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INTRODUCTION
|_30|3 Many researhers study fuzzy differential equations. Fuzzy differential equations
10.21276/sjpms.2017.4.4.1 | can be solved with several approach. The first approach is using the Hukuhara
differentiability. For this, mainly the existence and uniqueness of the solution of a
E'H‘[‘E fuzzy differential equation is studied [13, 19]. The existence and uniqueness of
solutions of two-point fuzzy boundary value problems for second-order fuzzy
EE_ ﬁ differential equations under the approach of Hukuhara differentiability have been

"

investigated by Giiltekin and Altimigik [10]. Also, Giiltekin Citil and Altimisik [11]
have defined the fuzzy Sturm-Liouville equation under the approach of the Hukuhara
differentiability. The second approach is using the generalized differentiability. New
solutions for some fuzzy boundary value problems using the generalized
differentiability have been found by Khastan and Nieto [16].

Also, Khastan at al. [15] present a generalized concept of higher-order differentiability to solve nth-order fuzzy
differential equations. The third approach generate the fuzzy solution from the crips solution [5, 6, 12, 8]. But, many
fuzzy initial and boundary value problems can not be solved analyitically . Some numeric methods are introduced in [1,2,
4,7, 14] . Adomian decomposition method was introduced by Adomian [3]. Guo at al. [9] have found the approximate
solution of a class of second-order linear differential equation with fuzzy boundary value conditions by the undetermined
fuzzy coefficients method.

In this paper we investigate the exact solutions and the approximate solutions by Adomian decomposition
method of the second-order linear fuzzy initial value problems with positive and negative constant coefficients using the
generalized differentiability . Thus, we give comparisons results.

Preliminaries

Definition 1 [17] A fuzzy number is a function u :0 — [0,1] satisfying the following properties:

u is normal, u is convex fuzzy set, u is upper semi-continuous on U | cl {x el |u (x)> O} is compact where cl
denotes the closure of a subset.
Let U _ denote the space of fuzzy numbers.
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Definition-2 [16] Let u « U _ . The & -level set of u , denoted, [u]", 0 < & <1, is[u]" = {(xel Ju(x)=0}. If
a = 0, the support of u is defined [u]0 =cl{xe 5 lu(x)> 0}. The notation, denotes explicitly the « -level set of

u . The notation, [u]Lz = [ga,JaJ denotes explicitly the « -level set of u .We refer to u and u as the lower and

upper branches of u, respectively.

The following remark shows when [u_a U } isavalid & -level set.
Remark-1 [16] The sufficient and necessary conditions for |:Li . ,Ja J to define the parametric form of a fuzzy number

as follows:

u_ is bounded monotonic increasing (nondecreasing) left-continuous function on (0,1] and right-continuous
fora =0,

u_a is bounded monotonic decreasing (honincreasing) left-continuous function on (0,1] and right-continuous
fora =0,

U <Ug, 0<a<1.

—a

Definition-3 [17] If A is a symmetric triangular numbers with supports [a, ;] , the a« — level sets of [A]" is

T (mia) - (3ia)
(AT - |a_+[ —]{ —ja |.
S 2 )|

Definition-4 [18, 9, 16] Let u,v e U _. If there exists w e U

. such that u = v+ w, then w is called the Hukuhara

difference of fuzzy numbers u and v, and it is denoted by w = u —v.
H

Definition 5 [16] Let f :[a,b]— U _ and t,  [a,b] We say that f is (1)-differentiable at t,, if there exists an

element f (t,)el _ such that for all h>0 sufficiently small near to 0, exist f(t,+h)- f(t,),

f (to)— f (t, —h) and the limits

lim f(to+h)_ f(t0)=|im f(to)_f(to_h)z f (to)’
h>0 h h>0 h

and f is (2)-differentiable if for all h > 0 sufficiently small near to 0, exist f (t,)— f (t,+h), f(t,—h)-f(t,)
and the limits

lim f(to)_ f(to+h)=“m f(to_h)_f(to)z f (to)’
h>0 —h h>0 —h

Theorem-1[15] Let f :[a,b]— " _ be fuzzy function, where [ f (t)]" = [ia (t), ?a (t)], for each o < [01 ]

