Scholars Journal of Physics, Mathematics and Statistics

Sch. J. Phys. Math. Stat. 2017; 4(4):145-161

On the Exact Solutions and the Approximate Solutions by Adomian Decomposition Method of the Second-Order Linear Fuzzy İnitial Value Problems Using the Generalized Differentiability

Hülya Gültekin Çitil

Department of Mathematics, Faculty of Arts and Sciences, Giresun University, 28100, Giresun, Turkey.

*Corresponding author
 Hülya Gültekin Çitil

Article History
Received: 20.09.2017
Accepted: 18.10.2017
Published: 30.10.2017

DOI:

10.21276/sjpms.2017.4.4.1

Abstract

In this paper investigates the exact solutions and the approximate solutions by Adomian decomposition method of the second-order linear fuzzy initial value problems with positive and negative constant coefficients using the generalized differentiability. Thus, comparisons results is given. Keywords: Fuzzy initial value problem, second-order fuzzy differential equation, Generalized differentiability, Adomian decomposition method. 2010 AMS Classification. 03E72; 34A07, 65L05

INTRODUCTION

Many researhers study fuzzy differential equations. Fuzzy differential equations can be solved with several approach. The first approach is using the Hukuhara differentiability. For this, mainly the existence and uniqueness of the solution of a fuzzy differential equation is studied [13, 19]. The existence and uniqueness of solutions of two-point fuzzy boundary value problems for second-order fuzzy differential equations under the approach of Hukuhara differentiability have been investigated by Gültekin and Altınışık [10]. Also, Gültekin Çitil and Altınışık [11] have defined the fuzzy Sturm-Liouville equation under the approach of the Hukuhara differentiability. The second approach is using the generalized differentiability. New solutions for some fuzzy boundary value problems using the generalized differentiability have been found by Khastan and Nieto [16].

Also, Khastan at al. [15] present a generalized concept of higher-order differentiability to solve nth-order fuzzy differential equations. The third approach generate the fuzzy solution from the crips solution [5, 6, 12, 8]. But, many fuzzy initial and boundary value problems can not be solved analyitically. Some numeric methods are introduced in $[1,2$, 4, 7, 14]. Adomian decomposition method was introduced by Adomian [3]. Guo at al. [9] have found the approximate solution of a class of second-order linear differential equation with fuzzy boundary value conditions by the undetermined fuzzy coefficients method.

In this paper we investigate the exact solutions and the approximate solutions by Adomian decomposition method of the second-order linear fuzzy initial value problems with positive and negative constant coefficients using the generalized differentiability. Thus, we give comparisons results.

Preliminaries

Definition 1 [17] A fuzzy number is a function $u: \square \rightarrow[0,1]$ satisfying the following properties:
u is normal, u is convex fuzzy set, u is upper semi-continuous on $\square, \operatorname{cl}\{x \in \square \mid u(x)>0\}$ is compact where $c l$ denotes the closure of a subset.
Let \square_{F} denote the space of fuzzy numbers.

Definition-2 [16] Let $u \in{ }_{F}$. The α-level set of u, denoted, $[u]^{\alpha}, 0<\alpha \leq 1$, is $[u]^{\alpha}=\{x \in \square \mid u(x) \geq 0\}$. If $\alpha=0$, the support of u is defined $[u]^{0}=c l\{x \in \square \mid u(x)>0\}$. The notation, denotes explicitly the α-level set of u. The notation, $[u]^{\alpha}=\left[\underline{u}_{\alpha}, \bar{u}_{\alpha}\right]$ denotes explicitly the α-level set of u.We refer to \underline{u} and \bar{u} as the lower and upper branches of u, respectively.

The following remark shows when $\left[\underline{u}_{\alpha}, \bar{u}_{\alpha}\right]$ is a valid α-level set.

Remark-1 [16] The sufficient and necessary conditions for $\left[\underline{u}_{\alpha}, \bar{u}_{\alpha}\right]$ to define the parametric form of a fuzzy number as follows:
\underline{u}_{α} is bounded monotonic increasing (nondecreasing) left-continuous function on (0,1] and right-continuous for $\alpha=0$,
\bar{u}_{α} is bounded monotonic decreasing (nonincreasing) left-continuous function on (0,1] and right-continuous for $\alpha=0$,

$$
\underline{u}_{\alpha} \leq \bar{u}_{\alpha}, \quad 0 \leq \alpha \leq 1 .
$$

Definition-3 [17] If A is a symmetric triangular numbers with supports $[\underline{a}, \bar{a}]$, the $\alpha-$ level sets of $[A]^{\alpha}$ is $[A]^{\alpha}=\left\lceil\underline{a}+\left(\frac{\bar{a}-\underline{a}}{2}\right) \alpha, \bar{a}-\left(\frac{\bar{a}-\underline{a}}{2}\right) \alpha\right\rceil$.

Definition-4 [18, 9, 16] Let $u, v \in \square_{F}$. If there exists $w \in \square_{F}$ such that $u=v+w$, then w is called the Hukuhara difference of fuzzy numbers u and v, and it is denoted by $w=\underset{H}{u-v}$.

Definition 5 [16] Let $f:[a, b] \rightarrow \square_{F}$ and $t_{0} \in[a, b]$. We say that f is (1)-differentiable at t_{0}, if there exists an element $f\left(t_{0}\right) \in \square_{F}$ such that for all $h>0$ sufficiently small near to 0 , exist $f\left(t_{0}+h\right)-f\left(t_{0}\right)$, $f\left(t_{0}\right)-f\left(t_{0}-h\right)$ and the limits

$$
\lim _{h \rightarrow 0} \frac{f\left(t_{0}+h\right)-f\left(t_{0}\right)}{h}=\lim _{h \rightarrow 0} \frac{f\left(t_{0}\right)-f\left(t_{0}-h\right)}{h}=f^{\prime}\left(t_{0}\right),
$$

and f is (2)-differentiable if for all $h>0$ sufficiently small near to 0 , exist $f\left(t_{0}\right)-f\left(t_{0}+h\right), f\left(t_{0}-h\right)-f\left(t_{0}\right)$ and the limits

$$
\lim _{h \rightarrow 0} \frac{f\left(t_{0}\right)-f\left(t_{0}+h\right)}{-h}=\lim _{h \rightarrow 0} \frac{f\left(t_{0}-h\right)-f\left(t_{0}\right)}{-h}=f^{\prime}\left(t_{0}\right),
$$

Theorem-1 [15] Let $f:[a, b] \rightarrow \square_{F}$ be fuzzy function, where $[f(t)]^{\alpha}=\left[\underline{f}_{\alpha}(t), \bar{f}_{\alpha}(t)\right]$, for each $\alpha \in[0,1]$.
(i) If f is (1)-differentiable then \underline{f}_{α} and \bar{f}_{α} are differentiable functions and $\left[f^{\prime}(t)\right]^{\alpha}=\left[\underline{f}_{\alpha}^{\prime}(t), \bar{f}_{\alpha}^{\prime}(t)\right]$,
(ii) If f is (2)-differentiable then \underline{f}_{α} and \bar{f}_{α} are differentiable functions and $\left[f^{\prime}(t)\right]^{\alpha}=\left[\bar{f}_{\alpha}^{\prime}(t), \underline{f}_{\alpha}^{\prime}(t)\right]$.

Theorem-2 [15] Let $f^{\prime}:[a, b] \rightarrow \square_{F}$ be fuzzy function, where $[f(t)]^{\alpha}=\left[\underline{f}_{\alpha}(t), \bar{f}_{\alpha}(t)\right]$, for each $\alpha \in[0,1]$, f is (1)-differentiable or (2)-differentiable.
(i) If f and f are (1)-differentiable then $\underline{f}_{\alpha}^{\prime}$ and $\bar{f}_{\alpha}^{\prime}$ are differentiable functions and $\left[f^{\prime \prime}(t)\right]^{\alpha}=\left[\underline{f}_{\alpha}^{\prime \prime}(t), \bar{f}_{\alpha}^{\prime \prime}(t)\right]$,
(ii) If f is (1)-differentiable and f ' is (2)-differentiable then $\underline{f}_{\alpha}^{\prime}$ and $\bar{f}_{\alpha}^{\prime}$ are differentiable functions and $\left[\begin{array}{ll}f^{\prime \prime}(t)\end{array}\right]^{\alpha}=\left\lceil\bar{f}_{\alpha}^{\prime \prime}(t), \underline{f}_{\alpha}^{\prime \prime}(t)\right]$,
(iii) If f is (2)-differentiable and f is (1)-differentiable then $\underline{f}_{\alpha}^{\prime}$ and $\bar{f}_{\alpha}^{\prime}$ are differentiable functions and $\left[\begin{array}{ll}f^{\prime \prime}(t)\end{array}\right]^{\alpha}=\left\lceil\bar{f}_{\alpha}^{\prime \prime}(t), \underline{f}_{\alpha}^{\prime \prime}(t) \mid\right.$,
(iv) If f and f are (2)-differentiable then $\underline{f}_{\alpha}^{\prime}$ and \bar{f}_{α} are differentiable functions and $\left[f^{\prime \prime}(t)\right]^{\alpha}=\left[\underline{f}_{\alpha}^{\prime \prime}(t), \bar{f}_{\alpha}^{\prime \prime}(t)\right]$,

