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Abstract: In this study, we proposed a novel dimension reduction approach for 

mixture discriminant analysis on based mixture of multivariate normal distributions of 

high-dimensional data. We considered case of a classification problem that the 

number of observations ( ) is less than the number of variables ( ). The proposed 

approaches compared with classical dimension reduction methods such as F approach, 

principal component analysis, clustering of variables and multidimensional scaling. 
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INTRODUCTION 

A classic problem in data analysis is classifying high dimensional data into 

multiple predefined categories. In particular, two-group classification problem has 

received a great deal of attention. Many methods have been proposed. But in various 

situations, especially when analyzing data with a small sample size relative to the 

number of variables (e.g. medical image, genetic microarray, chemometrics and text 

classification), many classification techniques become impractical. For example, 

Fisher’s discriminant analysis is not applicable if the number of input variables is 

greater than the number of observations. Other methods, even some sophisticated 

methods, such as neural networks and support vector machines, do not explicitly 

require the data dimension smaller than the sample size, but give poor classification 

accuracy in practice when the data dimension is ultra-high, as in fMRI and microarray 

data. Moreover, for the sake of model simplicity, a concise relationship between input 

variables and the response is required to achieve a better model interpretation [10]. 

 

A natural way to deal with high dimensional classification problems is to first reduce the data to a lower 

dimensional subspace and then apply some standard classification strategy, such as linear discriminant analysis or 

logistic regression, to the reduced data. 

 

Many methods use global dimension reduction techniques to overcome problems due to high dimensionality. A 

widely used solution is to reduce the dimension of data before using a classical classification method [3]. Dimension 

reduction techniques can be divided into techniques for variable (feature) extraction and variable selection.  

 

Variable extraction techniques build new variables carrying a large part of the global information. Variable 

transformation techniques attempt to summarize a dataset in fewer dimensions by creating combinations of the original 

attributes. These techniques are very successful in uncovering latent structure in datasets. Among these techniques, the 

most popular one is principal component analysis (PCA). 

 

Variable selection plays an important role in classification [6]. Before beginning designing a classification 

method, when many variables are involved, only those variables that are really required should be selected; that is, the 

first step is to eliminate the less significant variables from the analysis. Various variable selection schemes have been 

applied to high dimensional data with a double purpose [2]. Variable selection may be performed as a preliminary step 

before classification, because the chosen classification method works only with a small subset of variables. Variable 

selection is of crucial interest for researchers who want to identify significant variables which are associated with studies.  

 

http://saspjournals.com/sjpms


 
 
Ulku Erisoglu et al.; Sch. J. Phys. Math. Stat., 2017; Vol-4; Issue-4 (Oct-Dec); pp-205-210 

Available Online:  http://saspjournals.com/sjpms   206 

 
 

In this study, we proposed a novel dimension reduction approach for mixture discriminant analysis on based 

mixture of multivariate normal distributions of high-dimensional data. The proposed approaches compared with classical 

dimension reduction methods such as   approach, principal component analysis, clustering of variables and 

multidimensional scaling. 

 

Notations 

         denote the variables. In this study, they are continuous variables.                (       ) denotes the 

corresponding random vector.    denotes the class membership. (     )        is observed data set, with    

(         ) denoting measurements of the   variables and    the class membership for observation i-th. 

 

For        ,             denote the observations from class  , where    is the number of observations 

from class   and          are the indices of the observations from class in the data set (     )       . Thus, for 

       , and           one has     .     is the      matrix which contains     in its i-th row, for         . 

In the following 

   ( )  (       ) (1) 

denotes the mean vector of   and  ̂  
 

 
    ( ̂     ̂ ) where    is the vector of ones of length  .   is the     

covariance matrix of  ,  

     ( )   ((   ) (   )) (2). 

   denotes the unbiased estimator of   ; 

  
 

   
∑ (    ̂)

 (    ̂)
 

   
 

(3). 

 

Dimensionality Reduction Techniques 

Dimensionality reduction is the process of finding a suitable lower dimensional space in which to represent the 

original data. The linear dimensionality reduction is performed using a linear transformation of the form: 

      (4) 

where   is an     transformation matrix which projects    onto a   dimensional subspace   (   ). However, there 

are many possible approaches to choose A .  

 

Probably the most commonly applied method in the category is principal component analysis (PCA). In the 

PCA,   is the transformation matrix which contains   eigenvectors corresponding to   highest eigenvalues of the 

covariance matrix of   [11]. The main purpose of PCA is to reduce the dimensionality from   to   where    , while at 

the same time accounting for as much of the variation in the original data set as possible. With PCA, we transform the 

data to a new set of coordinates or variables that are a linear combination of the original variables. In addition, the 

observations in the new principal component space are uncorrelated. 

