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We investigate the existence of positive solutions for the Sturm-Liouville
DOl problem
10.21276/sjpms.2017.4.4.11 (p()2'(1)) + f(t,2(t) =0 a.e.on [0,1] (1.1)

E" .'_]E subject to the boundary condition
ﬁ z(0)=0=z(1). (1.2)
x

It is well-known that (1.1) and (1.2) is widely used in many fields, what
E people are interested in is the existence of positive solutions. There have been many

papers studying the existence of positive solutions via the various methods and a
great deal of results have been obtained under various assumptions.

For the positone case and the semipositone case, the well-known fixed theorems in cone [1] has been widely

used, for example, see [2, 3, 4] and the references therein. For the case that f has a functional lower bound, Li [5]

obtained some results for the sublinear case and superlinear case where some usual limit conditions such as
f f

f, = lim inf T2 ang f, = lim inf t2)

z— o te[0,1] z z—>0te[0,1] V4

f(t,2)

are bounded below, and p < c'[01]; Yao [6] extended the limits to

b
consider that f satisfies J lim inf dt = (0<a<b<1). And there are other articles that different limit

a zo® z

conditions were considered, for example, see [7, 8].

Utilizing the Leray-Schauder fixed point theorem in Banach Space, Yang and Zhou [9] proved the existence of
positive solutions of (1.1)-(1.2) for the sublinear case, they abandoned the condition that t has numerical or functional

lower bounds and just needed there exists a constant r, > 0 such that f(t,z)> 0 on
[0.1]x[0,r,], see Theorem 2.1 [9]. Yang and Feng [10] investigated the superlinear case, where usual limit
conditions are not required to be bounded below [9] .

In [9, 10], a key assumption is f(t,0)> o for almost everyt < [0,1] . In this paper, we relax this assumption. We

shall prove a maximum principle for the Sturm-Liouville problem, and utilize it and some inequalities [10] to obtain a
new existence result of (1.1)-(1.2).

SOME PRELIMINARIES
In this paper, we make the following assumptionson f and p:
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(A;) f:[0L]xR"(R" =[0,=)) > R isa Carathéodory function, thatis, f(.z) is measurable for each fixed

zeR", f(t,) iscontinuous for almost every t < [0,1], and for each r > 0, there exists g, e L, [0,1] such

that
|f(t.2)|<g,(t) forae teqoa] andall zepo,r],

where L [01]={g e L[0,1]: g(s) > 0 a.e.[0,1]}.

(A,) There exists w(t) e L[0,1] such that
f(t,z)>w(t) forae. tefo1] andall ze[0,).

(A;) p:[01]—> R"\{o},and pecl[o1].
First, we consider the following problem
—(p(t)z'(t))' > w(t) a.e.on [01], (2.1)
z(0)=0=1z(1), (2.2)
and prove a maximum principle.

Notation

|| = max {|vv ®]:w () = Jotw(s)ds,t c [0,1]},

Puin = Min {p(t):te[01]}, p,., =max {p(t):tel01]}.

Lemma 2.1 (Maximum principle)
If there exists z satisfies (2.1)-(2.2) and

> 2

—— ,then z(t) >0 for all te (031).

pmin

Proof
Take & > 0 sufficiently small such that
e > 2ofrze
pmin

and w(t) = w(t)—¢ 0. Set

W (t) = Ioth/(s)ds SW () - et .

Then we can write (2.1) in the following form
~[pmyzm+w )] 2250 forte (). (2.3)
We now define
y(t) = p()z'(t) +W (t) for te (01). (2.4)

From (2.3) and (2.4) we know that y is strictly decreasing on (0,1) and

7'(t) = yo-wm for te (01).

p(t)

Let t, e (0.1) besuchthat |z(t,)| = | > L , which implies that z'(t,) = 0 . And from (2.4) we know
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ly(te)| =

Let [t,,t,] < [0,1] be the maximal interval that containing t, and such that |y(t)|s

N‘ forall te (t,,t,).
Forte (t,,t,), we have
|Y(t)—\/\7(t)| |Y(t)|+M(t)‘

|2'(t)| = | < < < Z‘M ” .