Second-order fuzzy linear initial value problems

The case of positive constant coefficient

Consider the fuzzy boundary value problem

$$
\begin{equation*}
y^{\prime \prime}(t)=\lambda y(t), y\left(t_{0}\right)=A, y\left(t_{0}\right)=B, \tag{3.1}
\end{equation*}
$$

where $\lambda>0,[A]^{\alpha}=\left\lfloor\underline{a}+\left(\frac{\bar{a}-\underline{a}}{2}\right) \alpha, \bar{a}-\left(\frac{\bar{a}-\underline{a}}{2}\right) \alpha \left\lvert\,,[B]^{\alpha}=\left[\underline{b}+\left(\frac{\bar{b}-\underline{b}}{2}\right) \alpha, \left.\bar{b}-\left(\frac{\bar{b}-\underline{b}}{2}\right) \alpha \right\rvert\,\right.\right.$ are symmetric \right. triangular fuzzy numbers. Here, (i, j) solution means that y is (i) differentiable and y is (j) differentiable, $\mathrm{i}, \mathrm{j}=1,2$.

The Exact Solution By Generalized Differentiability

From the fuzzy differential equation in (3.1), for the $(1,1)$ solution and $(2,2)$ solution we have differential equations

$$
\underline{Y}_{\alpha}^{\prime \prime}(t)=\lambda \underline{Y}_{\alpha}(t), \quad \bar{Y}_{\alpha}^{\prime \prime}(t)=\lambda \bar{Y}_{\alpha}(t)
$$

by using the generalized differentiability. Then, the lower solution and the upper solution of the fuzzy differential equation in (3.1) are obtained as

$$
\underline{Y}_{\alpha}(t)=\underline{c}_{1}(\alpha) e^{\sqrt{\lambda} t}+\underline{c}_{2}(\alpha) e^{-\sqrt{\lambda} t}, \quad \bar{Y}_{\alpha}(t)=\bar{c}_{1}(\alpha) e^{\sqrt{\lambda} t}+\bar{c}_{2}(\alpha) e^{-\sqrt{\lambda} t}
$$

Using the initial conditions, coefficients $\underline{c}_{1}(\alpha), \underline{c}_{2}(\alpha), \bar{c}_{1}(\alpha), \bar{c}_{2}(\alpha)$ are solved as

$$
\begin{aligned}
& \underline{c}_{1}(\alpha)=\frac{\sqrt{\lambda}\left(\underline{a}+\left(\frac{\bar{a}-\underline{a}}{2}\right) \alpha\right)+\left(\underline{b}+\left(\frac{\bar{b}-\underline{b}}{2}\right) \alpha\right)}{2 \sqrt{\lambda} e^{\sqrt{\lambda t} t_{0}}}, \underline{c}_{2}(\alpha)=\frac{\sqrt{\lambda}\left(\underline{a}+\left(\frac{\bar{a}-\underline{a}}{2}\right) \alpha\right)-\left(\underline{b}+\left(\frac{\bar{b}-\underline{b}}{2}\right) \alpha\right)}{2 \sqrt{\lambda} e^{-\sqrt{\lambda t} t_{0}}}, \\
& \bar{c}_{1}(\alpha)=\frac{\sqrt{\lambda}\left(\bar{a}-\left(\frac{\bar{a}-\underline{a}}{2}\right) \alpha\right)+\left(\bar{b}-\left(\frac{\bar{b}-\underline{b}}{2}\right) \alpha\right)}{2 \sqrt{\lambda} e^{\sqrt{\lambda} t_{0}}}, c_{2}(\alpha)=\frac{\sqrt{\lambda}\left(\bar{a}-\left(\frac{\bar{a}-\underline{a}}{2}\right) \alpha\right)-\left(\bar{b}-\left(\frac{\bar{b}-\underline{b}}{2}\right) \alpha\right)}{2 \sqrt{\lambda} e^{-\sqrt{\lambda} t_{0}}} .
\end{aligned}
$$

Similarly, for the $(1,2)$ solution and $(2,1)$ solution we have differential equations

$$
\underline{Y}_{\alpha}^{\prime \prime}(t)=\lambda \bar{Y}_{\alpha}(t), \quad \bar{Y}_{\alpha}^{\prime \prime}(t)=\lambda \underline{Y}_{\alpha}(t)
$$

by using the generalized differentiability. Then, the lower solution and the upper solution of the fuzzy differential equation in (3.1) are obtained as

$$
\begin{aligned}
& \underline{Y}_{\alpha}(t)=c_{1}(\alpha) e^{\sqrt{\lambda t}}+c_{2}(\alpha) e^{-\sqrt{\lambda} t}-c_{3}(\alpha) \sin (\sqrt{\lambda} t)-c_{4}(\alpha) \cos (\sqrt{\lambda} t), \\
& \bar{Y}_{\alpha}(t)=c_{1}(\alpha) e^{\sqrt{\lambda} t}+c_{2}(\alpha) e^{-\sqrt{\lambda} t}+c_{3}(\alpha) \sin (\sqrt{\lambda} t)+c_{4}(\alpha) \cos (\sqrt{\lambda} t)
\end{aligned}
$$

Using the initial conditions, coefficients $c_{1}(\alpha), c_{2}(\alpha), c_{3}(\alpha), \quad c_{4}(\alpha)$ are solved as

$$
\begin{aligned}
& c_{1}(\alpha)=\frac{\sqrt{\lambda}(\bar{a}+\underline{a})+(\bar{b}+\underline{b})}{4 \sqrt{\lambda} e^{\sqrt{\lambda} t_{0}}}, c_{2}(\alpha)=\frac{\sqrt{\lambda}(\bar{a}+\underline{a})-(\bar{b}+\underline{b})}{4 \sqrt{\lambda} e^{\sqrt{\lambda} t_{0}}}, \\
& c_{3}(\alpha)=\frac{(1-\alpha)\left[(\bar{a}-\underline{a}) \sqrt{\lambda} \sin \left(\sqrt{\lambda} t_{0}\right)+(\bar{b}-\underline{b}) \cos \left(\sqrt{\lambda} t_{0}\right)\right]}{2 \sqrt{\lambda}}, \\
& c_{4}(\alpha)=\frac{(1-\alpha)\left[(\bar{a}-\underline{a}) \sqrt{\lambda} \cos \left(\sqrt{\lambda} t_{0}\right)-(\bar{b}-\underline{b}) \sin \left(\sqrt{\lambda} t_{0}\right)\right]}{2 \sqrt{\lambda}} .
\end{aligned}
$$

For the $(1,1)$ solution and $(2,2)$ solution, the equation (3.1) is written as

$$
\begin{equation*}
\underline{y}_{\alpha}^{\prime \prime}(t)=\lambda \underline{y}_{\alpha}(t), \bar{y}_{\alpha}^{\prime \prime}(t)=\lambda \bar{y}_{\alpha}(t) \tag{3.2}
\end{equation*}
$$

by using the generalized differentiability.In the operator form, the first equation in (3.2) becomes $L \underline{y}_{\alpha}=\lambda \underline{y}_{\alpha}$, where the differential operator L is given by $L=\frac{d^{2}}{d x^{2}}$. Operating with L^{-1} on both sides of the above equation and using the initial conditions we obtain

$$
\begin{gathered}
\underline{y}_{\alpha}(t)=\underline{y}_{\alpha}\left(t_{0}\right)+t \underline{y}_{\alpha}\left(t_{0}\right)+L^{-1}\left(\lambda \underline{y}_{\alpha}\right), \\
\underline{y}_{\alpha}(t)=\left(\underline{a}+\left(\frac{\bar{a}-\underline{a}}{2}\right) \alpha\right)+\left(\underline{b}+\left(\frac{\bar{b}-\underline{b}}{2}\right) \alpha\right) t+\lambda L^{-1}\left(\underline{y}_{\alpha}\right) .
\end{gathered}
$$

Let take

$$
\underline{y}_{\alpha}(t)=\sum_{n=0}^{\infty} \underline{y}_{n \alpha}(t) .
$$

