By the Hölder inequality and Lemma 2.11, we deduce that

$$\|\mu_{j}^{L}(f\chi_{l})\| \leq C \|B_{l}\|^{-1} \|f\omega^{1/p(\cdot)}\chi_{l}\|_{L^{p(\cdot)}(\mathbb{R}^{n})} \|\omega^{-1/p(\cdot)}\chi_{l}\|_{L^{p'(\cdot)}(\mathbb{R}^{n})} \leq C \|f\chi_{l}\|_{L^{p(\cdot)}(\omega)} \|\chi_{B_{l}}\|_{L^{p(\cdot)}(\omega)}^{-1}.$$

Thus, we conclude that

$$I_{3} \leq C \left(\sum_{k=-\infty}^{\infty} 2^{\alpha k q} \left(\sum_{l=k+2}^{\infty} \frac{\left\| \chi_{B_{k}} \right\|_{L^{p(\cdot)}(\omega)}}{\left\| \chi_{B_{l}} \right\|_{L^{p(\cdot)}(\omega)}} \left\| f \chi_{l} \right\|_{L^{p(\cdot)}(\omega)} \right)^{q} \right)^{1/q}$$

$$\leq C \left(\sum_{k=-\infty}^{\infty} 2^{\alpha k q} \left(\sum_{l=k+2}^{\infty} 2^{\delta n(k-l)} \left\| f \chi_l \right\|_{L^{p(\cdot)}(\omega)} \right)^q \right)^{1/q}$$

When $0 < q \le 1$, applying the Jeason's inequality and $-n\delta < \alpha$, we obtain that

$$\begin{split} I_{3} &\leq C \Biggl(\sum_{k=-\infty}^{\infty} 2^{\alpha k q} \sum_{l=k+2}^{\infty} 2^{\delta n q(k-l)} \left\| f \chi_{l} \right\|_{L^{p(\cdot)}(\omega)}^{q} \Biggr)^{1/q} \\ &\leq C \Biggl(\sum_{l=-\infty}^{\infty} 2^{\alpha l q} \left\| f \chi_{l} \right\|_{L^{p(\cdot)}(\omega)}^{q} \sum_{k=-\infty}^{l-2} 2^{q(\delta n+\alpha)(k-l)} \Biggr)^{1/q} \\ &\leq C \Biggl(\sum_{l=-\infty}^{\infty} 2^{\alpha l q} \left\| f \chi_{l} \right\|_{L^{p(\cdot)}(\omega)}^{q} \Biggr)^{1/q} \leq C \left\| f \right\|_{\dot{K}^{\alpha,q}_{p(\cdot)}(\omega)}. \end{split}$$

When $1 < q < \infty$. Using the Hölder inequality and $-n\delta < \alpha$, we conclude that

$$\begin{split} I_{3} &\leq C \Biggl(\sum_{k=-\infty}^{\infty} 2^{\alpha k q} \Biggl(\sum_{l=k+2}^{\infty} 2^{\alpha l} \left\| f \chi_{l} \right\|_{L^{p(\cdot)}(\omega)} 2^{\delta n(k-l)/\mu'} 2^{-\alpha l} 2^{\delta n(k-l)/\mu} \Biggr)^{q} \Biggr)^{l/q} \\ &\leq C \Biggl(\sum_{k=-\infty}^{\infty} 2^{\alpha k q} \Biggl(\sum_{l=k+2}^{\infty} 2^{\alpha l q} \left\| f \chi_{l} \right\|_{L^{p(\cdot)}(\omega)}^{q} 2^{q \delta n(k-l)/\mu'} \Biggr) \Biggl(\sum_{l=k+2}^{\infty} 2^{-\alpha l q'} 2^{q \delta n(k-l)/\mu} \Biggr)^{q/q'} \Biggr)^{l/q} \\ &\leq C \Biggl(\sum_{l=-\infty}^{\infty} 2^{\alpha l q} \left\| f \chi_{l} \right\|_{L^{p(\cdot)}(\omega)}^{q} \sum_{k=-\infty}^{l-2} 2^{q \delta n(k-l)/\mu'} \Biggr)^{l/q} \\ &\leq C \Biggl(\sum_{l=-\infty}^{\infty} 2^{\alpha l q} \left\| f \chi_{l} \right\|_{L^{p(\cdot)}(\omega)}^{q} \Biggr)^{l/q} \leq C \left\| f \right\|_{\dot{K}^{\alpha,q}_{p(\cdot)}(\omega)}. \end{split}$$

This completes the proof of Theorem3.1.

ACKNOWLEDGEMENT

This research was supported by NNSF-ChinaGrant(No. 11471176) and NSF of Shandong Province China (No. BS2014SF002). The authors would like to thank the referees for their meticulous work.

REFERENCES

- 1. Muckenhoupt B. Weighted norm inequalities for the Hardy maximal function. Transactions of the American Mathematical Society. 1972 Mar 1:207-26.
- 2. Stein EM. On the functions of Littlewood-Paley, Lusin, and Marcinkiewicz. Transactions of the American Mathematical Society. 1958 Jul 1;88(2):430-66.
- Benedek A, Calderón AP, Panzone R. Convolution operators on Banach space valued functions. Proceedings of the National Academy of Sciences. 1962 Mar 1;48(3):356-65.
- Shen Z. \$ L^ p \$ estimates for Schrödinger operators with certain potentials. InAnnales de l'institut Fourier 1995 (Vol. 45, No. 2, pp. 513-546).
- 5. Ding Y, Lee MY, Lin CC. Marcinkiewicz integral on weighted Hardy spaces. Archiv der Mathematik. 2003 Jun 1;80(6):620-9.
- 6. Gao W, Tang L. Boundedness for Marcinkiewicz integrals associated with Schrödinger operators. Proceedings-Mathematical Sciences. 2014 May 1;124(2):193-203.
- 7. Izuki M, Noi T. An intrinsic square function on weighted Herz spaces with variable exponent. arXiv preprint arXiv:1606.01019. 2016 Jun 3.
- 8. Izuki M. Remarks on Muckenhoupt weights with variable exponent. Journal of Analysis and Applications. 2013;11(1):27-41.
- 9. Cruz-Uribe D, Wang LA. Extrapolation and weighted norm inequalities in the variable Lebesgue spaces. Transactions of the American Mathematical Society. 2017;369(2):1205-35.