() | p(1) PO P

Hence, we obtain

t
+ z'(s)ds
ty

\M L.

t
"Z":|Z(to)|: Z(t)—jI z'(s)ds| <

z (s)|ds

\M |

< z(t)|

e

Byw (1) =W (1) - et , We obtain easily |w | < |w ||+ ¢ . Then we have

o 2 . B2

<lz]+ = z|+ L
Thus, we have proved that
lz@®)|= 2|~ L for te(t.t,).
Since z is continuous on [o0,1], then we conclude that
|z 2| -t >0 fortept,t,]. (2.5)

Asz(0) = 0= z(1), from (2.5) we obtain that 0 <t, < t, <1. By the maximality of [t,,t, ], the continuity of
y and the fact that y is strictly decreasing on (0,1) , we also have

>~‘mﬁewﬁ% (2.6)

y(t,) = ‘M“ ly() < ”\/\7“ for te (t,.t,),  y(t,) = —‘M ”

@.7)

For t e (0,t,), from (2.6), we obtain

y(1) - W (1) “”*M“ﬂ ””*M

z'(t) = > > >0.
p(t) p(t) p(t)

For t e (t,.1), from (2.7), we also have

W yO+W O] v+ W
z'(t) = ORLAD) < '\N < M <0.

p(t) p(t) p(t)
Using the continuity of z and the above information of z', we obtain easily that
z is strictly increasing on [o,t,], and z is strictly decreasing on [t, 1].

Hence, we have that z:[0,1] > R is a continuous function with z(0) = 0, z(t) strictly increasing on [o,t,], |z(t)| >0 on

[t,.t,1, z(t) strictly decreasingon [t, 1], z(1) = 0, which implies that z(t) >0 for te (0,1).
This completes the proof. o
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Remark
Lemma 2.1 extends the maximum principle of the one-dimensional p - Laplacian equations [11] to the Sturm-

Liouville problem.

A function : is said to be a positive solution of (1.1)-(1.2) if z < c*[0,1] with z(t)>0 on[01], z%0,
p(t)z'(t) e AC [0,1] and : satisfies (1.1)-(1.2), where Ac [0.1] is the space of all absolutely continuous
functions on [0.1] .

Let c[o.1] be a continuous function space with norm ||z|| = max {|z(t)|:t < [0.41}. It is well-known that 2 is
a positive solution of (1.1)-(1.2) if and only if z e c[0,1] with z+ 0 and z(t)> 0 on [0,1] satisfies the
following integral equation [2, 3, 6]:

1
2(t) = IOG(t,s) f(s,z(s))ds := Az (t) for te[01], (2.8)

where G(t,s) is Green function to —(p(t)z'(t))' = 0 associated with the boundary conditions (1.2) defined by

[l 1 s 1
du, s<t
R S j t p(m 0P
1
du | du du, s>t
jop(m g [Lp (1) L p(u)

Letting z < c[0,1] and z* (t) = max {z(t),0}, we defineamap A" from c[o1] to c[o0.,1] by

1
ATz(t) = IOG(t,s) f(s,z"(s)ds .

The following theorem plays a key role in the study of the existence of positive solutions of (1.1)-(1.2).

Theorem 2.1 Assume that (A,) -(A,) hold. Let 0 <a <b <1, w, e L[01], wy(t) >0 on [0,1] and

b
w(t) = J G(t,s)wy(s)ds . If z=4A"z+ xw™ hasasolution z < c[o,1] forsome o< <1, x>0 and

> ||Jv ||

,then z(t) >0 for te (0,1).

Proof
Let

[wy(t) if a<t<h,
w, (1) =
LO

if 0<t<aorb<t<l
. b 1
Then w™ (t) :I G (t,s)wg(s)ds = J‘ G (t,s)w,(s)ds , and
a 0
2=AA"z+ ,uw*

1
= J' G (t,s)(Af (s,z " (s)) + Hw, (s))ds.
0
Differentiating z with t twice, we have

—(p(t)z'(1)) = Af (t, 27 (1) + ww, (t) ON (0,1).
Since w,(t) >0 on [0,1] and C A,> holds, then

—(p()z'(1)) = AF(t, 27 (1)) + uw, (t) = Aw(t) ON (0,1).
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By 0 < 4 <1, we know ||z|| > . This, together with Lemma 2.1, implies z(t) >0 for te (0.1) .

2wl 2zfw]
i pmin

min

This completes the proof. o
Next, we recall some important lemmas which have been proved in the references.