Then

$$
\sum_{n=0}^{\infty} \underline{y}_{n \alpha}(t)=\left(\underline{a}+\left(\frac{\bar{a}-\underline{a}}{2}\right) \alpha\right)+\left(\underline{b}+\left(\frac{\bar{b}-\underline{b}}{2}\right) \alpha\right) t+\lambda L^{-1}\left(\sum_{n=0}^{\infty} \underline{y}_{n \alpha}(t)\right)
$$

is obtained. From this,

$$
\begin{gathered}
\underline{y}_{0 \alpha}(t)=\left(\underline{a}+\left(\frac{\bar{a}-\underline{a}}{2}\right) \alpha\right)+\left(\underline{b}+\left(\frac{\bar{b}-\underline{b}}{2}\right) \alpha\right) t \\
\left.\underline{y}_{1 \alpha}(t)=\lambda L^{-1} \underline{y}_{0 \alpha}(t)\right) \Rightarrow \underline{y}_{1 \alpha}(t)=\lambda\left(\left(\underline{a}+\left(\frac{\bar{a}-\underline{a}}{2}\right) \alpha\right) \frac{t^{2}}{2}+\left(\underline{b}+\left(\frac{\bar{b}-\underline{b}}{2}\right) \alpha\right) \frac{t^{3}}{6}\right), \\
\left.\underline{y}_{2 \alpha}(t)=\lambda L^{-1} \underline{y}_{1 \alpha}(t)\right) \Rightarrow \underline{y}_{2 \alpha}(t)=\lambda\left(\left(\underline{a}+\left(\frac{\bar{a}-\underline{a}}{2}\right) \alpha\right) \frac{t^{3}}{6}+\left(\underline{b}+\left(\frac{\bar{b}-\underline{b} \underline{2}}{2}\right) \alpha\right) \frac{t^{4}}{24}\right), \ldots
\end{gathered}
$$

are obtained. Then, the lower approximate solution by the Adomian decomposition method of the problem (3.1) for the $(1,1)$ solution and $(2,2)$ solution becomes

$$
\begin{aligned}
\underline{y}_{\alpha}(t)= & \left(\underline{a}+\left(\frac{\bar{a}-\underline{a}}{2}\right) \alpha\right)+\left(\underline{b}+\left(\frac{\bar{b}-\underline{b}}{2}\right) \alpha\right) t+\lambda\left(\left(\underline{a}+\left(\frac{\bar{a}-\underline{a}}{2}\right) \alpha\right) \frac{t^{2}}{2}+\left(\underline{b}+\left(\frac{\bar{b}-\underline{b}}{2}\right) \alpha\right) \frac{t^{3}}{6}\right)+ \\
& +\lambda\left(\left(\underline{a}+\left(\frac{\bar{a}-\underline{a}}{2}\right) \alpha\right) \frac{t^{3}}{6}+\left(\underline{b}+\left(\frac{\bar{b}-\underline{b}}{2}\right) \alpha\right) \frac{t^{4}}{24}\right)+\ldots
\end{aligned}
$$

Similarly, upper approximate solution by the Adomian decomposition method of the problem (3.1) for the $(1,1)$ solution and $(2,2)$ solution becomes

$$
\bar{y}_{\alpha}(t)=\left(\bar{a}-\left(\frac{\bar{a}-\underline{a}}{2}\right) \alpha\right)+\left(\bar{b}-\left(\frac{\bar{b}-\underline{b}}{2}\right) \alpha\right) t+\lambda\left(\left(\bar{a}-\left(\frac{\bar{a}-\underline{a}}{2}\right) \alpha\right) \frac{t^{2}}{2}+\left(\bar{b}-\left(\frac{\bar{b}-\underline{b}}{2}\right) \alpha\right) \frac{t^{3}}{6}\right)+
$$

$$
+\lambda\left(\left(\bar{a}-\left(\frac{\bar{a}-\underline{a}}{2}\right) \alpha\right) \frac{t^{3}}{6}+\left(\bar{b}-\left(\frac{\bar{b}-\underline{b}}{2}\right) \alpha\right) \frac{t^{4}}{24}\right)+\ldots
$$

For the $(1,2)$ solution and $(2,1)$ solution, the equation (3.1) is written as

$$
\begin{equation*}
\underline{y}_{\alpha}^{\prime \prime}(t)=\lambda \bar{y}_{\alpha}(t), \bar{y}_{\alpha}^{\prime \prime}(t)=\lambda \underline{y}_{\alpha}(t) \tag{3.3}
\end{equation*}
$$

by using the generalized differentiability and $-\left[\underline{y}_{\alpha}, \bar{y}_{\alpha}\right]=\left[-\bar{y}_{\alpha},-\underline{y}_{\alpha}\right]$.In the operator form, the first equation in (3.3) becomes $L \underline{y}_{\alpha}=-\lambda \bar{y}_{\alpha}$, where the differential operator L is given by $L=\frac{d^{2}}{d x^{2}}$. Operating with L^{-1} on both sides of the above equations and using the initial conditions we obtain

$$
\begin{gathered}
\underline{y}_{\alpha}(t)=\underline{y}_{\alpha}\left(t_{0}\right)+\underline{y}_{\alpha}\left(t_{0}\right) t+L^{-1}\left(\lambda \bar{y}_{\alpha}\right), \bar{y}_{\alpha}(t)=\bar{y}_{\alpha}\left(t_{0}\right)+\bar{y}_{\alpha}\left(t_{0}\right) t+L^{-1}\left(\lambda \underline{y}_{\alpha}\right), \\
\underline{y}_{\alpha}(t)=\left(\underline{a}+\left(\frac{\bar{a}-\underline{a}}{2}\right) \alpha\right)+\left(\underline{b}+\left(\frac{\bar{b}-\underline{b}}{2}\right) \alpha\right) t+\lambda L^{-1}\left(\bar{y}_{\alpha}\right), \\
\bar{y}_{\alpha}(t)=\left(\bar{a}-\left(\frac{\bar{a}-\underline{a}}{2}\right) \alpha\right)+\left(\bar{b}-\left(\frac{\bar{b}-\underline{b}}{2}\right) \alpha\right) t+\lambda L^{-1}\left(\underline{y}_{\alpha}\right) .
\end{gathered}
$$

Let take

$$
\underline{y}_{\alpha}(t)=\sum_{n=0}^{\infty} \underline{y}_{n \alpha}(t), \bar{y}_{\alpha}(t)=\sum_{n=0}^{\infty} \bar{y}_{n \alpha}(t) .
$$

Then

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \underline{y}_{n \alpha}(t)=\left(\underline{a}+\left(\frac{\bar{a}-\underline{a})}{2}\right) \alpha\right)+\left(\underline{b}+\left(\frac{\bar{b}-\underline{b}}{2}\right) \alpha\right) t+\lambda L^{-1}\left(\sum_{n=0}^{\infty} \bar{y}_{n \alpha}(t)\right), \\
& \sum_{n=0}^{\infty} \bar{y}_{n \alpha}(t)=\left(\bar{a}-\left(\frac{\bar{a}-\underline{a})}{2}\right) \alpha\right)+\left(\bar{b}-\left(\frac{\bar{b}-\underline{b}}{2}\right) \alpha\right) t+\lambda L^{-1}\left(\sum_{n=0}^{\infty} \underline{y}_{n \alpha}(t)\right)
\end{aligned}
$$

is obtained. From this,

$$
\begin{aligned}
& \underline{y}_{0 \alpha}(t)=\left(\underline{a}+\left(\frac{\bar{a}-\underline{a}}{2}\right) \alpha\right)+\left(\underline{b}+\left(\frac{\bar{b}-\underline{b}}{2}\right) \alpha\right) t \\
& \bar{y}_{0 \alpha}(t)=\left(\bar{a}-\left(\frac{\bar{a}-\underline{a}}{2}\right) \alpha\right)+\left(\bar{b}-\left(\frac{\bar{b}-\underline{b}}{2}\right) \alpha\right) t
\end{aligned}
$$

$$
\begin{aligned}
& \underline{y}_{1 \alpha}(t)=-\lambda L^{-1}\left(\bar{y}_{0 \alpha}(t)\right) \Rightarrow \underline{y}_{1 \alpha}(t)=\lambda\left(\left(\bar{a}-\left(\frac{\bar{a}-\underline{a}}{2}\right) \alpha\right) \frac{t^{2}}{2}+\left(\bar{b}-\left(\frac{\bar{b}-\underline{b}}{2}\right) \alpha\right) \frac{t^{3}}{6}\right), \ldots \\
& \left.\bar{y}_{1 \alpha}(t)=-\lambda L^{-1} \underline{y}_{0 \alpha}(t)\right) \Rightarrow \bar{y}_{1 \alpha}(t)=\lambda\left(\left(\underline{a}+\left(\frac{\bar{a}-\underline{a}}{2}\right) \alpha\right) \frac{t^{2}}{2}+\left(\underline{b}+\left(\frac{\bar{b}-\underline{b}}{2}\right) \alpha\right) \frac{t^{3}}{6}\right), \ldots
\end{aligned}
$$

