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Abstract: Slope failures in mines are commonly preceded by a creep deformation 

curve comprising primary, secondary, and tertiary phases. The final tertiary 

(accelerating) phase provides the strongest precursor signals of imminent collapse, but 

reliably identifying its onset (the Onset of Slope Failure, or OOSF) in noisy monitoring 

data remains challenging. Traditional early-warning systems rely on fixed 

displacement or velocity thresholds, but once those limits are reached, the lead-time 

before failure is uncertain. We propose a new algorithmic framework to detect the 

OOSF by analyzing real-time displacement time-series with a moving-window multi-

criteria test. The method applies sequential checks on short windows of data. Only 

when all checks are satisfied is the window start marked as the OOSF. This systematic 

detection of tertiary creep onset could improve the early forecasting of slope failures. 
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1. INTRODUCTION 

          Surface mine slopes often exhibit creep deformation long before collapse, 

following the classical three-stage creep law: an initial primary (decelerating) phase, 

a steady secondary phase, and a final tertiary (accelerating) phase. The tertiary phase 

is of particular interest because its strong acceleration can be used to forecast the time 

of failure (ToF).  

For example, Saito (1969) and Voight (1989) 

formulated power-law relations in the tertiary regime, 

leading to the widely used inverse-velocity plotting 

method (Fukuzono, 1985). The basic idea is that, under 

constant stress, landslide deformation obeys creep theory 

and the acceleration of displacement follows a known 

curve, enabling graphical extrapolation to predict 

collapse. In practice, many case studies have 

successfully applied inverse-velocity fits to failure 

incidents, often assuming a nearly linear trend in the final 

accelerating phase. Figure 1 shows the three creep 

phases. 

 

 
Figure 1: Primary, Secondary and Tertiary Creep 

 

While the theory of tertiary creep is well 

established, its practical use in early warning is limited 

by data noise and ambiguity. Real monitoring data from 

slopes can be scattered, and the point at which one enters 

true accelerating creep is not always obvious. Typically, 

early-warning systems impose alert levels on 
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displacement or velocity (e.g. if velocity exceeds a set 

threshold, issue an alarm). However, as Crosta et al. 

(2003) point out, identifying suitable thresholds is 

difficult due to the complex and variable nature of 

landslides. Worse yet, if we act only when a fixed 

threshold is crossed, there may be very little time before 

actual failure, and the precise timing remains unknown. 

In other words, once the highest alert level is triggered, 

traditional EWS approaches effectively end, leaving a 

critical gap. 

 

To address this gap, it is advantageous to 

automatically detect the onset of the tertiary creep (i.e. 

the OOSF) as early as possible, using systematic analysis 

of the monitored displacement record. In recent years, 

several authors have suggested that the inverse-velocity 

fit should be applied only to data after this OOSF, to 

avoid bias from the earlier, slower phase. For instance, 

Dick et al. (2014) specifically recommended excluding 

pre-acceleration data when fitting linear extrapolations. 

Rose and Hungr (2007) similarly noted that the inverse-

velocity curve tends to become linear near the time of 

failure, but that the early part of the record (before 

acceleration) can distort the forecast. This implies that 

identifying the correct breakpoint (the OOSF) is crucial: 

it allows us to take only the truly accelerating part of the 

time series into account. Unfortunately, most existing 

methods rely on expert judgment or simple rules to pick 

the OOSF. A few recent studies have proposed 

algorithmic frameworks (e.g. moving averages or 

statistical tests) to recognize the acceleration point, but 

these are often not general or remain in the research 

stage. 

 

In this work, we propose a novel moving-

window, multi-criteria algorithm to identify the OOSF in 

slope displacement monitoring data. Our goal is to create 

a more objective, data-driven trigger that can support 

failure forecasting. The algorithm applies a sequence of 

explicit checks on short time-windows of recent data, 

ensuring that a candidate acceleration signal is sustained 

and genuine before it is flagged. If all conditions are met, 

the algorithm marks the beginning of that window as the 

OOSF. The conditions are designed to filter out noise and 

require clear signs of positive velocity and accelerating 

trend. 