(i) If fis (1)-differentiable then f and ?a are differentiable functions and [f | (t)]ﬂ = [f (t), ?a (t)},
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(i) If fis (2)-differentiable then f and ?a are differentiable functions and [f | (t )]H = {fa (t), f |

Theorem-2 [15] Let P [a,b] > -
(1)-differentiable or (2)-differentiable.

be fuzzy function, where [ f (t)]" = [f (t), ?a (t)], for each « e [01 ], fis

E

(i) If f and f e (1)-differentiable then f and f _ are differentiable functions and

—a

« [ T
[f (tﬂ ST, 01 @)
] ]
(iii ) If f is (2)-differentiable and f' is (1)-differentiable then ia and ?a are differentiable functions and
“ I N
[f <t>} 10 )]
I ]

(iv) If f and f‘ are (2)-differentiable then f and f are differentiable functions and

—a a

Second-order fuzzy linear initial value problems
The case of positive constant coefficient

Consider the fuzzy boundary value problem

y' ()= Ay(D), y(t,) = A,y (t,) = B, (3.1)
" [ a_—a_l - a_—g 1 " [ E—t_; = E—Q 1 .
where 2 >0, [A]" =|a+ a,a - a |,[B] =]b+ a,b- a | are symmetric
| 2 2 ] | 2 2 |

triangular fuzzy numbers. Here, (i,j) solution means that y is (i) differentiable and y' is (j) differentiable, i,j=1,2.

The Exact Solution By Generalized Differentiability

From the fuzzy differential equation in (3.1), for the (1,1) solution and (2,2) solution we have differential equations
Y_;(t) = 2Y (1), ?;(t) =AY . (1)

by using the generalized differentiability. Then, the lower solution and the upper solution of the fuzzy differential
equation in (3.1) are obtained as
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Jat Vit

Y, (0= c@)e’ + e @)e L YLt = ca(@)e’ +cala)e

Using the initial conditions, coefficients ¢, (a), ¢,(a), ci(a), c2(a) aresolved as

e N e PP e A |

Bl 2472V Ca(@) = e
I G 0 6 PO o B MG

2\/58\/7‘0 2\/;(37\/;10

Similarly, for the (1,2) solution and (2,1) solution we have differential equations

Y ()= AY o), Yo() =AY, (1)

by using the generalized differentiability. Then, the lower solution and the upper solution of the fuzzy differential
equation in (3.1) are obtained as

Y, (t)= cl(oz)eﬁt + cz(oz)e'ﬁl - C,(a) sin (\/;t)— c,(a)cos (\/;t)
Yo(t)=c (@)’ e, (a)e v e (a)sin (Vat)+ ¢, (@) cos (Vat)
Using the initial conditions, coefficients ¢, («), ¢,(a), c,(a), c¢,(a) aresolved as

Jifara)forb) o Nilara)-fro)
4\/;eﬁt° o 4\/;eﬁt° ’

¢ (a) = (l-a )[(a_— a_)\/;sin (\/;to)+ (b_— Q)cos (\/;to)]
: 22 ’

¢ (@) = (- a)@-alz cos (Vat,)-(b-b)sin (Vat, ]
s ~ .

For the (1,1) solution and (2,2) solution, the equation (3.1) is written as

¢,(a) =

y =2y 0y, (0)=2y,(t) (32)
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by using the generalized differentiability.In the operator form, the first equation in (3.2) becomes Ly = Ay , where

d 2
the differential operator L is given by L = —. Operating with L™ on both sides of the above equation and using the
dx

initial conditions we obtain

y (D=y () +ty )+ L2y )

Let take

Then

- [
memjéﬂ
n-0 \

is obtained. From this,

a__a_\|o:\+(b+|(b_ll\|oz\t+ZLLl(iy (t)\
ZJJL_kz)J (=)

y =iy, )=y = ﬂ{[a_+ a;Q a]§+ [g+{b ; g]alg}

y =iy )=y (t)=z([g{a_a—]a]t—{g{b_g}a}t—\..
Zoa 2 ia 2 2a L 2 6 2 24J

are obtained. Then, the lower approximate solution by the Adomian decomposition method of the problem (3.1) for the
(1,1) solution and (2,2) solution becomes

o (S (S Al (T (5 )
AR

Similarly, upper approximate solution by the Adomian decomposition method of the problem (3.1) for the (1,1) solution
and (2,2) solution becomes

[<3)
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M[La‘_[a_;a—}}%{a_[a;?]ali}."

