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Abstract: In this article, we have investigated the numerical approach for solving the 

fractional damped mechanical oscillator equation, which has an important role in 

fractional calculus. Damped mechanical oscillator equation equation is solved by 

Bernoulli collocation method with the aid of the computer symbolic language of 

Maple2016. This method transforms the damped mechanical oscillator equation into 

matrix equations. Then, the problem has been reduced to solving linear algebraic 

equations. 
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  INTRODUCTION 

Fractional calculus has become the focus of interest for many researchers in 

different disciplines of applied science and engineering. Nowadays notable 

contributions have been made theory and applications of the fractional differential 

equations (FDEs). Several problems can be modelling with the help of the FDEs in 

many areas such as seismic analysis, viscous damping, viscoelastic materials and 

polymer physics [1-3]. Many authors have been examining the possibility of using 

fractional derivates in material modelling last decades [4]. Uniqueness of solutions to 

the FDEs and the analytic results on the existence has been investigated by many 

authors [5-6]. In general, most of FDEs do not have exact analytic solutions, so we 

need approximate solution and numerical techniques, for this reason many techniques 

are developed by many researchers. For example Adomian decomposition method, the 

homotopy-perturbation method, the variational iteration method and the homotopy 

analysis method [7-12].  

 

 

In this study, the damped mechanical oscillator equation is defined by 
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where 1,10,21    and )( xf  is the forcing function.[13] According to the cases 1,2    

Eq(1) can be referred to as the usual harmonic oscillator equation[14]. In this paper we use the collocation method for 

solving fractional damped mechanical oscillator equation[15]. We investigate the approximate solution of Eq.(1) with the 

fractional truncated Bernoulli series as  
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where 10   . 

 

BASIC DEFINITIONS 

In this section, we first give some basic definitions and then present properties of fractional calculus[2]. 
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Definition 2.1 A real function )( xf , 0x , is said to be in space 


C ,  R  if there exist a real number p (>  ), 

such that )()(
1

xfxxf
p

 , where  )(
1

xf  [0, ), and it is said to be in the space C
m


 iff f


C

m


)(
, .Nm   

 

Definition 2.2 The Riemann-Liouville fractional derivative of order   with respect to the variable t  and with the 

starting point at at  is 
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Definition 2.3 The fractional derivative of )( xf  by means of Caputo sense is defined as 
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 . Some properties of the Caputo fractional derivative, which are needed here 

as follows, 
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where the ceiling function     denotes the smallest integer greater than or equal   and the floor function    

denotes the largest integer less than or equal to  . 

 

Fundamental Relations 

     In this section, we consider the fractional differential equations 
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which )( xP
k

 and )( xf  are functions defined on bxa  , 
i

  is a appropriate constant. We use the 

collocation method to find the truncated fractional Bernoulli series and their matrix representations for solving m -th 

order linear fractional differential equation with constant coefficients. We first consider the solution )( xy of Eq. (1) 

defined by a truncated fractional Bernoulli series (3). Then, we have the matrix form of the solution )( xy  
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On the other hand, fractional Bernoulli polynomials are, 
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Matrix representation of Eq.(7) is, 
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By substituting (6) into (8), we obtain 

   SAX xxy


)(                                                       (9) 

 

Similarly, the matrix representation of the function )(
*
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 become 

 

SAX


**
)( DxyD   

where, we compute the 


X
*

D , then 

 

 

 

 

 

 

  

 

1

1

*

2

****

11

1

1

12

1

1
0

1

RX            

            

 X










































N

N

x
N

N
x

xDxDxDDD





 

where 



























































0000

)1)1((

)1(
000

0
)1(

)12(
00

00
)1(

)1(
0





















N

N

1
R

 

 

                

then, 

SARX
1*

)(


xyD . 

 

 

 

http://saspjournals.com/sjpms


 
 
Gül Gözde Biçer Şarlak et al.; Sch. J. Phys. Math. Stat., 2017; Vol-4; Issue-4 (Oct-Dec); pp-165-171 

Available Online:  http://saspjournals.com/sjpms   168 

 
 

In a similar way for any i , it can be written by 
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And then, we obtain the fundemental matrix form of Eq.(1) 
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Finally, we obtained the matrix representation of the condition in given Eq.(2) as 
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Method of Solutions  

We can write Eq. (11) in the form 
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Consequently, to find the unknown Bernoulli coefficients 
k

a , Nk ,,1,0  , related with the approximate 

solution of the problem consisting of Eq. (1) and conditions (2), by replacing the m  row matrices (12) by the last m rows 

of the matrix (13), we have augmented matrix 
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or the corresponding matrix equation 
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If 0det
*
W , we can write Eq.(14) as  

*1*
)( FWA


                                                               (15) 

And the matrix A  is uniquely determined. Therefore, the approximate solution is given by the truncated 

fractional Bernoulli series 
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 We can easily check the accuracy of the method. Since the truncated fractional Bernoulli series (3) is an approximate 

solution of Eq.(1), when the solution )( xy  and its fractional derivatives are substituted in Eq.(1), the resulting equation 

must be satisfied approximately; that is , for   ,...2,1,0],,[  qbaxx
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Examples 

 In this section, we give a numerical example which is presented to demonstrate the effectiveness of the proposed 

method. 

 

Example 1: Let us consider the fractional damped mechanical oscillator equation 
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Fundamental matrix relation of this problem is 
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then, we obtained  
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Also, we have the matrix representation of conditions 
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Then, augmented matrix becomes 
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and so, solving this equation, we obtained the coefficients of the Bernoulli series 

 0099.0133.1
T

A . 

Comparison of numerical results with the exact solution is plotted in Fig.1 for various N . 
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Fig-1: Comparison of approximate solutions and exact solution  

 

CONCLUSION 

In this study, we present a Bernoulli collocation method for the numerical solutions of the fractional damped 

mechanical oscillation equation. This method transformes the fractional damped mechanical oscillation equation into 

matrix equations. This paper presents a numerical solution to obtain the solution of fractional damped mechanical 

oscillation equation. Graphics show that this method is extremely effective and practical for this sort of approximate 

solutions of differential equations.  
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