1
Let g,h e L [021] and J‘ h(s)ds > 0 , then we have a lemma as follows.
0

Lemma 2.2 ([10], Theorem 2.1) Assume that (A,) holds. Then there exist 0 < a, < b, <1 such that

b E 1
JG(t,s)h(s)ds zf G (t,s)g(s)ds +J G(t,s)g(s)ds ON[0.1],
a 0 b

forall o <a<a, and b, <b<1.

Letting g, € L, [01] be a function that satisfies
f(t,z)+g,(t)20 forae tef[o1] andall ze[0,»), (2.9)
and
g.(t) = I:G (t,s)g,(s)ds .
Let z e c[o,1] satisfy

2(t) = AT z(t) + aw (1) .

We define a function « < c[0,1] by
a(t) = z(t)+ g.(t) = A z(t) + aw (1) + g. (1), (2.10)
where x>0 and w(t) has the properties as in Theorem 2.1.

Lemma 2.3 ([10], Lemma 2.1) Assume that (A,) —(A,) hold. Let » > 0 and |« > ( Pmax_ 4y, 4

min

g.|) -

Then there exist 0 < a, <b, <1 suchthat z(t)> o on [a,,b,] and

)
9.

) P max (P +[|9+

) T o (€

Pmax (P + [|9+

a, <

%

al- -

(a"fpf 9.

pmin

Let K ={zec[o1]:z(t)>0 on [01]}, then K is the standard positive cone of c[o1] and K is a total cone. k
defines the partial order "<* of c[o,1] by x <y ifandonlyif y-xe K .

1
Letting g e L, [01] with I g(s)ds >0 and z e c[0,1], we define two linear maps by
0

1
Lyz(t) = J‘Oe(t,s)g(s)z(s)ds ,
1

L
L z(t) = IL "G(t,s)g(s)z(s)ds ,

n

1 1 .
where —<a, <b, <1-—, a, and b, are asin lemma 2.2.
n n

Itis easy to know that L, and L‘g”) are compact in c[o,1] and map K into K . Let r(L,) and r(L(gn))

and

stand for the radius of the spectrum of L and L(g") , respectively. If we denote that x, (L) =
r(Ly)
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(L) = cthen 0 < uy(Ly) ey (LSY) <0 by 0 < (L) r(L{”) < . Specially, if g =1, u,(L,) is

(n)
r(Ly)

written usually as g, .

Lemma 2.4 ([10], Lemma 2.2) For any ¢ > 0, there exists n, > 0 such that x (L) < u(L )+ for

nzno.

We shall use the following known result(for example [1]), which can be proved by using the Leray-Schauder
degree theory for compact maps in Banach space.

Lemma 2.5 Let e be a Banach space, o, and o, be two bounded opensetsof E ,and 9 e @, c @,

where ¢ is zero elementof e . If F:Q,\a, - E iscompact and satisfies
(i) x= aFx forall xeon, and 0 < 4 <1.
(if) There exists x, « E\{¢} such that x = Fx + ix, forall xe o0, and 2 >0.

Then £ has a fixed pointin o, \a, .

EXISTENCE OF POSITIVE SOLUTIONS OF (1.1)-(1.2)
In this section, we shall use Theorem 2.1 and lemma 2.1 to prove the existence of positive solutions of (1.1)-
(1.2).

Theorem 3.1 Suppose that (A;) -(A;) and the following conditions hold.

2 1
(c,) There exist r, > M , ¢ € L, [01] with J ¢(s)ds >0 and &, < (0, x,(L,) suchthat
pmin 0

f(t,2) < (u,(L,)-)e(t)z foraetefoa] andall ze[o,r,]. (3.1)

1
(c,) Thereexist p, >0, v e L, [01] with J’ v (s)ds >0 and ¢, > 0 such that
0

f(t,2) > (i (L, )+ e, (2 foraetepoa) andall ze[p, ). 3.2
Then (1.1)-(1.2) has a positive solution.

Proof
The proof is divided into three steps.

Stepl. Let o, = {z e c[oal|z] < r,}, e prove that
22 A"z for zeo0, and 0< 2 <1. (3.3)

In fact, if there exist z, < e, and 0 < 4, <1 suchthat z, = 2,A"z, . Let w,(t) = 0 on [0,1] . Since

2w |

o] = ro > =, by Theorem 2.1, we know that z,(t) > 0 on (0.1). Similar to the poof of Theorem 3.1 step1 in [10],
pmin

then we have (3.3) holds.

