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Abstract: In this article, we have investigated the numerical approach for solving the
fractional damped mechanical oscillator equation, which has an important role in
fractional calculus. Damped mechanical oscillator equation equation is solved by
Bernoulli collocation method with the aid of the computer symbolic language of
Maple2016. This method transforms the damped mechanical oscillator equation into
matrix equations. Then, the problem has been reduced to solving linear algebraic
equations.
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INTRODUCTION

Fractional calculus has become the focus of interest for many researchers in
different disciplines of applied science and engineering. Nowadays notable
contributions have been made theory and applications of the fractional differential
equations (FDEs). Several problems can be modelling with the help of the FDEs in
many areas such as seismic analysis, viscous damping, viscoelastic materials and
polymer physics [1-3]. Many authors have been examining the possibility of using
fractional derivates in material modelling last decades [4]. Uniqueness of solutions to
the FDEs and the analytic results on the existence has been investigated by many
authors [5-6]. In general, most of FDEs do not have exact analytic solutions, so we
need approximate solution and numerical techniques, for this reason many techniques
are developed by many researchers. For example Adomian decomposition method, the
homotopy-perturbation method, the variational iteration method and the homotopy
analysis method [7-12].

In this study, the damped mechanical oscillator equation is defined by

DIy(x)+AD/y(x) +vy(x) = f(x), te[0d] 1)

Dly(c)=4,,i=01,..,n-1, (2)

wherel<a <2,0< 8 <1,a - >1and f(x) isthe forcing function.[13] According to the cases o = 2,8 =1

Eq(1) can be referred to as the usual harmonic oscillator equation[14]. In this paper we use the collocation method for
solving fractional damped mechanical oscillator equation[15]. We investigate the approximate solution of Eq.(1) with the
fractional truncated Bernoulli series as

where0 < o < 1.

BASIC DEFINITIONS

yy(x)=3% a,B;(x) ®)

n=0

In this section, we first give some basic definitions and then present properties of fractional calculus[2].
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Definition 2.1 A real function f(x), x > 0, issaid to be inspace C , u R if there exist a real number p (> ),

suchthat f (x) = x* f,(x), where f, (x) [0, ),and itis said to be in the space C " iff f e C, meN.

Definition 2.2 The Riemann-Liouville fractional derivative of order « with respect to the variable t and with the
starting pointat t = a is
t
LD (1) = (d /dt)m+1j(t — )™ f(r)dr
Definition 2.3 The fractional derivative of f (x) by means of Caputo sense is defined as
t

n-a-1 f (n)

D" f(t) = (t-7) (r)dr

I“(n—a)-f

0

forn-1<a <n ,neN, t>0, f e C" .Some properties of the Caputo fractional derivative, which are needed here
as follows,

D“C =0, C isaconstant.
0, for B e NuU{0},B <[a]
D“x’ :j r(g+1)
T(p+1-a)
where the ceiling function [« | denotes the smallest integer greater than or equal « and the floor function |« |
denotes the largest integer less than or equal to « .

x"" for peNuU{0},f2[alor feN,B>|a]

Fundamental Relations
In this section, we consider the fractional differential equations

> P (X)Dy(x)=f(x),a<x<b,0<a <1 (4)

k=0

with initial conditions
D!y(c)=24,,i=01,..,n-1,a<c<b (5)

which P, (x) and f (x) are functions definedon a < x < b, 4, is a appropriate constant. We use the
collocation method to find the truncated fractional Bernoulli series and their matrix representations for solving m « -th
order linear fractional differential equation with constant coefficients. We first consider the solution y (x) of Eq. (1)
defined by a truncated fractional Bernoulli series (3). Then, we have the matrix form of the solution y(x)

[y (0]=8"(x)A (6)
where
B“(x)=[By(x) B (x) B (x) By (x)]
[a, |
|a |
| 1]
A=la,l
[
[
la, ]
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On the other hand, fractional Bernoulli polynomials are,

TN

Matrix representation of Eq.(7) is,

where

By substituting (6) into (8), we obtain

Similarly, the matrix representation of the function D y(x) become

DSy(x)=D/X"SA

where, we compute the D X “, then

DX“ =[Df1 Dix“ DIx* - DIx"]
Fo Ma +1) T(2a +1) , I'(Na +1)
= X _—
U M) r@+y) F((N - 1) + 1)
=X"R,
where
l_O T'(a +1) 0 0 —}
e |
Lo 0 F@a+n 0 \
R1=I [(a +1) }
| ' : |
lo 0 0 I'(Na +1) |
| C((N -1a +1) |
|0 0 0 0 |
then,

D.y(x)=X“R SA .

NN )
BS(x)= > [ ]bNix'“ ,a >0,b, =B, (0)Bernoulli numbers.

