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Abstract: Stochastic gradient descent (SGD) is a simple and effective algorithm for 

solving the optimization problem of support vector machine, where each iteration 

operates on a single training example. The run-time of SGD does not depend directly 

on the size of the training set, the resulting algorithm is especially suited for learning 

from large datasets. However, the problem of stochastic gradient descent algorithm is 

that it is difficult to choose the proper learning rate. A learning rate is too small, which 

leads to slow convergence, while a learning rate that is too large can hinder 

convergence and cause fluctuate. In order to improve the efficiency and classification 

ability of SVM based on stochastic gradient descent algorithm, three algorithms of 

adaptive learning rate SGD are used to solve support vector machine, which are 

Adagrad, Adadelta and Adam. The experimental results show that the algorithm based 

on Adagrad, Adadelta and Adam for solving the linear support vector machine has 

faster convergence speed and higher testing precision. 

Keywords: Stochastic gradient descent, Large-scale learning, Support vector 

machines, Adagrad, Adadelta, Adam 

 

 INTRODUCTION 

SGD is a simple and effective method, many works focus on designing 

variants of SGD that can reduce the variance and improve the complexity. Some 

popular methods include the Pegasos method [1], the stochastic gradient descent with 

Barzilai-Borwein update step for SVM [2], Budgeted Stochastic Gradient Descent for 

Large-Scale SVM Training
 
[3], Bi-level stochastic gradient for large-scale support 

vector machine [4], and the stochastic variance reduced gradient method [5]. 

 

These methods are proven to converge linearly on strong convex problems. Pegasos performed stochastic 

gradient descent on the primal objective with a carefully chosen step size, which improves and guarantees convergence. 

Some recent works that discuss the improved approaches for SGD [6-11], such as quasi-Newton stochastic gradient 

descent, accelerated proximal stochastic dual coordinate ascent, stochastic dual coordinate ascent methods, scalability of 

stochastic gradient descent based on smart sampling techniques, and beyond the regret barrier algorithms for stochastic 

strongly convex optimization [12]. Presented an ensemble of support vector machine for text-independent speaker 

recognition.  

 

In this paper, we focus on the problem of choosing the learning rate for SGD. The problem of stochastic 

gradient descent algorithm is that it is difficult to choose the proper learning rate. A learning rate is too small, which 

leads to slow convergence, while a learning rate that is too large can hinder convergence and cause fluctuate. In order to 

improve the efficiency and classification ability of SVM based on stochastic gradient descent algorithm, three algorithms 

of adaptive learning rate SGD are used to solve support vector machine, which are Adagrad, Adadelta and Adam. The 

experimental results show that the algorithm based on Adagrad, Adadelta and Adam for solving the linear support vector 

machine has faster convergence speed and higher testing precision. 

 

STOCHASTIC GRADIENT DESCENT FOR SVM  

In order to deal with the large-scale data classification problems, we describe the algorithms of stochastic 

gradient descent for SVM. 
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Consider a binary classification problem with examples , where instance  is a d-

dimensional input vector and is the label. Training an SVM classifier using S, where w is 

a vector of weights associated with each input, which is formulated as solving the following optimization problem 

    
2

m in ; ,
2

t t t
p l y
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where   is the hinge loss function and  is a regularization parameter used to 

control model complexity.  

 

SGD works iteratively. It starts with an initial guess of the model weight , and at t-th round it updates the 

current weight as 
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where  

 

which is the indicator function which takes a value of one if its argument is true (w yields non-zero loss on the example 

(x, y)), and zero otherwise. We then update using a step size of . After a predetermined number T of 

iterations, we output the last iterate wt+1.  

 

Then, the decision function for SVM with SGD is as follows 

                                                                                      (3) 

 

ADAPTIVE LEARNING RATE SGD ALGORITHM FOR SVM 

 

Stochastic gradient descent parameter update rule:
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In the following, we present three adaptive learning rate SGD algorithms for SVM. It is especially suited for 

learning from large datasets.  

 

Adam SVM 

Adaptive Moment Estimation (Adam) [13]
 
is a method that computes adaptive learning rates for each parameter. 

We use Adam method to optimize SVM. 
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 is an element-wise matrix-vector multiplication. 
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The Adam update rule: 
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Algorithm 1：Adam SVM 

1. Input： S，λ，T，ε，
1 2
, ,     

2. Initialize：
1

w 0
 
，

 
，

 
，ε=1e-8， =0.9， =0.999， =0.001 

3.  for  

4.     choose  uniformly at random
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Adagrad SVM 

Adagrad [14]
 
is an algorithm for gradient-based optimization that does just this: It adapts the learning rate to the 

parameters, performing larger updates for infrequent and smaller updates for frequent parameters. For this reason, it is 

well-suited for dealing with sparse data. 