For the (1,2) solution and (2,1) solution, the equation (3.1) is written as

y =4y, My, (0= 1y (1) (3:3)

by using the generalized differentiability and — [y Y ]: [— y, —Y ] .In the operator form, the first equation in (3.3)

a

2

— d
becomes Ly = -2y _, where the differential operator L is given by L = —. Operating with L™" on both sides of
the above equations and using the initial conditions we obtain

y 0=y @)+ y @)ty by, 0=y, )+ y, @)t L (ay )

o[ (T (S0

Let take
y =Yy @y, 0=3y,®
Then 7 7
Sy =] (aza) ) (22, sy
y = Q+ a |+| 0+ o + yna s
o L\ZJJLKZJJ Lo J
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-G I S AR S o R AT
y, (1)=-iL (yw(t))zxm(t)—iLa— e L et J

- o - ( a t’ b-b t’ W
vy, =-aly )=y, (1) =4 |a+ o |—+|b+| —=|a |— ..
—0a L 2 2 2 6 J
are obtained. Then, the lower approximate solution by the Adomian decomposition method of the problem (3.1) for the

(1,2) solution and (2,1) solution becomes

s [uo[ S [SHpSf )

Similarly, upper approximate solution by the Adomian decomposition method of the problem (3.1) for the (1,2) solution
and (2,1) solution becomes

oS

Example-1 Consider the fuzzy boundary value problem

|
+
VY
®
N |
)
N—
N
N——
N|"’N
+
VO
o |
+
VY
T |
N |
N—e
)
Ne—
®|"2,
N——
+

y (1) = y(t), t>0 (3.4)

y(O)=[—l+a,l—a],y.(0) =l+a3-a] (3.5)

For the (1,1) solution and (2,2) solution using the generalized differentiability, the lower exact solution and the upper
exact solution of the fuzzy initial value problem (3.4 )-(35 ) are obtained

Yat)=(2-a)' —e . (3.6)

Y (t)=ae' —e"

For the (1,1) solution and (2,2) solution by the Adomian decomposition method, we obtain the solution of (34 )-(35 )

Y )= (lra)s(rals(clra)—s@ra),
- t? t?
y, (1) = l-a)+B-aft+Ql-a)—+B-a)—.

2 6

The exact lower and upper solution and the approximate lower and upper solution for t = 0.01 are

Y (t) = —099004983 374 +101005016 708 «,Y . (t) = 1,03005050 ~ 042 — 101005016 708 «,

y (t)=—0,99004983 334 +1,01005016 667 «,y, (t) =1,0300505 —1,01005016 667 .

Comparison results of the lower exact and approximate solutions for (1,1) solution and (2,2) solution
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a Y, (1) y, (1) Error

0  -0.99004983 374 - 0.99004983 334  4.0000003 x10
0.1 -0.88904481 703 - 0.88904481 667  3.6000003 x10
0.2 —0.78803980 032 — 0.7880398 3.2000003 x 10
0.3 -0.68703478 361 - 0.68703478 333  2.8000002 x10

10

0.4 —0.58602976 69 —0.58602976 667  2.3000002 x10

10

0.5 — 0.48502475 02 — 0.48502475 2.0000002 x10

10

0.6 - 0.38401973 349 - 0.38401973 333  1.6000001 x10

10

0.7 —0.28301471 678 - 0.28301471 667  1.1000001 x10

-11

0.8 - 0.18200970 007 — 0.1820097 7.0000006 x10

11

0.9 —0.08100468 336 - 0.08100468 333  3.0000002 x10

12

1 0.02000033 334 0.02000033 333 9.9999974 x10

Comparison results of the upper exact and approximate solutions for (1,1) solution and (2,2) solution