 

Multidimensional scaling (MDS) is another approach used to dimensionality reduction. In general, MDS is a set of 

techniques for the analysis of proximity data measured on a set of objects in order to reveal hidden structure. The purpose 

of MDS is to find a configuration of the data points in a low-dimensional space such that the proximity between objects 

in the full-dimensional space is represented with some degree of fidelity by the distances between points in the low-

dimensional space.  This means that observations that are close together in a high-dimensional space should be close in 

the low-dimensional space [8]. 

 

There are a lot of different algorithms to solve MDS problem.  Scaling by MAjorizing a COmplicated Function 

(SMACOF) is one of them. SMACOF is an iterative majorization algorithm to solve MDS problem with STRESS 

criterion. For the mathematical details of SMACOF algorithm, please refer to [1]. 

 

The variable selection methods found in the literature can be divided into two distinct groups: univariate ranking 

methods and optimal subset selection.   approach is one of univariate ranking methods[12]. Each variable is taken 

individually and a relevance score measuring the discriminating power of the variable is computed. The variables are 

then ranked according to their score. One can choose to select only the   top-ranking variables (where    ) or the 

variables whose score exceeds a given threshold. One of the most common relevance scores is the   test statistic. For 

variable j-th, the     test statistic is defined as 
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(   )∑   ( ̂    ̂ )

  
   

(   )∑ ∑ (     ̂  )
   

   
 
   

 (5) 

   test statistic is F  distributed with degrees of freedom     and    . The corresponding   value can be used as a 

relevance score. 

 

Clustering of variables (Cluster Approach) is another approach used to dimensionality reduction. In this 

approach, dimensionality reduction provided with using centers of clustering variables instead of the original variables. 

There are many several algorithms in cluster analysis. We used k- means clustering algorithm in this study.  

 

The Proposed Algorithm  

In this section, the proposed algorithm for dimensionality reduction is explained. 

 

Step 1: Firstly, empirical mean vector of   within each class is computed. For         ,    is the number of 

observations in class  .    denotes the mean  vector of within class  . 

    (     )  (         ) (6) 

 

and   ̂  ( ̂      ̂  ) is the empirical mean vector of   within class   . 

 ̂   
 

  
∑         

  for         (7). 

The computed empirical mean vectors for each class   will used to as the axis in variable selection. 

 ̂  [

 ̂    ̂  
   
 ̂    ̂  

] (8). 

 

Step 2: The mean of data points is calculated as the center of the dataset according to selected axis after determining the 

axis. 

  [     ] (9) 

   
 

 
∑  ̂  

 

   
 (10) 

Step 3: The Euclidean distance between each data point and the center is created by 

     {( ̂     )
 
   ( ̂     )

 
}

 

 
  for         (11). 

A data point    which has the highest distance will be selected as the first candidate variable.  

 

Step 4: The Euclidean distances between each data points and     are calculated by  

      {( ̂      )
 
   ( ̂      )

 
}

 

 
  for         (12). 

The data point with the highest distance of      will be selected as the second candidate variable   .  

 

Step 5: To select a next candidate variable, The Euclidean distances between the rest data points and the mean of 

selected candidate points are calculated. 

 
  (
     
 

)
 {( ̂   

       

 
)
 

   ( ̂   
       

 
)
 

}

 

 
   (13). 

 

The data point with the highest distance of  
  (
     
 

)
 will be selected as the third candidate variable   . 

 

The process is repeated until the number of candidate variables equals to the predefined number of dimensions. 
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Mixture Discriminant Analysis 

In the mixture discriminant analysis, suppose we have observation    from population   for        .  Each 

class   is divided into    artificial subclasses. According to this clustered approach, each subclass has a multivariate 

normal distribution     (       ) with its own mean vector     and     is covariance matrix for the r-th subclass in k-

th class. The prior probability for class   is    and      is the mixing probability for the r-th subclass in in k-th class, 

such that ∑      
  
   . Then mixture density for class   is 

  ( )   (       )        
 
 
 ∑       

  

   

[  (     )  ] (14) 

 

where  (     )  (     )   
  (     )

  is Mahalanobis distance. The posterior probabilities are obtained, based 

on Bayes rule, such that  

 (       )   ∑       
  

   

[  (     )  ] 
(15) 

 

where    is the prior probability for class  . An observation is classified into the class   which has the highest posterior 

probability. The discrimination rules depend on the unknown parameters which are to be estimated from the data [7]. 

 

Application and Conclusions 

The datasets and features which will use in the comparison of the proposed algorithm with the investigated 

dimension reduction methods are given Table 1. 