 

The Adagrad update rule: 
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Algorithm 2：Adagrad SVM 

1. Input： S，λ， ,T    

2. Initialize：
1

0w 
 
，

 
， =0.01，ε=1e-8 

3.  for  

4.    choose  uniformly at random
 
  

5.     i f   w , 1,   th e n
t t

i t i
y x   

6.        
1

w
t t

t t t i i
y x 


    

7.      else 

8.        
1

w
t t




 
 
 

9.      
1 1t t t

t

w w

G




 

   


 

 

10.     
 
 

11.  Output：
1

w
T   

  

 

Adadelta SVM 

Adadelta [15]
 
is an extension of Adagrad that seeks to reduce its aggressive, monotonically decreasing learning 

rate. The parameter update takes the form: 
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Algorithm 3：Adadelta SVM 

1.  Input： S，λ，T，ε，γ 
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13. Output： 

 

EXPERIMENTAL RESULTS  

In this section, we perform some experiments that demonstrate the efficacy of our algorithm. The basic SGD 

algorithm is Pegasos [2]. To evaluate the classification accuracy and convergence rate of four methods, several datasets 

are used to illustrate in the linear kernel situations. Machine has four E5-2609 2.50GHz processors and 4GB RAM 

memory. The operating system is the CentOS-6.4.  

 

We tested the performance of four methods on three large datasets and four standard real datasets, three large 

datasets are derived from Pascal Large Scale Learning Challenge, four standard real datasets are downloaded from 

LIBSVM website. The Usps and Mnist datasets are used for the task of classifying digits 0, 1, 2, 3, 4 versus the rest of 

the classes. The original Letter dataset’s labels represent 26 alphabets and we set the former 13 alphabets as positive class 

and the rest as negative class. We use the linear kernel and the regularization parameter λ in our experiments. The 

datasets characteristics and the parameters are given in Table 1. 

 

Table-1: Datasets and Parameters 

Dataset #Training #Testing #Features 

Alpha 400,000 100,000 500 

Gamma 400,000 100,000 500 

Delta 400,000 100,000 500 

Mnist 60,000 10,000 780 

Letter 15,000 5,000 16 

Usps 7,291 2,007 256 

 

Table-2: shows the testing accuracy of four methods for linear kernel on six datasets. 
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Table-2:  Comparisons of four methods 

Dataset Pegasos Adam Adagrad Adadelta 

Alpha 72.68 76.69 77.65 77.15 

Gamma 73.15 78.77 79.91 79.12 

Delta 70.77 76.73 78.21 77.25 

Mnist 87.03 87.46 87.68 85.30 

Letter 73.51 73.46 70.71 73.66 

Usps 83.83 84.13 83.43 83.94 

 

Fig-1-6 shows the convergence rate four methods with the number of iteration growing. 

 

 
Fig-1: Comparisons of four methods on Alpha dataset 

 

 
Fig-2: Comparisons of four methods on Gamma dataset 

 

 
Fig-3: Comparisons of four methods on Delta dataset 
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Fig-4: Comparisons of four methods on Mnist dataset 

 

 
Fig-5: Comparisons of four methods on Letter dataset 

 

 
Fig-6: Comparisons of four methods on Usps dataset 

 

Figures 1-4 shows that three methods (Adam, Adagrad, Adadelta for SVM) for linear kernel has a faster 

convergence rate than Pegasos on four datasets (Alpha, Gamma, Delta, Mnist).  Figure 5 show that Pegasos has a faster 

convergence rate than three methods (Adam, Adagrad, Adadelta for SVM) on Letter dataset. Figure 6 show that four 

methods has almost same convergence rate on Usps dataset.  

 

CONCLUSION 

In this paper, we focus on the problem of choosing the learning rate for SGD. The problem of stochastic gradien

t descent algorithm is that it is difficult to choose the proper learning rate. A learning rate is too small, which leads to slo

w convergence, while a learning rate that is too large can hinder convergence and cause fluctuate. In order to improve the

 efficiency and classification ability of SVM based on stochastic gradient descent algorithm, three algorithms of adaptive 

learning rate SGD are used to solve support vector machine, which are Adagrad, Adadelta and Adam. The experimental r
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esults show that the algorithm based on Adagrad, Adadelta and Adam for solving the linear support vector machine has f

aster convergence speed and higher testing precision. 
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