a Y_a (1) ;a (t) Error

1.03005050 042 1.0300505 4.2000003 x10

0.1 0.92904548 371  0.92904548 333  3.7999992 x10
0.2 0.82804046 7 0.82804046 666  3.4000003 x10
0.3 0.72703545 029  0.72703544 999  3.0000002 x 10
0.4 0.62603043 358 0.62603043 333  2.5000002 x10
0.5 0.52502541 688 0.52502541 666  2.2000002 x 10
0.6  0.42402040 017  0.42402039 999  1.7999996 x10
0.7 0.32301538 346  0.32301538 333  1.3000001 x10
0.8 0.22201036 675 0.22201036 666 8.999998 x10
0.9 0.12100535 004  0.12100534 999  5.0000004 x10
1 0.02000033 334  0.02000033 333 9.9999974 x10

For the (1,2) solution and (2,1) solution using the differentiability, the lower exact solution and the upper exact solution
of the fuzzy initial value problem (3.4 )-(3.5 ) are obtained as

t

Y ()=e' —e ' —(1-a)sin(t)- (1-a)cos (t),

Yo(t)=e' —e '+ (1-a)sin(t)+(1-a)cos (t).

For the (1,2) solution and (2,1) solution by the Adomian decomposition method, we obtain the solution of (34 )-(35 )

as
2 3

y = (—1+a)+(1+a)t+(1—a)t?+(3—0:)%,
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The exact lower and upper solution and the approximate lower and upper solution for t = 0.01 are

Y  (t) = -098017418

2

t

3

t

y,)=(1-a)+B-alt+(-1l+a)—+{1+a)—.

435 + 1,00017451

769 oY . (t) = 1,02017485

2

6

103 - 1,00017451

7609 «,

y (t) =-0,9899495 +1,00994983 334 «,y  (t) =1,02995016 667 —1,00994983 334 .

—a

Comparison results of the lower exact and approximate solutions for (1,2) solution and (2,1) solution

a
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Y, (1)
—0.98017418
— 0.88015673
—0.78013928
—0.68012182
— 0.58010437
— 0.48008692
— 0.38006947
— 0.28005202
—0.18003457
—0.08001711

0.02000033

435
258
081
904
727

55
373
196
019
842

334

s,
— 0.9899495
— 0.88895451 666
— 0.78795953 333
— 0.68696454 999
— 0.58596956 666
—0.48497458 333
- 0.38397959 999
— 0.28298461 666
—0.18198963 332
- 0.08099464 999
0.02000033 334

Error
0.00977531
0.00879778
0.00782025
0.00684272
0.00586518
0.00488765
0.00391012

0.00293259
0.00195506
0.00097753

0

565
408
252
095
939
783
626

47
313
157

Comparison results of the upper exact and approximate solutions for (1,2) solution and (2,1) solution

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Y. (t)
1.02017485
0.92015739
0.82013994
0.72012249
0.62010504
0.52008759
0.42007014
0.32005268
0.22003523

0.12001778
0.02000033

103
926
749
572
395
218
041
864
687

51
334

y, ()
1.02995016 667
0.92895518 333

0.8279602
0.72696521 666
0.62597023 333

0.52497525
0.42398026 666
0.32298528 333
0.22199029 999
0.12099531 666
0.02000033 333

Error
0.00977531 564
0.00879778 407
0.00782025 251
0.00684272 094
0.00586518 938
0.00488765 782
0.00391012 625
0.00293259 469
0.00195506 312
0.00097753 156

9.9999974 x 10
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The case of negative constant coefficient

Consider the fuzzy boundary value problem

Y (t) = —ay(t), y(t,) = A,y (t,) = B, (3.7)
. [ fa—a) = (a-a) I, . [ (b-b) = (b-b) | .
where 2 >0 , [A]" =]a+ a,a- a|,[B]" =|b+ a.b- a | are symmetric
L 2 2 J L 2 2 J

triangular fuzzy numbers. Here, (i,j) solution means that y is (i) differentiable and y' is (j) differentiable, i,j=1,2.