are obtained. Then, the lower approximate solution by the Adomian decomposition method of the problem (3.1) for the $(1,2)$ solution and $(2,1)$ solution becomes

$$
\underline{y}_{\alpha}(t)=\left(\underline{a}+\left(\frac{\bar{a}-\underline{a}}{2}\right) \alpha\right)+\left(\underline{b}+\left(\frac{\bar{b}-\underline{b}}{2}\right) \alpha\right) t+\lambda\left(\left(\bar{a}-\left(\frac{\bar{a}-\underline{a}}{2}\right) \alpha\right) \frac{t^{2}}{2}+\left(\bar{b}-\left(\frac{\bar{b}-\underline{b}}{2}\right) \alpha\right) \frac{t^{3}}{6}\right)+\ldots
$$

Similarly, upper approximate solution by the Adomian decomposition method of the problem (3.1) for the $(1,2)$ solution and $(2,1)$ solution becomes

$$
\bar{y}_{\alpha}(t)=\left(\bar{a}-\left(\frac{\bar{a}-\underline{a}}{2}\right) \alpha\right)+\left(\bar{b}-\left(\frac{\bar{b}-\underline{b}}{2}\right) \alpha\right) t+\lambda\left(\left(\underline{a}+\left(\frac{\bar{a}-\underline{a}}{2}\right) \alpha\right) \frac{t^{2}}{2}+\left(\bar{b}+\left(\frac{\bar{b}-\underline{b}}{2}\right) \alpha\right) \frac{t^{3}}{6}\right)+\ldots
$$

Example-1 Consider the fuzzy boundary value problem

$$
\begin{gather*}
y^{\prime \prime}(t)=y(t), t>0 \tag{3.4}\\
y(0)=[-1+\alpha, 1-\alpha], y(0)=[1+\alpha, 3-\alpha] . \tag{3.5}
\end{gather*}
$$

For the $(1,1)$ solution and $(2,2)$ solution using the generalized differentiability, the lower exact solution and the upper exact solution of the fuzzy initial value problem (3.4)-(3.5) are obtained

$$
\begin{equation*}
\underline{Y}_{\alpha}(t)=\alpha e^{t}-e^{-t}, \bar{Y}_{\alpha}(t)=(2-\alpha) e^{t}-e^{-t} \tag{3.6}
\end{equation*}
$$

For the $(1,1)$ solution and $(2,2)$ solution by the Adomian decomposition method, we obtain the solution of (3.4) - (3.5)

$$
\begin{gathered}
\underline{y}_{\alpha}(t)=(-1+\alpha)+(1+\alpha) t+(-1+\alpha) \frac{t^{2}}{2}+(1+\alpha) \frac{t^{3}}{6} \\
\bar{y}_{\alpha}(t)=(1-\alpha)+(3-\alpha) t+(1-\alpha) \frac{t^{2}}{2}+(3-\alpha) \frac{t^{3}}{6}
\end{gathered}
$$

The exact lower and upper solution and the approximate lower and upper solution for $t=0.01$ are

$$
\begin{array}{ccccccc}
\underline{Y}_{\alpha}(t)=-0.99004983 & 374+1.01005016 & 708 \alpha, \bar{Y}_{\alpha}(t)=1,03005050 & 042-1.01005016 & 708 \alpha \\
\underline{y}_{\alpha}(t)=-0,99004983 & 334+1,01005016 & 667 \alpha, \bar{y}_{\alpha}(t)=1,0300505 & -1,01005016 & 667 \alpha
\end{array}
$$

α	$\underline{Y}_{\alpha}(t)$	$\underline{y}_{\alpha}(t)$	Error			
0	-0.99004983	374	-0.99004983	334	4.0000003	$\times 10^{-10}$
0.1	-0.88904481	703	-0.88904481	667	3.6000003	$\times 10^{-10}$
0.2	-0.78803980	032	-0.7880398	3.2000003	$\times 10^{-10}$	
0.3	-0.68703478	361	-0.68703478	333	2.8000002	$\times 10^{-10}$
0.4	-0.58602976	69	-0.58602976	667	2.3000002	$\times 10^{-10}$
0.5	-0.48502475	02	-0.48502475	2.0000002	$\times 10^{-10}$	
0.6	-0.38401973	349	-0.38401973	333	1.6000001	$\times 10^{-10}$
0.7	-0.28301471	678	-0.28301471	667	1.1000001	$\times 10^{-10}$
0.8	-0.18200970	007	-0.1820097	7.0000006	$\times 10^{-11}$	
0.9	-0.08100468	336	-0.08100468	333	3.0000002	$\times 10^{-11}$
1	0.02000033	334	0.02000033	333	9.9999974	$\times 10^{-12}$

Comparison results of the upper exact and approximate solutions for $(1,1)$ solution and $(2,2)$ solution

α	$\bar{Y}_{\alpha}(t)$	$\bar{y}_{\alpha}(t)$	Error			
0	1.03005050	042	1.0300505	4.2000003	$\times 10^{-10}$	
0.1	0.92904548	371	0.92904548	333	3.7999992	$\times 10^{-10}$
0.2	0.82804046	7	0.82804046	666	3.4000003	$\times 10^{-10}$
0.3	0.72703545	029	0.72703544	999	3.0000002	$\times 10^{-10}$
0.4	0.62603043	358	0.62603043	333	2.5000002	$\times 10^{-10}$
0.5	0.52502541	688	0.52502541	666	2.2000002	$\times 10^{-10}$
0.6	0.42402040	017	0.42402039	999	1.7999996	$\times 10^{-10}$
0.7	0.32301538	346	0.32301538	333	1.3000001	$\times 10^{-10}$
0.8	0.22201036	675	0.22201036	666	8.999998	$\times 10^{-11}$
0.9	0.12100535	004	0.12100534	999	5.0000004	$\times 10^{-11}$
1	0.02000033	334	0.02000033	333	9.9999974	$\times 10^{-12}$

For the $(1,2)$ solution and $(2,1)$ solution using the differentiability, the lower exact solution and the upper exact solution of the fuzzy initial value problem (3.4)-(3.5) are obtained as

$$
\begin{aligned}
& \underline{Y}_{\alpha}(t)=e^{t}-e^{-t}-(1-\alpha) \sin (t)-(1-\alpha) \cos (t), \\
& \bar{Y}_{\alpha}(t)=e^{t}-e^{-t}+(1-\alpha) \sin (t)+(1-\alpha) \cos (t)
\end{aligned}
$$

For the $(1,2)$ solution and $(2,1)$ solution by the Adomian decomposition method, we obtain the solution of (3.4)-(3.5) as

$$
\underline{y}_{\alpha}(t)=(-1+\alpha)+(1+\alpha) t+(1-\alpha) \frac{t^{2}}{2}+(3-\alpha) \frac{t^{3}}{6}
$$

$$
\bar{y}_{\alpha}(t)=(1-\alpha)+(3-\alpha) t+(-1+\alpha) \frac{t^{2}}{2}+(1+\alpha) \frac{t^{3}}{6} .
$$

The exact lower and upper solution and the approximate lower and upper solution for $t=0.01$ are

$$
\begin{array}{llllllll}
\underline{Y}_{\alpha}(t)=-0,98017418 & 435+1,00017451 & 769 \alpha, \bar{Y}_{\alpha}(t)=1,02017485 & 103-1,00017451 & 769 \alpha \\
\underline{y}_{\alpha}(t)=-0,9899495 & +1,00994983 & 334 \alpha, \bar{y}_{\alpha}(t)=1,02995016 & 667 & -1,00994983 & 334 \alpha
\end{array}
$$

Comparison results of the lower exact and approximate solutions for $(1,2)$ solution and $(2,1)$ solution