 

Table-1: The datasets and features 

Data sets          

Multi 103 4576 4 26, 26, 28, 23 

Apple 60 701 3 20, 20, 20 

Cherry 60 701 3 20, 20, 20 

Chowdary 104 22283 2 62, 42 

 

The multi dataset [9] contains in total 103 samples in four classes which have 26, 26 28, 23 samples, 

respectively. Each sample contains 4576 genes. Spectral reflectance data from the wavelength range of 325–1025 nm 

with 701 spectral features were collected from the apple and cherry trees using a visible-near infrared spectroradiometer 

[5]. The Chowdary data set is composed by tissue from lymph nodenegative breast tumors and Dukes’ B colon tumors 

[4]. 

 

High-dimension datasets are reduced by dimension reduction methods and the reduced data sets are applied the 

mixture discriminant analysis on based mixture of multivariate normal distributions. After, classification accuracies are 

computed for the each mixture discriminant analysis. The classification accuracies are given Tables 2-6 according to 

number of dimension for dimension reduction methods. 

 

Table-2: The classification accuracies according to number of dimension for F approach 

Data sets / d 5 6 7 8 9 10 11 12 

Multi 0.8350 0.9223 0.9903 0.9903 0.9903 0.9806 0.9903 0.9806 

Apple 0.6667 0.6833 0.8000 0.9167 0.9000 0.9333 0.9667 0.9833 

Cherry 0.8000 0.8500 0.9167 0.9500 0.9500 0.9667 0.9667 0.9667 

Chowdary 0.9615 0.9904 0.9904 0.9904 0.9904 0.9904 0.9904 0.9904 

 

Table-3: The classification accuracies according to number of dimension for clustering of variables 

Data sets / d 5 6 7 8 9 10 11 12 

Multi 0.9612 0.9903 0.9903 0.9903 1.0000 1.0000 1.0000 1.0000 

Apple 0.8167 0.9000 0.9167 0.9333 0.9500 0.9667 0.9833 1.0000 

Cherry 0.7333 0.7667 0.8000 0.8833 0.9000 0.9167 0.9667 1.0000 

Chowdary 0.7404 0.8750 0.8558 0.8942 0.9135 0.9135 0.9327 0.9519 
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Table-4: The classification accuracies according to number of dimension for the principal component analysis 

Data sets / d 5 6 7 8 9 10 11 12 

Multi 0.9709 0.9806 0.9903 1.0000 1.0000 1.0000 1.0000 1.0000 

Apple 0.8333 0.9000 0.9500 0.9833 0.9833 0.9667 0.9833 1.0000 

Cherry 0.6833 0.7500 0.7833 0.8667 0.8833 0.9667 0.9500 1.0000 

Chowdary 0.8654 0.8365 0.8654 0.8942 0.8942 0.9423 0.9519 0.9615 

 

Table-5: The classification accuracies according to number of dimension for the SMACOF (Distance: City-Block) 

Data sets / d 5 6 7 8 9 10 11 12 

Multi 0.9709 0.9806 0.9806 0.9903 0.9903 1.0000 1.0000 1.0000 

Apple 0.8500 0.8667 0.8833 0.8833 0.9000 0.9167 0.8833 0.9167 

Cherry 0.7000 0.6833 0.7833 0.7833 0.8833 0.8833 0.9833 0.9833 

Chowdary 0.8942 0.8365 0.8654 0.8942 0.8942 0.9423 0.9423 0.9519 

 

Table-6: The classification accuracies according to number of dimension for the proposed algorithm 

Data sets / d 5 6 7 8 9 10 11 12 

Multi 0.9612 0.9806 0.9903 0.9903 1.0000 1.0000 1.0000 1.0000 

Apple 0.7167 0.7833 0.8000 0.8500 0.9167 0.9000 0.9833 0.9833 

Cherry 0.7833 0.9000 0.9167 0.9833 1.0000 1.0000 1.0000 1.0000 

Chowdary 0.9520 0.9519 0.9615 0.9712 0.9904 0.9904 1.0000 1.0000 

 

The comparison of dimension reduction methods according to classification accuracy in mixture discriminant 

analysis for of each dataset is given Figure 1. 

 

 
Fig-1: The comparison of dimension reduction techniques according to classification accuracy in mixture 

discriminant analysis 

 

As result of the study, the proposed dimensional reduction approach is shown good performance for mixture 

discriminant analysis on based mixture of multivariate normal distributions in terms of criteria classification accuracy. 

Increasing number of the used dimensional for classification decreases the difference among the performance of methods 

as expected. It is proved that proposed dimensional reduction approach is useful in dimensional reduction for mixture 

discriminant analysis of high dimensional datasets. 
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