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Abstract: Set L V   be a Schrödinger operator, where V is a non-negative
potential belonging to some reverse Hölder class. In this paper, using the properties
of the Marcinkiewicz integrals associated with operators and the estimate of the
classical inequalities and Muckenhoupt weighted functions, the authors obtained the
boundedness of Marcinkiewicz integrals associated with Schrödinger operators on

( ) ( )pL  , where ( ) [1, )p    and ( ) .pA  Then, the boundedness of

Marcinkiewicz integrals associated with Schrödinger operator L
j on weighted Herz

spaces with variable exponent is established.
Keywords: Schrödinger operator, Marcinkiewicz integral, variable exponent,
weighted, boundedness, Herz space

INTRODUCTION
Function spaces with variable exponent are studied with keen interest not in

real analysis, but also in partial differential equations. They are applicable to the
image restoration and modeling for electror- heological fluids. We know that the
theory of function spaces with variable exponent and its applications has made
rapidly progress in the past twenty years. In particular, Muckenhoupt [1] has
obtained the theory on weights called the Muckenhoupt pA theory in the study of
weighted function spaces.

In this paper, we will consider the Schrödinger operator ( ),L V x   in n , and ( )V x is a non-negative

potential belonging to the reverse Hölder class qRH , where 2q n , and exists a constant 0C  , such that the

reverse Hölder inequality
1
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| | | |

q
q

B B
V dx C Vdx

B B
   

   
   

  ,

holds for every ball in n .
The Marcinkiewicz integral operator  is defined by

1
2

2
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  .

Stein [2] first introduced the operator  for higher dimension and proved that  are of type ( , )p p  1 2p  and of

weak type (1,1), in the case of 1Lip ( )nS
 . Then, Benedek et al. [3] extended Stein's results, proved

that 1 1( )nC S  , and then  is of type ( , )p p (1 )p   . Similarly, the Marcinkiewicz integral associated with the
Schrödinger operator L is defined by

1
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Where, ( , ) ( , ) ,L L
j jK x y K x y x y  ( , )L

jK x y is the kernel of   1
2 ,j jR x L   1 .j n  In particular,

when 0,V     1( , ) ( , ) | | | | | | ,n
j j j jK x y K x y x y x y x y x y        and ( , )jK x y is the kernel of

 
1
2 ,j jR x

     1, ,j n  . Therefore
1

2 2

30 | |
( ) ( , ) ( )j jx y t

dtf x K x y f y dy
t


 

 

   
   .

We write ( , ) ( , )j jK x y K x y and j j   . Obviously, ( )j f x is the classic Marcinkiewicz integral.

For a given potential qV RH , where 2.q n we introduce the auxiliary function

2 ( , )r 0

1 1( ) sup : ( ) 1
( ) n B x r

V

x r V y dy
m x r

 


    
  , nx .

The above assumption ( )x are finite, for all nx .

Throughout this paper, we denote the Lebesgue measure, and the characteristic function for a measurable set
,nE   by | |E and ,E respectively. C denotes the positive constant which is independent of the main parameters

involved, but the value may change from line to line.

Preliminaries
A measurable function ( )p x , nx is said to be a variable exponent, if 0 ( ) .p x   Denote by n( )P  to be

the set of all variable exponents ( )p  such that

   1 essinf ( ) : esssup ( ) : .n np p x x p x x p         

In what follow, for any ( ) ( )np P   , we use ( )p  to denote its conjugate variable exponent, that is to say, for any
nx , 1 ( ) 1 ( ) 1.p x p x  The variable Lebesgue spaces ( ) ( )p nL   consists of all measurable functions f defined

on n satisfying that there exists a constant 0  such that ( ) ( )p f    . Where ( )p  associated with ( )p  is

given by
( )

( ) ( ) | ( ) | .
n

p x
p f f x dx   

For ( ) ( ),np P   ( ) ( )p nL   is a Banach space equipped with the norm.