α	$\underline{Y}_{\alpha}(t)$	$\underline{y}_{\alpha}(t)$	Error			
0	-0.98017418	435	-0.9899495	0.00977531	565	
0.1	-0.88015673	258	-0.88895451	666	0.00879778	408
0.2	-0.78013928	081	-0.78795953	333	0.00782025	252
0.3	-0.68012182	904	-0.68696454	999	0.00684272	095
0.4	-0.58010437	727	-0.58596956	666	0.00586518	939
0.5	-0.48008692	55	-0.48497458	333	0.00488765	783
0.6	-0.38006947	373	-0.38397959	999	0.00391012	626
0.7	-0.28005202	196	-0.28298461	666	0.00293259	47
0.8	-0.18003457	019	-0.18198963	332	0.00195506	313
0.9	-0.08001711	842	-0.08099464	999	0.00097753	157
1	0.02000033	334	0.02000033	334	0	

Comparison results of the upper exact and approximate solutions for $(\mathbf{1 , 2})$ solution and $(\mathbf{2 , 1})$ solution

α	$\bar{Y}_{\alpha}(t)$	$\bar{y}_{\alpha}(t)$	Error			
0	1.02017485	103	1.02995016	667	0.00977531	564
0.1	0.92015739	926	0.92895518	333	0.00879778	407
0.2	0.82013994	749	0.8279602	0.00782025	251	
0.3	0.72012249	572	0.72696521	666	0.00684272	094
0.4	0.62010504	395	0.62597023	333	0.00586518	938
0.5	0.52008759	218	0.52497525	0.00488765	782	
0.6	0.42007014	041	0.42398026	666	0.00391012	625
0.7	0.32005268	864	0.32298528	333	0.00293259	469
0.8	0.22003523	687	0.22199029	999	0.00195506	312
0.9	0.12001778	51	0.12099531	666	0.00097753	156
1	0.02000033	334	0.02000033	333	9.9999974	$\times 10^{-12}$

The case of negative constant coefficient

Consider the fuzzy boundary value problem

$$
\begin{equation*}
y^{\prime \prime}(t)=-\lambda y(t), y\left(t_{0}\right)=A, y\left(t_{0}\right)=B, \tag{3.7}
\end{equation*}
$$

where $\lambda>0,[A]^{\alpha}=\left\lceil\underline{a}+\left(\frac{\bar{a}-\underline{a}}{2}\right) \alpha, \bar{a}-\left(\frac{\bar{a}-\underline{a}}{2}\right) \alpha \left\lvert\,,[B]^{\alpha}=\left\lfloor\underline{b}+\left(\frac{\bar{b}-\underline{b}}{2}\right) \alpha, \left.\bar{b}-\left(\frac{\bar{b}-\underline{b}}{2}\right) \alpha \right\rvert\,\right.\right.$ are symmetric \right. triangular fuzzy numbers. Here, (i, j) solution means that y is (i) differentiable and y is (j) differentiable, $\mathrm{i}, \mathrm{j}=1,2$.

The Exact Solution By Generalized Differentiability

For $(1,1)$ solution and $(2,2)$ solution from the fuzzy differential equation in (3.7), we have differential equations

$$
\underline{Y}_{\alpha}^{\prime \prime}(t)=-\lambda \bar{Y}_{\alpha}(t), \bar{Y}_{\alpha}^{\prime \prime}(t)=-\lambda \underline{Y}_{\alpha}(t)
$$

by using the generalized differentiability and $-\left[\underline{y}_{\alpha}, \bar{y}_{\alpha}\right]=\left[-\bar{y}_{\alpha},-\underline{y}_{\alpha}\right]$. Then, the lower solution and the upper solution of the fuzzy differential equation in (3.7) for $(1,1)$ solution and $(2,2)$ solution are

$$
\begin{aligned}
& \underline{Y}_{\alpha}(t)=-c_{1}(\alpha) e^{\sqrt{\lambda} t}-c_{2}(\alpha) e^{-\sqrt{\lambda} t}+c_{3}(\alpha) \sin (\sqrt{\lambda} t)+c_{4}(\alpha) \cos (\sqrt{\lambda} t), \\
& \bar{Y}_{\alpha}(t)=c_{1}(\alpha) e^{\sqrt{\lambda t}}+c_{2}(\alpha) e^{-\sqrt{\lambda} t}+c_{3}(\alpha) \sin (\sqrt{\lambda} t)+c_{4}(\alpha) \cos (\sqrt{\lambda} t)
\end{aligned}
$$

Using the initial conditions, the coefficient $c_{1}(\alpha), c_{2}(\alpha), c_{3}(\alpha), c_{4}(\alpha)$ are obtained as

$$
\begin{gathered}
c_{1}(\alpha)=\frac{(1-\alpha)[(\bar{a}-\underline{a}) \sqrt{\lambda}+(\bar{b}-\underline{b})]}{4 \sqrt{\lambda} e^{\sqrt{\lambda} t_{0}}}, c_{2}(\alpha)=\frac{(1-\alpha)[(\bar{a}-\underline{a}) \sqrt{\lambda}-(\bar{b}-\underline{b})]}{4 \sqrt{\lambda} e^{\sqrt{\lambda} t_{0}}}, \\
c_{3}(\alpha)=\frac{(\bar{a}+\underline{a}) \sqrt{\lambda} \sin \left(\sqrt{\lambda} t_{0}\right)+(\bar{b}+\underline{b}) \cos \left(\sqrt{\lambda} t_{0}\right)}{2 \sqrt{\lambda}}, \\
c_{4}(\alpha)=\frac{(\bar{a}+\underline{a}) \sqrt{\lambda} \cos \left(\sqrt{\lambda} t_{0}\right)-(\bar{b}+\underline{b}) \sin \left(\sqrt{\lambda} t_{0}\right)}{2 \sqrt{\lambda}} .
\end{gathered}
$$

For $(1,2)$ solution and $(2,1)$ solution from the fuzzy differential equation in (3.7), we have differential equations

$$
\underline{Y}_{\alpha}(t)=-\lambda \underline{Y}_{\alpha}(t), Y_{\alpha}(t)=-\lambda \underline{Y}_{\alpha}(t)
$$

by using the generalized differentiability and $-\left[\underline{y}_{\alpha}, \bar{y}_{\alpha}\right]=\left[-\bar{y}_{\alpha},-\underline{y}_{\alpha}\right]$. Then, the lower solution and the upper solution of the fuzzy differential equation in (3.7) for $(1,2)$ solution and $(2,1)$ solution are

$$
\begin{aligned}
& \underline{Y}_{\alpha}(t)=\underline{a}_{1}(\alpha) \cos (\sqrt{\lambda} t)+\underline{a}_{2}(\alpha) \sin (\sqrt{\lambda} t), \\
& \bar{Y}_{\alpha}(t)=\bar{a}_{1}(\alpha) \cos (\sqrt{\lambda} t)+\bar{a}_{2}(\alpha) \sin (\sqrt{\lambda} t),
\end{aligned}
$$

Using the initial conditions, the coefficient $\underline{a}_{1}(\alpha), \underline{a}_{2}(\alpha), \bar{a}_{1}(\alpha), \bar{a}_{2}(\alpha)$ are obtained as

$$
\begin{aligned}
& \underline{a}_{1}(\alpha)=\frac{\left(\underline{a}+\left(\frac{\bar{a}-\underline{a}}{2}\right) \alpha\right) \sqrt{\lambda} \cos \left(\sqrt{\lambda} t_{0}\right)-\left(\underline{b}+\left(\frac{\bar{b}-\underline{b}}{2}\right) \alpha\right) \sin \left(\sqrt{\lambda} t_{0}\right)}{\sqrt{\lambda}}, \\
& \underline{a}_{2}(\alpha)=\frac{\left(\underline{a}+\left(\frac{\bar{a}-\underline{a}}{2}\right) \alpha\right) \sqrt{\lambda} \sin \left(\sqrt{\lambda} t_{0}\right)+\left(\underline{b}+\left(\frac{\bar{b}-\underline{b}}{2}\right) \alpha\right) \cos \left(\sqrt{\lambda} t_{0}\right)}{\sqrt{\lambda}}, \\
& \bar{a}_{1}(\alpha)=\frac{\left(\bar{a}-\left(\frac{\bar{a}-\underline{a}}{2}\right) \alpha\right) \sqrt{\lambda} \cos \left(\sqrt{\lambda} t_{0}\right)-\left(\bar{b}-\left(\frac{\bar{b}-\underline{b}}{2}\right) \alpha\right) \sin \left(\sqrt{\lambda} t_{0}\right)}{\sqrt{\lambda}}, \\
& \bar{a}_{2}(\alpha)=\frac{\left(\bar{a}-\left(\frac{\bar{a}-\underline{a}}{2}\right) \alpha\right) \sqrt{\lambda} \sin \left(\sqrt{\lambda} t_{0}\right)+\left(\bar{b}-\left(\frac{\bar{b}-\underline{b}}{2}\right) \alpha\right) \cos \left(\sqrt{\lambda} t_{0}\right)}{\sqrt{\lambda}},
\end{aligned}
$$