Y]

©)

(9)
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In a similar way for any i, it can be written by

D.“y(x) = X“R SA
where
‘(0 0 T(ka +1) 0 0 1|
| ro |
R ‘ — ‘0 0 .. 0 M 0 |
} I'(a +1) i
i : E |
[0 0 .. 0 0 Ml
| T((N - K)a +1) |
[0 0 .. 0 0 0 |
. . . |
‘ : : : |
[o o .. 0 0 0 |
And then, we obtain the fundemental matrix form of Eq.(1)
> P X“R,SA =F
k=0
Finally, we obtained the matrix representation of the condition in given Eq.(2) as
Ui:Xa(c)Rk:[uiO up U, uiN]:[ii]

Method of Solutions
We can write Eq. (11) in the form

where

m

ka

WA =F

W=w,]=>PX“R,S, ij=01.N.

k=0

(10)

(1)

(12)

(13)

Consequently, to find the unknown Bernoulli coefficients a, , k = 0,1,... , N, related with the approximate
solution of the problem consisting of Eq. (1) and conditions (2), by replacing the m row matrices (12) by the last m rows

of the matrix (13), we have augmented matrix

I— Woo W

| Wi Wy

|

|W w
[W*;Fw]=i N-mo N -m1

| Ugo Uy

| Uy Uy,

| . .

|

LumflO Un_n

or the corresponding matrix equation

WDN f(XD) —}

WlN f(x1) ‘

. B }

W f(XN m)‘

uON AO }

ulN Z/l ‘

: .

\

Unin lm—l J
WA =F

(14)
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If det W = = 0, we can write Eq.(14) as
A=WHF (15)
And the matrix A is uniquely determined. Therefore, the approximate solution is given by the truncated
fractional Bernoulli series
[y(x)]= X“R ,SA .

We can easily check the accuracy of the method. Since the truncated fractional Bernoulli series (3) is an approximate
solution of Eq.(1), when the solution y(x) and its fractional derivatives are substituted in Eq.(1), the resulting equation

must be satisfied approximately; thatis, for x = x_ < [a,b], g =01,2,.

E(x,)=[D."y(x) - f(x)- 3 p,(x)y(q,x)|= 0

r=0

Examples
In this section, we give a numerical example which is presented to demonstrate the effectiveness of the proposed

method.

Example 1: Let us consider the fractional damped mechanical oscillator equation
Dy (x) + 4Dy (x) + vy (x) = (x)
with the initial conditions. Here is
y(0)=1y@1) =2, f(X):Z’\/;'F x+1,v=171= \/;
4
Y, (x) = Z ay B:(X)
N=0

Fundamental matrix relation of this problem is

(P X“R,+P X“R,+P,X“R,JSA = F

where
Moo 0ol Voo o 0 o] oo [
0 1 0 0 0
}01000{ IO oo o O}P I } |2.25}
— p,=lo 0 1 0 olip_|
- Pb=10 o0 0o o0 4 F=1201
A N R v R I A
00 0 1 0 o0 o Wroo] ! 13
o o0 0 1] o o o o +r lo oo 0o 1] |a]
o 0 0 0] (Oﬂoo o | 0 0 0 0 2]
2
I01000} | ) | o 0 0 0 o
R,=l0 0 1 0 o \ P I'R, =10 0 0 0 o
| ‘Rlz‘ 37 ‘ | |
00 0 1 0 o o o o | 0 0 0 0 0
4
lo 0 0 0 1] } 6 } lo 0o 0 o o
‘0 0 0 0 ‘
3\
Lo o 0 0 OJ
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n o 0 0 07 .+ , _11
PRI S CR S R % |
1
| 4 4 16 16 |, lo 1 -1 = o |
o _| NCRET N 1] g | 2 |
S e oo 1 2 4
| Vava 3 34f3da o | | 2 |
1 — — 0 0 0 1 -2
\ 4 4 16 16 | \ \
|1 1 1 1 1| [0 0o o o 1]
then, we obtained
(1 r 1 r 1 T 59 N 1
LA A z 59
} 2 2 2 6 4 30 }
‘ n 1 \/Z V4 5 \/Z T 3 9\/Z 3z 547 13\/2 ‘
Y2 2Rt 1w s 1w s a0 22
| |
A S - T
| 1 T 1 \/E .4 11 \/E 137 9 74/12 97 787 54/12 3.48 |
—— —+ -—+ —+ _———- -—+ —+ .
} 2 2 4 2 12 4 16 8 16 8 240 8 }
‘ V4 1 T 13 199 3z |
P 2 o 2 "t
Also, we have the matrix representation of conditions
[ 1 1 1 ]
. 1 - - - 0 -— ;1
rUOIﬂOT:I 2 6 30 }
v, | I
2 6 30
Then, augmented matrix becomes
PR A L 8 L]
2 2 2 6 4 30
} T 1 \/Z V4 5 \/Z 7 3 9\/2 3z 547 13\/1 }
1 ———4+— - —+ —+ — -—— - - —+ — + 2.25
} 2 2 4 2 12 4 16 8 16 8 240 24 }
wirl-l, = 1, Y2 7 2 Vo sr o3 3 e e
| 2 2 2 2 3 2 8 4 4 60 6 \
PO L 0 S 1!
‘ 2 6 30 ‘
‘ 1 1 1 ‘
[1 = = 0 - 2 |
L 2 6 30 ]

and so, solving this equation, we obtained the coefficients of the Bernoulli series

AT =[1.33

1

0

.99

0

0].

Comparison of numerical results with the exact solution is plotted in Fig.1 for various N .
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Fig-1: Comparison of approximate solutions and exact solution

CONCLUSION

In this study, we present a Bernoulli collocation method for the numerical solutions of the fractional damped

mechanical oscillation equation. This method transformes the fractional damped mechanical oscillation equation into
matrix equations. This paper presents a numerical solution to obtain the solution of fractional damped mechanical
oscillation equation. Graphics show that this method is extremely effective and practical for this sort of approximate
solutions of differential equations.
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