Definition 2.1 A measurable function ( )  :  0,n   , is said to be globally log-Hölder continuous, if there exists
0C  , such that

| ( ) ( ) |
log(| |)

Cx y
x y

  
 


 | | 1 2 ,x y 

| ( ) ( ) |
log( | |)

Cx
e x

   


 ,nx

for some consant ( )  . The sets of globally log-Hölder continuous is denoted by ( )nLH  .
Shen [4] gave the following kernel estimate that we needed .

Lemma 2.2 If dV RH , then, for every N , there exists a constant C , such that

1

(1 (| | ( )))| ( , ) |
| |

N
L
j n

C x z xK x z
x z

 



 



.

The classical Marcinkiewicz integral has the following bounded result (Ding et al [5]).
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Lemma 2.3 Set 1( )q nL S  and1 q   . Let 1 p   and .p qA  Then L
j are bounded on ( , )p nL   , this is

( , )( , )
( ) ( ) p np n

L
j LL
f x C f x


 


.

The following lemma is very important for our main results (Gao and Tang [6]).

Lemma 2.4 ( ) ( )( ) ( )L
j jf x CM f x f x   , there M is the Hardy-Littlewood maximal operator.

Izuki [7] introduce the definition of the Muckenhoupt weight with variable exponent.

Definition 2.5 Set ( ) P( )np    . A weight  is said to be an ( )pA  weight, if

( ) ( )

1 ( ) 1 ( )

( ) ( )B:ball

1sup
| | p n p n

p p
B BL LB

     

    
 

.

The sets of ( )pA  weight is denoted by ( )pA  .

Definition 2.6 Set ( ) P( )np    . A weight  is said to be an ( )pA 
 weight, if

1 ( ) / ( )

1 ( )
( ) ( )B:ball

sup | | n p p n

pB p
B BL L

B      

    
 

.

Where, Bp is defined by
1(1 | | 1 ( ) )B B

p B p x dx   .

The sets of ( )pA 
 weight is denoted by ( )pA 

 .

Definition 2.7 Let ( ) P( )np    and  be a weight. The weight Lebesgue space with variable exponent ( ) ( )pL  is
defined by

( ) ( ) 1 ( )( ) ( , ).p p n pL L    
Namely, the space ( ) ( )pL  is a Banach function space equipped with the norm

( ) ( )

1 ( )
( ) ( )

.p p n

p
L L

f f


 




The following lemmas can be found in (Izuki [7]).

Lemma 2.8 Set ( ) P( ) ( ).n np LH     then the following three conditions are equivalent:
(i) ( )pA  .

(ii) ( )pA   .

(iii) The Hardy-Littlewood maximal operator is bounded on the weighted variable Lebesgue space.

Lemma 2.9 Suppose that X is a Banach function space. Let the Hardy-Littlewood maximal operator M be weakly
on X . Then, for all balls nB   and all measurable sets E B ,

| | .
| |

E X

B X

E C
B






Next, we introduce the definition of the weighted Herz spaces with variable exponent. Suppose ,kZ we write

 | | 2 ,k
kB x  1\k k kD B B  and .

kk D  The symbol 0 is the set of all non-negative integers. For 0 ,k we

denote ,
kk D  if 1k  , and

00 D  .

Definition 2.10 Let  , ( ) P( )np    , 0 q   and  be a weight. The homogeneous Herz spaces ,
( ) ( )q
pK
 
 and

non-homogeneous Herz spaces ,
( ) ( )q
pK
  are defined, respectively, by
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( ) ( )
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q
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f f


 
 







 
  
 
 

The following lemma is essential for our main result (Izuki [8]).

Lemma 2.11 Suppose that X is a Banach function space. Let the Hardy-Littlewood maximal operator M be weakly on
.X Then

B:ball

1sup .
| | B BX XB

    

The following lemma can be found in (Cruz-Uribe and Wang [9]).