The Approximate Solution By The Adomian Decomposition Method

For $(1,1)$ solution and $(2,2)$ solution, the equation in (3.7) is written as

$$
\begin{equation*}
\underline{y}_{\alpha}^{\prime \prime}(t)=-\lambda \bar{y}_{\alpha}(t), \bar{y}_{\alpha}^{\prime \prime}(t)=-\lambda \underline{y}_{\alpha}(t) \tag{3.8}
\end{equation*}
$$

by using the generalized differentiability and $-\left[\underline{y}_{\alpha}, \bar{y}_{\alpha}\right]=\left[-\bar{y}_{\alpha},-\underline{y}_{\alpha}\right]$. In the operator form, the first equation in (3.8) becomes $L \underline{y}_{\alpha}=-\lambda \bar{y}_{\alpha}$, where the differential operator L is given by $L=\frac{d^{2}}{d x^{2}}$. Operating with L^{-1} on both sides of the above equations and using the initial conditions we obtain

$$
\begin{gathered}
\underline{y}_{\alpha}(t)=\underline{y}_{\alpha}\left(t_{0}\right)+\underline{y}_{\alpha}\left(t_{0}\right) t+L^{-1}\left(-\lambda \bar{y}_{\alpha}\right), \bar{y}_{\alpha}(t)=\bar{y}_{\alpha}\left(t_{0}\right)+\bar{y}_{\alpha}\left(t_{0}\right) t+L^{-1}\left(-\lambda \underline{y}_{\alpha}\right), \\
\underline{y}_{\alpha}(t)=\left(\underline{a}+\left(\frac{\bar{a}-\underline{a}}{2}\right) \alpha\right)+\left(\underline{b}+\left(\frac{\bar{b}-\underline{b}}{2}\right) \alpha\right) t-\lambda L^{-1}\left(\bar{y}_{\alpha}\right), \\
\bar{y}_{\alpha}(t)=\left(\bar{a}-\left(\frac{\bar{a}-\underline{a}}{2}\right) \alpha\right)+\left(\bar{b}-\left(\frac{\bar{b}-\underline{b}}{2}\right) \alpha\right) t-\lambda L^{-1}\left(\underline{y}_{\alpha}\right) .
\end{gathered}
$$

Let take

$$
\underline{y}_{\alpha}(t)=\sum_{n=0}^{\infty} \underline{y}_{n \alpha}(t), \bar{y}_{\alpha}(t)=\sum_{n=0}^{\infty} \bar{y}_{n \alpha}(t)
$$

Then

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \underline{y}_{n \alpha}(t)=\left(\underline{a}+\left(\frac{\bar{a}-\underline{a})}{2}\right) \alpha\right)+\left(\underline{b}+\left(\frac{\bar{b}-\underline{b}}{2}\right) \alpha\right) t-\lambda L^{-1}\left(\sum_{n=0}^{\infty} \bar{y}_{n \alpha}(t)\right), \\
& \sum_{n=0}^{\infty} \bar{y}_{n \alpha}(t)=\left(\bar{a}-\left(\frac{\bar{a}-\underline{a}}{2}\right) \alpha\right)+\left(\bar{b}-\left(\frac{\bar{b}-\underline{b}}{2}\right) \alpha\right) t-\lambda L^{-1}\left(\sum_{n=0}^{\infty} \underline{y}_{n \alpha}(t)\right)
\end{aligned}
$$

is obtained. From this,

$$
\begin{gathered}
\underline{y}_{0 \alpha}(t)=\left(\underline{a}+\left(\frac{\bar{a}-\underline{a}}{2}\right) \alpha\right)+\left(\underline{b}+\left(\frac{\bar{b}-\underline{b}}{2}\right) \alpha\right) t \\
\bar{y}_{0 \alpha}(t)=\left(\bar{a}-\left(\frac{\bar{a}-\underline{a}}{2}\right) \alpha\right)+\left(\bar{b}-\left(\frac{\bar{b}-\underline{b}}{2}\right) \alpha\right) t \\
\underline{y}_{1 \alpha}(t)=-\lambda L^{-1}\left(\bar{y}_{0 \alpha}(t)\right) \Rightarrow \underline{y}_{1 \alpha}(t)=-\lambda\left(\left(\bar{a}-\left(\frac{\bar{a}-\underline{a}}{2}\right) \alpha\right) \frac{t^{2}}{2}+\left(\bar{b}-\left(\frac{\bar{b}-\underline{b}}{2}\right) \alpha\right) \frac{t^{3}}{6}\right), \ldots \\
\bar{y}_{1 \alpha}(t)=-\lambda L^{-1}\left(\underline{y}_{0 \alpha}(t)\right) \Rightarrow \bar{y}_{1 \alpha}(t)=-\lambda\left(\left(\underline{a}+\left(\frac{\bar{a}-\underline{a}}{2}\right) \alpha\right) \frac{t^{2}}{2}+\left(\underline{b}+\left(\frac{\bar{b}-\underline{b}}{2}\right) \alpha\right) \frac{t^{3}}{6}\right), \ldots
\end{gathered}
$$

are obtained. Then, the lower approximate solution by the Adomian decomposition method of the problem (3.7) for $(1,1)$ solution and $(2,2)$ solution becomes

$$
\underline{y}_{\alpha}(t)=\left(\underline{a}+\left(\frac{\bar{a}-\underline{a}}{2}\right) \alpha\right)+\left(\underline{b}+\left(\frac{\bar{b}-\underline{b}}{2}\right) \alpha\right) t-\lambda\left(\left(\bar{a}-\left(\frac{\bar{a}-\underline{a}}{2}\right) \alpha\right) \frac{t^{2}}{2}+\left(\bar{b}-\left(\frac{\bar{b}-\underline{b}}{2}\right) \alpha\right) \frac{t^{3}}{6}\right)+\ldots
$$

Similarly, upper approximate solution by the Adomian decomposition method of the problem (3.7) for (1,1) solution and $(2,2)$ solution becomes

$$
\bar{y}_{\alpha}(t)=\left(\bar{a}-\left(\frac{\bar{a}-\underline{a}}{2}\right) \alpha\right)+\left(\bar{b}-\left(\frac{\bar{b}-\underline{b}}{2}\right) \alpha\right) t-\lambda\left(\left(\underline{a}+\left(\frac{\bar{a}-\underline{a}}{2}\right) \alpha\right) \frac{t^{2}}{2}+\left(\bar{b}+\left(\frac{\bar{b}-\underline{b}}{2}\right) \alpha\right) \frac{t^{3}}{6}\right)+\ldots
$$

For $(1,2)$ solution and $(2,1)$ solution, the equation in (3.7) is written as

$$
\begin{equation*}
\underline{y}_{\alpha}^{\prime \prime}(t)=-\lambda \underline{y}_{\alpha}(t), \bar{y}_{\alpha}^{\prime \prime}(t)=-\lambda \bar{y}_{\alpha}(t) \tag{3.9}
\end{equation*}
$$

by using the generalized differentiability and $-\left[\underline{y}_{\alpha}, \bar{y}_{\alpha}\right]=\left[-\bar{y}_{\alpha},-\underline{y}_{\alpha}\right]$.In the operator form, the first equation in (3.9) becomes $L \underline{y}_{\alpha}=-\lambda \underline{y}_{\alpha}$, where the differential operator L is given by $L=\frac{d^{2}}{d x^{2}}$. Operating with L^{-1} on both sides of the above equations and using the initial conditions we obtain

$$
\begin{gathered}
\underline{y}_{\alpha}(t)=\underline{y}_{\alpha}\left(t_{0}\right)+\underline{y}_{\alpha}\left(t_{0}\right) t+L^{-1}\left(-\lambda \underline{y}_{\alpha}\right), \bar{y}_{\alpha}(t)=\bar{y}_{\alpha}\left(t_{0}\right)+\bar{y}_{\alpha}\left(t_{0}\right) t+L^{-1}\left(-\lambda \bar{y}_{\alpha}\right), \\
\underline{y}_{\alpha}(t)=\left(\underline{a}+\left(\frac{\bar{a}-\underline{a}}{2}\right) \alpha\right)+\left(\underline{b}+\left(\frac{\bar{b}-\underline{b}}{2}\right) \alpha\right) t-\lambda L^{-1}\left(\underline{y}_{\alpha}\right), \\
\bar{y}_{\alpha}(t)=\left(\bar{a}-\left(\frac{\bar{a}-\underline{a}}{2}\right) \alpha\right)+\left(\bar{b}-\left(\frac{\bar{b}-\underline{b}}{2}\right) \alpha\right) t-\lambda L^{-1}\left(\bar{y}_{\alpha}\right) .
\end{gathered}
$$