The Exact Solution By Generalized Differentiability

For (1,1) solution and (2,2) solution from the fuzzy differential equation in (3.7 ), we have differential equations
V()= A0, = - 2Y,

by using the generalized differentiability and — [y ,;a]: [— ;a,—y 1 Then, the lower solution and the upper
solution of the fuzzy differential equation in (3.7) for (1,1) solution and (2,2) solution are

Y, (1) = —cl(a)eﬁ[ - cz(oz)e’ﬁt +c,(a) sin (\/;t)+ c,(a)cos (\/Zt)

Yo(t)=c (@)’ e, (a)e v e, (a)sin (Vat)+ ¢, (a)cos (Vat)

Using the initial conditions, the coefficient ¢, (e ), ¢,(a), c,(a), c,(a) are obtained as

-alla-aNaslo-n)] ~  0-afla-ale-o-b]
4\/;eﬁt° 4\/;eﬁl° |

¢.(a) = (a_+ a_)\/;sin (\/;to)+ (l:—>+ Q)cos (\/;to)
3 22 '

¢, (@) = (;+ g)\/;cos (\/;to)— (t;+ g)sin (\/;to).

N

For (1,2) solution and (2,1) solution from the fuzzy differential equation in (3.7 ), we have differential equations

¢ (a)=

. C,(a

Y (1) = —AY, (). Y a(t) = —2Y, (1)

by using the generalized differentiability and — [y ,;a]z [— ;a,—y 1 Then, the lower solution and the upper
solution of the fuzzy differential equation in (3.7) for (1,2) solution and (2,1) solution are

Y, (t)=a,(a)cos (\/;t)+ a,(a)sin (\/Zt)
Y_a (t) = gl(a)cos (\/;t)+ a_z(a)sin (\/It)
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Using the initial conditions, the coefficient a, («), a,(a), a_l(a ), a_z(a) are obtained as

o 5

2
a,(a) =
a,\a \/;
[g+[a_gja]\/;sin (\/;to)+[g+[b _g]aJCOS (\/;to)
2 2
a,(a)= ,
a,la \/;
[‘[ - —”ﬁ (Wit )- {a_ [b - b” Wit
—_ 2 2
a1( )= )
) Ji
[;{a - é]a}ﬁsm Wit ) [a[b - b]} Wit
— 2 2
az( ): .
) n
The Approximate Solution By The Adomian Decomposition Method
For (1,1) solution and (2,2) solution, the equation in (3.7) is written as
y (0=-Ay, (0 y,(0)=-2y (1) (38)

by using the generalized differentiability and — [y Y, ] = [— y, .~y ] In the operator form, the first equation in (3.8)

— d 2
becomes Ly = -4y, where the differential operator L is given by L = —. Operating with L™ on both sides of
- dx

the above equations and using the initial conditions we obtain

y =y @)y @)t L2y, )y, 0=y, )y, )t (- ay )

a—a t;—b )
y (t)=|a+ =la |[+|b+| ——|a [t— AL (ya),

2 - 2

- - a—-a = k;—b .
y,t)=|a- =~ la |+|b-| ——|a |t— AL (y )
2 2 -

Let take

y =Yy .y, 0=3y, 0.
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Then

Sy =] (aza) ) (22, sy
y =|la+ a |+ b+ o4 - yna ,
o L kZJJL kZJJ [ )
57072 5 e a5y o
Yoo =|a- a |+|b- a |[t- y
O B )
is obtained. From this,
a_—a_ l;—t_n
y (t)y=]a+ a|+|b+| —|a |t
—0a 2 2
. ~ (a-a ~ (b-
Yo, (1) =] a- =la |+| b — |a |t
2 2

sV
|
|

y, ==Ly, (V)= gla(t)=—zHa_—[ , ]ajg{g_[afj(l};},...