 

2. METHODOLOGY 

The core of our proposed method is a sliding 

(“moving”) window that evaluates consecutive segments 

of the displacement time series for evidence of 

accelerating motion. At each time step, the algorithm 

examines the most recent window of data of fixed length. 

The following criteria are then applied in sequence: 

i. First, any negative displacement readings 

within the window are discarded or set to zero. 

In many monitoring contexts, only positive 

displacements (down-slope motion) contribute 

to creep; negative fluctuations often reflect 

measurement noise or recovery phases. By 

ignoring negative values, we ensure the 

algorithm focuses on sustained movement away 

from stability. For proceeding further at least 

five consecutive values of displacement should 

be positive. 

ii. Compute instantaneous velocity: We compute 

the first difference (velocity) over each sub-

interval in the window. These velocities 

represent the current trend of movement. 

iii. Check for sustained movement: The window 

must show uninterrupted positive motion. In 

practice, we require four consecutive positive 

displacement increments (or equivalently, four 

positive velocity values) in the window. This 

ensures that the slope has been moving 

continuously and rules out windows with one or 

more stops or reversals. 

iv. Check for increasing velocity trend. A hallmark 

of acceleration is that each velocity is larger 

than the previous. This condition enforces a 

monotonic increase in speed during the 

window. 

v. To capture the continuous nature of 

acceleration, we fit a parabolic curve to the 

velocity data over the window. We then check 

that the leading coefficient a of the general 

parabolic equation. A positive a indicates an 

upward-opening curve, i.e. acceleration that 

grows over the window, rather than leveling off 

or decelerating. 

vi. Finally, we identify the increase in a value for 

three out of four consecutive values of a. 

 

If all the above checks are satisfied in the 

current window, we declare the start of that window to 

be the Onset of Slope Failure (OOSF). By scanning 

forward in time, this provides a systematic way to trigger 

when runaway acceleration begins. This moving-

window procedure repeats as new data arrive. Only when 

an entire window meets every criterion do we register a 

positive detection. Otherwise, the window slides forward 

and the checks are repeated. In effect, the algorithm 

demands a clear, sustained acceleration before 

triggering, reducing false alarms from isolated 

fluctuations. 

 

3. DISCUSSION 

The multi-criteria moving-window algorithm 

provides a systematic way to flag the start of tertiary 

creep, with several attractive features. First, by requiring 

sustained positive displacements and velocity rises, it 

avoids false positives due to sporadic noise or brief 

fluctuations. Many slope monitoring records contain 

small movements or minor reversals; the four-point 

consistency check filters those out. Second, fitting a 

quadratic and requiring a positive leading coefficient 
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ensures that the pattern is truly accelerating (convex 

upward), which is the hallmark of tertiary creep. In a 

standard inverse-velocity plot, we expect near-linear 

behaviour only after acceleration actually begins, and our 

algorithm enforces this by checking curvature in the raw 

data stream. 

 

Our approach aligns with theoretical and 

empirical insights in landslide creep theory. For instance, 

Voight’s formulation implies that the curve becomes 

increasingly convex as failure approaches; by explicitly 

testing the polynomial curvature, we operationalize that 

idea. As noted by Rose & Hungr (2007), when a 

landslide truly enters its rapid phase, the velocity-versus-

time relation tends to be dominated by linear or 

accelerating segments. Conversely, during secondary 

creep, velocities are roughly constant. By demanding a 

positive acceleration that grows (the second derivative 

test), we ensure that a classical tertiary creep signature is 

present. 

 

Importantly, the algorithm takes the onset issue 

seriously. Many forecasting errors arise when analysts 

include too much pre-acceleration data in a linear fit, 

leading to underestimation of the impending collapse 

date. By scanning only for windows where the criteria 

hold, we effectively find the breakpoint between 

secondary and tertiary creep. This is consistent with the 

recommendation of Dick et al. (2014) to exclude data 

before acceleration when forecasting. In effect, our 

method automatically locates that breakpoint. 