Lemma 2.12 Suppose that there exists a constant 01 ,p   such that for every
00 pA 

0 0
0 0( ) ( )

,p pL L
f C g

 


Where, for all 0
0( )pf L  and all measurable functions .g Soppose ( ) P( )np    and  is a weight. If the Hardy-

Littlewood maximal operator M is bounded on ( ) ( )pL  and on
1

( ) ( ) 1( ).p pL 
    then, for all ( ) ( )pf L  and all

measurable functions g

( ) ( )( ) ( )
.p pL L

f C g
  

Proposition 2.13 Set ( ) P( ) ( )n np LH     and ( )pA  . Then, the Marcinkiewicz integral associated with

Schrödinger operator L
j is bounded on ( ) ( )pL  .

Proof: It is easy to see that   1| | ( ).n
j jx y x y L S    Thus, for the classical Marcinkiewicz integral operator ,j by

applying Lemma 2.3, we have j are bounded on weighted Lebesgue space ( )pL  . By using Lemma 2.8 and Lemma

2.12, we obtain that j are bounded on ( ) ( )pL  . Thanks to Lemma 2.4 we have that the Marcinkiewicz integral

associated with Schrödinger operator is bounded on ( ) ( )pL  .

THE MAIN RESULT
In this section, we prove that the Marcinkiewicz integral associated with Schrödinger operator L

j are bounded on
,
( ) ( )q
pK
 
 and ,

( ) ( )q
pK
  .

Theorem 3.1 Suppose ( ) P( ) ( )n np LH     and 0 .q   Let 1 1,p r   ( )rpA  and (1 )n n r    , where

0 1  is a constant, satisfying

( )

( )

( ) ( 1)

( )

2
pk

pl

B L n k

B L

C 
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for all ,k lZ and 1.k  Then, L
j are bounded on ,

( ) ( )q
pK
 
 and ,

( ) ( )q
pK
  .

Proof: We only prove the homogeneous case. The non-homogeneous case can be proved in the similar way. We
decompose f  ,

( ) ( )q
pK
 
 as

1 2 2 1
\ \nk k k k

B B B B
f f f f  

   
  


.

Thus, we have that
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( )

1

\( ) ( )
2 ( )q pk k
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1 2 3( ).C I I I  

Firstly, we estimate 1I . Using the boundedness of
L
j on ( ) ( )pL  , we obtain

,( )1 2 ( )

1

1 \ ( )( )
2 ( ) .qpk k p

qqkq
B B KL

k
I C f C f 





  





 
  

 
 

Secondly, we estimate 2I .
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1
2
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q qk
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I f


  



 

 

  
      
 

Thus, for ,xZ 2l k  , kx D and Lemma 2.2, we deduce that | | | |x y x  and
1 2

1 3

| ( ) || ( ) | ( )
| |n

L
j l ln x y t

f y dtf C y dy
x y t

    

        | | | ( ) | .
l

n

D
C x f y dy 

Thus, for kx D , by the generalized Hölder inequality and Lemma 2.11, we have that
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For every , ,k lZ 2k l  and ( ) P( ) ( )n nrp LH     . Applying Lemma 2.9, we obtain

 ( ) ( ) ( ) ( )

( )

( ) ( ) ( ) ( )
| | | | 2 .p p rp rpk l k l

r k l nr
B B B B k lL L L L

C B B C
   

   
   

  

Then we deduce that
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When 0 1q  , by the Jeason’s inequality and  1n r   , we have that

( )

12
( )( 1)

2 ( )
2 2 p

qk
qkq nq k l r

l L
k l

I C f
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When 1 ,q   take1 ,s   such that  1 .n s r    Using the Hölder inequality, for every ,kZ we obtain
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Thus, we have that
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Finally, to estimate 3I
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Take ,kZ 2,l k  kx D and .lx D Then
1 2| | | | | | 2 2 2 .l k lt x y x y        

Thus, thanks to Lemma 2.2, we have that
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When 0 1,q  applying the Jeason’s inequality and ,n   we obtain that
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When 1 .q   Using the Hölder inequality and ,n   we conclude that
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This completes the proof of Theorem3.1.
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