v, =-2y )=y, 0= —ﬂ{[a_+ [a ; a_}x]§+ Lg+ [b ; g}zlg}

are obtained. Then, the lower approximate solution by the Adomian decomposition method of the problem (3.7) for (1,1)
solution and (2,2) solution becomes

s ES E

Similarly, upper approximate solution by the Adomian decomposition method of the problem (3.7) for (1,1) solution and
(2,2) solution becomes

o AR G B

For (1,2) solution and (2,1) solution, the equation in (3.7) is written as

Y 0=-4y (O.y, ()= -4y, (3.9)

by using the generalized differentiability and — [y Y ]= [7 y,.—Y ] .In the operator form, the first equation in (3.9)

d 2
becomes Ly = -1y , where the differential operator L is given by L = —. Operating with L™ on both sides of
La Za dx
the above equations and using the initial conditions we obtain
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Y, 0=y )y oty by, 0=y, )y, e Ly, )

s A e
Jau)=[5—[a;3]a]+[5—[529]a t-a(y, )

y =Yy )y, =3y, 0.

n=0

Let take

Then
(a—a) )V [ (b-b

- (
= = b
Z’ox”“(t) Lgﬂk , )|a + _+L ;

Zw:; (t):(a_—|(;_—a—\|a\+(t;—|(b_g\|a\t—uJi; (t)\
A GRS J (=)

is obtained. From this,

a-a
Y, t)y=|a+ _Ja +| b+

s[5
Yo, ) =] a- a |+|b- a |t

noe a0 0o (S
f |

v, ==y, ()= y, ()= -2 [a_—[a_g]a t—+{§—[b_g]a ti.
L 2 2 2 GJ

are obtained. Then, the lower approximate solution by the Adomian decomposition method of the problem (3.7) for (1,2)
solution and (2,1) solution becomes

o S 2

Similarly, the upper approximate solution by the Adomian decomposition method of the problem (3.7) for (1,2) solution
and (2,1) solution becomes
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S e

Example-2 Consider the fuzzy boundary value problem

y ()=-y()t>0 (3.10)
yO) = [-1+al-aly (0 =[l+a3-a] (3.12)

For (1,1) solution and (2,2) solution, using the generalized differentiability and using — [y ,;a]: [— ;a Y ] the
lower exact solution and the upper exact solution of the fuzzy initial value problem (3.10 )-(3.11) are obtained as

Y, (t)=(-1+a)e' +2sin (t),

Yo(t)= (L-a)e' + 2sin (t).

For (1,1) solution and (2,2) solution, by the Adomian decomposition method, we obtain the approximate solution of
(310 )-(311 ) as

Y )= (1+a)+Qra)-(-a)—(G-a)——.

- t? t’

y,(t) = (lfa)+(Sfa)tf(fl+a)—f(l+a)—f...
2 6

The exact lower and upper solution and the approximate lower and upper solution for t = 0.01 are

Y  (t) = —1,00970110 124+ 1,01005016 708 o ,Y . (t) = 1,01039923 292 —1,01005016 708 «a,

y (t) =-0,9900505 +1,01005016 666 «,y  (t) =1,03005016 666 —1,01005016 666 « .

—a

Comparison results of the lower exact and approximate solutions for (1,1) solution and (2,2) solution
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a
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Y, ()
—1.00970110
— 0.90869608
— 0.80769106
— 0.70668605
— 0.60568103
— 0.50467601
— 0.40367100
— 0.30266598
— 0.20166096
— 0.10065595

0.00034906

124
453
782
111
44
77
099
428
757
086
584

s,

— 0.9900505
—0.88904548 333
- 0.78804046 666

— 0.68703545
- 0.58603043 333
—0.48502541 667

- 0.3840204
- 0.28301538 333
- 0.18201036 667

- 0.08100535
0.01999966 666

Error
0.01965060
0.01965060
0.01965060
0.01965060
0.01965060
0.01965060
0.01965060
0.01965060
0.01965060
0.01965060
0.01965060

124
12
116
111
107
103
099
095
09
086
082

Comparison results of the upper exact and approximate solutions for (1,1) solution and (2,2) solution

o
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

For (1,2) solution and (2,1) solution, the lower exact solution and the upper exact solution of the fuzzy initial value