 

The design of the checks is conservative: it will 

not trigger an alert unless all conditions are satisfied 

simultaneously. This reduces false alarms at the cost of 

possibly detecting OOSF slightly later than the absolute 

earliest moment (if data is noisy). In our hypothetical 

test, the window length of four steps means the detection 

lags the real threshold by a few time-steps (since the 

algorithm needs the four consistent increments to 

confirm). In practice, the choice of window size and 

sampling interval must balance timeliness with 

reliability. Smaller windows might detect faster but 

could be more sensitive to noise, while larger windows 

require longer sustained acceleration. These design 

choices can be tuned based on the monitoring frequency 

and noise level at a given mine site. 

 

One potential limitation is that the method 

assumes the displacement trend is monotonic and 

gradually acceleratory. If an actual failure involves 

complex, non-monotonic movements (such as transient 

stalls or multi-phase acceleration) the strict criteria might 

miss or delay the detection. However, most creeping 

slope failures do show a generally increasing trend once 

tertiary phase begins. Research also shows that even very 

fast rock failures often have a brief tertiary creep stage, 

which may be missed only because standard monitoring 

intervals are too coarse. Our algorithm could help reveal 

these subtle accelerations by focusing on short windows 

of high-resolution data. In settings with lower sampling 

rates, one could lengthen the window accordingly. 

 

Finally, the method can be integrated into a 

broader warning system. Once OOSF is detected, 

automatic triggers can initiate further analysis – for 

example, switching to a linear inverse-velocity forecast 

to estimate the failure time. Simultaneously, alert 

protocols (evacuation, alarms) can be activated on the 

assumption that collapse is imminent. Because the 

detection is data-driven, it adapts to the particular 

behaviour of each slope, rather than relying on fixed 

generic thresholds that may not suit all sites. 

 

4. CONCLUSION 

Accurate prediction of slope failure in surface 

mines depends on recognizing the precise moment when 

deformation starts to self-accelerate. We have proposed 

a new, algorithmic method to identify this Onset of Slope 

Failure (OOSF) by applying multiple sequential checks 

to real-time displacement data. The moving-window 

framework examines each recent data segment and 

enforces that motion is positive, velocities are steadily 

increasing, and the curvature of the trend is upward. Only 

when all these conditions are met is the OOSF flagged. 

 

This approach directly targets the tertiary creep 

phase of landslide theory, operationalizing established 

concepts (e.g. that inverse-velocity should only be 

applied post-OOSF). In real slope monitoring, the 

algorithm would provide an early warning trigger that is 

grounded in physical behaviour rather than arbitrary 

limits. In practical terms, it helps bridge the gap noted by 

research; once a predefined alert threshold is crossed, we 

still lack guidance on timing. By delivering a reliable 

OOSF signal, our method enables timely forecasting of 

failure time using conventional tools, thereby enhancing 

the effectiveness of early warning systems. 

 

REFERENCES 

• M. Saito, Forecasting time of slope failure by 

tertiary creep. Proceedings of the 7th International 

Conference on Soil Mechanics and Foundation 

Engineering, Mexico City, Mexico, Citeseer, 

(1969), p. 677–683 

• B. Voight, A relation to describe rate-dependent 

material failure. Science 243(4888), 200–203 (1989) 

• T. Fukuzono, A new method for predicting the 

failure time of a slope. Proceedings of 4th 

International Conference and Field Workshop on 

Landslide, (1985), p. 145–150 

• G.J. Dick, E. Eberhardt, A.G. Cabrejo-Liévano, D. 

Stead, N.D. Rose, Development of an early-warning 

time-of-failure analysis methodology for open-pit 

mine slopes utilizing ground-based slope stability 

https://saspublishers.com/journal/sjet/home


 

 

M.M. Masood, Sch.  J. Eng. Tech., Dec 2017; 5(12):715-718 

 

Available online https://saspublishers.com/journal/sjet/home    718 

  

 

 

radar monitoring data. Can. Geotech. J. 52(4), 515–

529 (2015) 

• N.D. Rose, O. Hungr, Forecasting potential rock 

slope failure in open pit mines using the inverse-

velocity method. Int. J. Rock Mech. Min. Sci. 44(2), 

308–320 (2007) 

• G.B. Crosta, F. Agliardi, Failure forecast for large 

rock slides by surface displacement measurements. 

Can. Geotech. J. 40(1), 176–191 (2003)

 

https://saspublishers.com/journal/sjet/home