Let take

$$
\underline{y}_{\alpha}(t)=\sum_{n=0}^{\infty} \underline{y}_{n \alpha}(t), \bar{y}_{\alpha}(t)=\sum_{n=0}^{\infty} \bar{y}_{n \alpha}(t)
$$

Then

$$
\begin{gathered}
\sum_{n=0}^{\infty} \underline{y}_{n \alpha}(t)=\left(\underline{a}+\left(\frac{\bar{a}-\underline{a}}{2}\right) \alpha \left\lvert\,+\left(\left.\underline{b}+\left(\frac{\bar{b}-\underline{b}}{2}\right) \alpha \right\rvert\, t-\lambda L^{-1}\left(\sum_{n=0}^{\infty} \underline{y}_{n \alpha}(t)\right),\right.\right.\right. \\
\sum_{n=0}^{\infty} \bar{y}_{n \alpha}(t)=\left(\bar{a}-\left(\frac{\bar{a}-\underline{a})}{2}\right) \alpha\right)+\left(\bar{b}-\left(\frac{\overline{b-\underline{b}}}{2}\right) \alpha\right) t-\lambda L^{-1}\left(\sum_{n=0}^{\infty} \bar{y}_{n \alpha}(t)\right)
\end{gathered}
$$

is obtained. From this,

$$
\begin{gathered}
\underline{y}_{0 \alpha}(t)=\left(\underline{a}+\left(\frac{\bar{a}-\underline{a}}{2}\right) \alpha\right)+\left(\underline{b}+\left(\frac{\bar{b}-\underline{b}}{2}\right) \alpha\right) t \\
\bar{y}_{0 \alpha}(t)=\left(\bar{a}-\left(\frac{\bar{a}-\underline{a}}{2}\right) \alpha\right)+\left(\bar{b}-\left(\frac{\bar{b}-\underline{b}}{2}\right) \alpha\right) t \\
\underline{y}_{1 \alpha}(t)=-\lambda L^{-1}\left(\underline{y}_{0 \alpha}(t)\right) \Rightarrow \underline{y}_{1 \alpha}(t)=-\lambda\left(\left(\underline{a}+\left(\frac{\bar{a}-\underline{a}}{2}\right) \alpha\right) \frac{t^{2}}{2}+\left(\underline{b}+\left(\frac{\bar{b}-\underline{b}}{2}\right) \alpha\right) \frac{t^{3}}{6}\right), \ldots \\
\bar{y}_{1 \alpha}(t)=-\lambda L^{-1}\left(\bar{y}_{0 \alpha}(t)\right) \Rightarrow \bar{y}_{1 \alpha}(t)=-\lambda\left(\left(\bar{a}-\left(\frac{\bar{a}-\underline{a}}{2}\right) \alpha\right) \frac{t^{2}}{2}+\left(\bar{b}-\left(\frac{\bar{b}-\underline{b}}{2}\right) \alpha\right) \frac{t^{3}}{6}\right), \ldots
\end{gathered}
$$

are obtained. Then, the lower approximate solution by the Adomian decomposition method of the problem (3.7) for $(1,2)$ solution and $(2,1)$ solution becomes

$$
\underline{y}_{\alpha}(t)=\left(\underline{a}+\left(\frac{\bar{a}-\underline{a}}{2}\right) \alpha\right)+\left(\underline{b}+\left(\frac{\bar{b}-\underline{b}}{2}\right) \alpha\right) t-\lambda\left(\left(\underline{a}+\left(\frac{\bar{a}-\underline{a}}{2}\right) \alpha\right) \frac{t^{2}}{2}+\left(\bar{b}+\left(\frac{\bar{b}-\underline{b}}{2}\right) \alpha\right) \frac{t^{3}}{6}\right)+\ldots
$$

Similarly, the upper approximate solution by the Adomian decomposition method of the problem (3.7) for $(1,2)$ solution and $(2,1)$ solution becomes

$$
\bar{y}_{\alpha}(t)=\left(\bar{a}-\left(\frac{\bar{a}-\underline{a}}{2}\right) \alpha\right)+\left(\bar{b}-\left(\frac{\bar{b}-\underline{b}}{2}\right) \alpha\right) t-\lambda\left(\left(\bar{a}-\left(\frac{\bar{a}-\underline{a}}{2}\right) \alpha\right) \frac{t^{2}}{2}+\left(\bar{b}-\left(\frac{\bar{b}-\underline{b}}{2}\right) \alpha\right) \frac{t^{3}}{6}\right) \ldots
$$

Example-2 Consider the fuzzy boundary value problem

$$
\begin{gather*}
y^{\prime \prime}(t)=-y(t), t>0 \tag{3.10}\\
y(0)=[-1+\alpha, 1-\alpha], y(0)=[1+\alpha, 3-\alpha] . \tag{3.11}
\end{gather*}
$$

For $(1,1)$ solution and $(2,2)$ solution, using the generalized differentiability and using $-\left[\underline{y}_{\alpha}, \bar{y}_{\alpha}\right]=\left[-\bar{y}_{\alpha},-\underline{y}_{\alpha}\right]$ the lower exact solution and the upper exact solution of the fuzzy initial value problem (3.10)-(3.11) are obtained as

$$
\begin{gathered}
\underline{Y}_{\alpha}(t)=(-1+\alpha) e^{t}+2 \sin (t), \\
\bar{Y}_{\alpha}(t)=(1-\alpha) e^{t}+2 \sin (t)
\end{gathered}
$$

For $(1,1)$ solution and $(2,2)$ solution, by the Adomian decomposition method, we obtain the approximate solution of (3.10)-(3.11) as

$$
\begin{aligned}
& \underline{y}_{\alpha}(t)=(-1+\alpha)+(1+\alpha) t-(1-\alpha) \frac{t^{2}}{2}-(3-\alpha) \frac{t^{3}}{6}-\ldots \\
& \bar{y}_{\alpha}(t)=(1-\alpha)+(3-\alpha) t-(-1+\alpha) \frac{t^{2}}{2}-(1+\alpha) \frac{t^{3}}{6}-\ldots
\end{aligned}
$$

The exact lower and upper solution and the approximate lower and upper solution for $t=0.01$ are

$$
\begin{array}{lllllll}
\underline{Y}_{\alpha}(t)=-1,00970110 & 124+1,01005016 & 708 \alpha, \bar{Y}_{\alpha}(t)=1,01039923 & 292-1,01005016 & 708 \alpha, \\
\underline{y}_{\alpha}(t)=-0,9900505 & +1,01005016 & 666 \alpha, \bar{y}_{\alpha}(t)=1,03005016 & 666-1,01005016 & 666 \alpha
\end{array}
$$

Comparison results of the lower exact and approximate solutions for $(1,1)$ solution and $(2,2)$ solution

Hülya Gültekin Çitil.; Sch. J. Phys. Math. Stat., 2017; Vol-4; Issue-4 (Oct-Dec); pp-145-161

α	$\underline{Y}_{\alpha}(t)$			$\underline{y}_{\alpha}(t)$	Error	
0	-1.00970110	124	-0.9900505	0.01965060	124	
0.1	-0.90869608	453	-0.88904548	333	0.01965060	12
0.2	-0.80769106	782	-0.78804046	666	0.01965060	116
0.3	-0.70668605	111	-0.68703545	0.01965060	111	
0.4	-0.60568103	44	-0.58603043	333	0.01965060	107
0.5	-0.50467601	77	-0.48502541	667	0.01965060	103
0.6	-0.40367100	099	-0.3840204	0.01965060	099	
0.7	-0.30266598	428	-0.28301538	333	0.01965060	095
0.8	-0.20166096	757	-0.18201036	667	0.01965060	09
0.9	-0.10065595	086	-0.08100535	0.01965060	086	
1	0.00034906	584	0.01999966	666	0.01965060	082

Comparison results of the upper exact and approximate solutions for $(1,1)$ solution and $(2,2)$ solution

α	$\bar{Y}_{\alpha}(t)$	$\bar{y}_{\alpha}(t)$	Error			
0	1.01039923	292	1.03005016	666	0.01965093	374
0.1	0.90939421	621	0.92904514	999	0.01965093	378
0.2	0.80838919	95	0.82804013	332	0.01965093	382
0.3	0.70738418	279	0.72703511	666	0.01965093	387
0.4	0.60637916	608	0.62603009	999	0.01965093	391
0.5	0.50537414	938	0.52502508	333	0.01965093	395
0.6	0.40436913	267	0.42402006	666	0.01965093	399
0.7	0.30336411	596	0.32301504	999	0.01965093	403
0.8	0.20235909	925	0.22201003	333	0.01965093	408
0.9	0.10135408	254	0.12100501	666	0.01965093	412
1	0.00034906	584	0.02		0.01965093	416