Y o (1)
1.01039923
0.90939421

0.80838919
0.70738418
0.60637916
0.50537414
0.40436913
0.30336411
0.20235909
0.10135408
0.00034906

problem (3.10 )-(3.11) are obtained as

For the (1,2) solution and (2,1) solution by the Adomian decomposition method, we obtain the solution of (3.10 )-(3.11)

as

292
621
95
279
608
938
267
596
925
254
584

y, (1)
1.03005016 666
0.92904514 999
0.82804013 332
0.72703511 666
0.62603009 999
0.52502508 333
0.42402006 666
0.32301504 999
0.22201003 333
0.12100501 666

0.02

Error
0.01965093
0.01965093
0.01965093
0.01965093
0.01965093
0.01965093
0.01965093
0.01965093
0.01965093
0.01965093
0.01965093

Y, (t)=(-1+a)cos (t)+ 1+ a)sin (t),

Yo(t)=(1-a)cos (t)+ (3 - a)sin (1),

2

3

374
378
382
387
391
395
399
403
408
412
416

y (= (—1+a)+(l+a)t—(—1+a)t?—(1+a)%__"
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2 3

v, ()= (1—a)+(S—a)t—(l—a)t?—(s_a)%_m

The exact lower and upper solution and the approximate lower and upper solution for t = 0.01 are

Y  (t) = —0.99982545 184 + 1.00017451 769 o ,Y . (t) = 100052358 353 —1.00017451 09 «o.

y (t) =-0,98995016 667 +1,00994983 334 o,y (t) =1,0299495 -—1,00994983 334 «

—a

Comparison results of the lower exact and approximate solutions for (1,2) solution and (2,1) solution

a Y, (1) y, (t) Error

0 —0.99982545 184 - 0.98995016 667  0.00987528 517
0.1 —0.89980800 007 — 0.88895518 333  0.01085281 674
0.2 — 0.79979054 83 — 0.7879602 0.01183034 83
0.3 -0.69977309 653 - 0.68696521 666  0.01280787 987
0.4 - 0.59975564 476 - 0.58597023 333  0.01378541 143
0.5 —0.49973819 299 — 0.48497525 0.01476294 299
0.6 —0.39972074 122 - 0.38398026 666  0.01574047 456
0.7 —0.29970328 945 - 0.28298528 333  0.01671800 612
0.8 —0.19968583 768 - 0.18199029 999  0.01769553 769
0.9 -0.09966838 591 - 0.08099531 666  0.01867306 925

1 0.00034906 585 0.01999966 667 0.01965060 082

Comparison results of the upper exact and approximate solutions for (1,2) solution and (2,1) solution

a Y_a (1) ;a (t) Error

0  1.00052358 353 1.0299495 0.02942591 647
0.1 0.90050613 176  0.92895451 666 0.02844838 49
0.2 0.80048867 999  0.82795953 333  0.02747085 334
0.3 0.70047122 822 0.72696454 999 0.02649332 177
0.4 0.60045377 645 0.62596956 666 0.02551579 021
0.5 0.50043632 468 0.52497458 333  0.02453825 865
0.6 0.40041887 291  0.42397959 999 0.02356072 708
0.7 0.30040142 114  0.32298461 666  0.02258319 552
0.8 0.20038396 937  0.22198963 332  0.02160566 395
0.9 0.10036651 76  0.12099464 999  0.02062813 239

1  0.00034906 584  0.01999966 666  0.01965060 082
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4-Conclusions

In this paper investigates the exact solutions and the approximate solutions by Adomian decomposition method of the
second-order linear fuzzy initial value problems with positive and negative constant coefficients using the generalized

differentiability. The values of the exact solutions and the approximate solutions for each « = 0, 0.1, 0.2, 0,3,

0.4, 05, 0.6, 0.7, 0.8, 0.9, 1 arecomputed. Consequently, the errors of lower and upper solutions are reduced

for (1,1), (2,2), (1,2) and (2,1) solutions in the case of positive constant coefficient. But while the error of lower solution
is reduced, the error of upper solution increases for (1,1) and (2,2) solutions in the case of negative constant coefficient.
Also, while the error of lower solution increases, the error of upper solution is reduced for (1,2) and (2,1) solutions in the
case of negative constant coefficient.
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