For $(1,2)$ solution and $(2,1)$ solution, the lower exact solution and the upper exact solution of the fuzzy initial value problem (3.10)-(3.11) are obtained as

$$
\begin{gathered}
\underline{Y}_{\alpha}(t)=(-1+\alpha) \cos (t)+(1+\alpha) \sin (t), \\
\bar{Y}_{\alpha}(t)=(1-\alpha) \cos (t)+(3-\alpha) \sin (t),
\end{gathered}
$$

For the $(1,2)$ solution and $(2,1)$ solution by the Adomian decomposition method, we obtain the solution of (3.10)-(3.11) as

$$
\underline{y}_{\alpha}(t)=(-1+\alpha)+(1+\alpha) t-(-1+\alpha) \frac{t^{2}}{2}-(1+\alpha) \frac{t^{3}}{6}-\ldots
$$

$$
\bar{y}_{\alpha}(t)=(1-\alpha)+(3-\alpha) t-(1-\alpha) \frac{t^{2}}{2}-(3-\alpha) \frac{t^{3}}{6}-\ldots
$$

The exact lower and upper solution and the approximate lower and upper solution for $t=0.01$ are

$$
\begin{array}{lllll}
\underline{Y}_{\alpha}(t)=-0.99982545 & 184+1.00017451 & 769 \alpha, \bar{Y}_{\alpha}(t)=1.00052358 & 353-1.00017451 & 769 \alpha . \\
\underline{y}_{\alpha}(t)=-0,98995016 & 667+1,00994983 & 334 \alpha, \bar{y}_{\alpha}(t)=1,0299495 & -1,00994983 & 334 \alpha
\end{array}
$$

Comparison results of the lower exact and approximate solutions for $(\mathbf{1 , 2})$ solution and $(2,1)$ solution

| α | $\underline{Y}_{\alpha}(t)$ | $\underline{y}_{\alpha}(t)$ | Error | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | -0.99982545 | 184 | -0.98995016 | 667 | 0.00987528 | 517 |
| 0.1 | -0.89980800 | 007 | -0.88895518 | 333 | 0.01085281 | 674 |
| 0.2 | -0.79979054 | 83 | -0.7879602 | 0.01183034 | 83 | |
| 0.3 | -0.69977309 | 653 | -0.68696521 | 666 | 0.01280787 | 987 |
| 0.4 | -0.59975564 | 476 | -0.58597023 | 333 | 0.01378541 | 143 |
| 0.5 | -0.49973819 | 299 | -0.48497525 | 0.01476294 | 299 | |
| 0.6 | -0.39972074 | 122 | -0.38398026 | 666 | 0.01574047 | 456 |
| 0.7 | -0.29970328 | 945 | -0.28298528 | 333 | 0.01671800 | 612 |
| 0.8 | -0.19968583 | 768 | -0.18199029 | 999 | 0.01769553 | 769 |
| 0.9 | -0.09966838 | 591 | -0.08099531 | 666 | 0.01867306 | 925 |
| 1 | 0.00034906 | 585 | 0.01999966 | 667 | 0.01965060 | 082 |

Comparison results of the upper exact and approximate solutions for $(1,2)$ solution and $(2,1)$ solution

α	$\bar{Y}_{\alpha}(t)$	$\bar{y}_{\alpha}(t)$	Error			
0	1.00052358	353	1.0299495	0.02942591	647	
0.1	0.90050613	176	0.92895451	666	0.02844838	49
0.2	0.80048867	999	0.82795953	333	0.02747085	334
0.3	0.70047122	822	0.72696454	999	0.02649332	177
0.4	0.60045377	645	0.62596956	666	0.02551579	021
0.5	0.50043632	468	0.52497458	333	0.02453825	865
0.6	0.40041887	291	0.42397959	999	0.02356072	708
0.7	0.30040142	114	0.32298461	666	0.02258319	552
0.8	0.20038396	937	0.22198963	332	0.02160566	395
0.9	0.10036651	76	0.12099464	999	0.02062813	239
1	0.00034906	584	0.01999966	666	0.01965060	082

4-Conclusions

In this paper investigates the exact solutions and the approximate solutions by Adomian decomposition method of the second-order linear fuzzy initial value problems with positive and negative constant coefficients using the generalized differentiability. The values of the exact solutions and the approximate solutions for each $\alpha=0,0.1,0.2,0,3$, $0.4, \quad 0.5, \quad 0.6, \quad 0.7, \quad 0.8, \quad 0.9,1$ are computed. Consequently, the errors of lower and upper solutions are reduced for $(1,1),(2,2),(1,2)$ and $(2,1)$ solutions in the case of positive constant coefficient. But while the error of lower solution is reduced, the error of upper solution increases for $(1,1)$ and $(2,2)$ solutions in the case of negative constant coefficient. Also, while the error of lower solution increases, the error of upper solution is reduced for $(1,2)$ and $(2,1)$ solutions in the case of negative constant coefficient.

REFERENCES

1. Abbasbandy S, Allahviranloo T. Numerical solutions of fuzzy differential equations by Taylor method. Computational Methods in Applied Mathematics Comput. Methods Appl. Math.. 2002;2(2):113-24.
2. Abbasbandy S, Allahviranloo T, Lopez-Pouso O, Nieto JJ. Numerical methods forfuzzy differential inclusions. Computers \& mathematics with applications. 2004 Nov 1;48(10-11):1633-41.
3. Adomian G. A review of the decomposition method and some recent results for nonlinear equations. Mathematical and Computer Modelling. 1990 Jan 1;13(7):17-43.
4. Allahviranloo T, Ahmady N, Ahmady E. Numerical solution of fuzzy differential equations by predictorcorrector method. Information sciences. 2007 Apr 1;177(7):1633-47.
5. Buckley JJ, Feuring T. Fuzzy differential equations. Fuzzy sets and Systems. 2000 Feb 16;110(1):43-54.
6. Buckley JJ, Feuring T. Fuzzy initial value problem for Nth-order linear differential equations. Fuzzy Sets and Systems. 2001 Jul 16;121(2):247-55.
7. Friedman M, Ma M, Kandel A. Numerical solutions of fuzzy differential and integral equations. Fuzzy sets and Systems. 1999 Aug 16;106(1):35-48.
8. Gasilov N, Amrahov SG, Fatullayev AG. A geometric approach to solve fuzzy linear systems of differential equations. arXiv preprint arXiv:0910.4307. 2009 Oct 22.
9. Guo X, Shang D, Lu X. Fuzzy approximate solutions of second-order fuzzy linear boundary value problems. Boundary Value Problems. 2013 Dec 1;2013(1):212.
10. Gültekin H, Altınışık N. On solution of two-point fuzzy boundary value problems. Bulletin of Society for Mathematical Services \& Standarts. 2014; 3(2): 43-53.
11. Gültekin Çitil H, Altınışık N. On the eigenvalues and the eigenfunctions of the Sturm-Liouville fuzzy boundary value problem. Journal of Mathematical and Computational Science. 2017 Jun 27;7(4):786-805.
12. Hüllermeier E. An approach to modelling and simulation of uncertain dynamical systems. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems. 1997 Apr;5(02):117-37.
13. Kaleva O. Fuzzy differential equations. Fuzzy sets and systems. 1987 Dec 1;24(3):301-17.
14. Khastan A, Ivaz K. Numerical solution of fuzzy differential equations by Nyström method. Chaos, Solitons \& Fractals. 2009 Jul 30;41(2):859-68.
15. Khastan A, Bahrami F, Ivaz K. New results on multiple solutions for th-order fuzzy differential equations under generalized differentiability. Boundary Value Problems. 2009 Dec 1;2009(1):395714.
16. Khastan A, Nieto JJ. A boundary value problem for second order fuzzy differential equations. Nonlinear Analysis: Theory, Methods \& Applications. 2010 May 1;72(9):3583-93.
17. Liu HK. Comparison results of two-point fuzzy boundary value problems. Int. J. Comput. Math. Sci. 2011 Mar 29;5(1):1-7.
18. Puri ML, Ralescu DA. Differentials of fuzzy functions. Journal of Mathematical Analysis and Applications. 1983 Feb 28;91(2):552-8.
19. Song S, Wu C. Existence and uniqueness of solutions to Cauchy problem of fuzzy differential equations. Fuzzy sets and Systems. 2000 Feb 16;110(1):55-67.