Step2. By (A,) , there exists g, €L.[01] such that |f (t,z)ls g, ® fora.e. t e [0,1] and all

ze[0,p,1,then f(t,z)+ g, t)=20 fora.e. te[o21] andall z<[0,p,].Andfrom (c,), we know

f(t,z)+g, ()20 forae. tefo1] andall ze[p,, o].Let g,(t) = 9,,® in (2.9), then it is clear that f

satisfies (2.9).

In Lemma 2.2, we set g(t) = g, (t) and h(t) = g—zpow (1), then there exist 0 < a, < b, <1 such that
2
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£, b a 1
—po'[ G (t,s)y (s)ds 2_[ G (t,8)g,(s)ds +I G (t,s)g,(s)ds On [01],
2 a 0 b

forall 0 <a<a, and b, <b <1.

. £ 1 1
By Lemma 2.4, there exists n, > 0 such that «, (L") < u(L, >+ —= and —<a, <b, <1- —.And
2

n0 no
we take n, big enough to satisfy [M+ 1}(,30 +|g.])> ry + o] . Thus, from the information mentioned
above, we obtain that "
1 1
%pojiaen,s)w(s)ds zjfea,s)go(s)ds +j17LG<t,s>go(s)ds on 04]. (3.4)

ny Mo

) and @, = {zec[o4], |2+ ¢.|| < R}, thenitisclearthat 6 c 2, c 0.

n
Let R = {m-#l](po + 9.

min

Without the loss of generality, we may assume that A" has no fixed pointin aq, (in fact, if A" has a fixed
point z in aq, , then by Theorem 2.1, we know that z(t) >0 on (0,1) and z = A"z = Az , the result is

©z,and then B(K) < K and r(B) =1 . The well-known Krein-

already proved). Letting Bz = 4, (L, )L,
Rutman theorem ([1], Theorem 19.2) shows that there exists z* < kK \ {6} such that Bz~ = z" . And we can

obtain that

1
L
2 () = ay (Lo Ibp 2 (0 = (L ), " G (ts)z (s)ds (3:5)

Mo

Next, we prove that
2+ Az+uz forzeoo,and x>0. (3.6)
In fact, if there exist z, e o, and x, >0 suchthat z, = A"z, + u,z , then x, >0 since A” hasno
fixed point in oo, . Together with (2.10) and (3.5), we have that

=R = [—nopmax +1}(p0 + )> [ P max +l](p0 +
p p

min min

). (3.7)

"“"="Zo+9* 9. g.

Lemma 2.3 implies that there exist 0 < a, < b, <1 suchthat z,(t) > p, on [a,,b,] and

Pmax (Po + ||9+|) Pmax (Po + |9
a, < by 21— .
pmin(a"_pg_ g.|) pmin(a”_po_ g.)
1 Pmax (Po + |9 1 1
From (3.7), we know that — = il . Hence, we have 0 < a, < —<a, <b, <1-—<b, <1,and then

No pmin(a"_po_ 9| Ny Mo

1 1]
2,(t) 2 p, ON | —1-—].

Ny Ny |

By Theorem 2.1, putting 2 =1, then we know z,(t) > 0 on (0,1) . Similar to the poof of Theorem 3.1
Step 2 in [10], then we have (3.6) holds.
Step3. Since the condition (A,) guarantees that A™ is compact from c[o,1] to c[0,1]. Through the

above discussion and utilize Lemma 2.5, we obtain that A™ has a fixed point z in o, \Q_1 and it is clear
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that ||| > M holds. Then by Theorem 2.1, we know z(t) > 0 on (0,1), and then z = A"z = Az . This

shows that z is a positive solution of (1.1)-(1.2).
This completes the proof. o

2

Example 3.1 We consider (1.1)-(1.2) for p(t) =1 and f(t,z) = ¢ max {z-1,0}-t>, where ¢ > = ° is a constant.

Let w(t) = -t*, then it is easy to know that + satisfies (4,) and (a,),and |w |- LLlet oy -y =1,
3

2(c+1) . - . 2 2 .
©+1 itis obvious that g >—= M Notice that x, = = > [9], then for &, - “1 and
2

C—7I2 3 pmin

rp,=1and p, =

C—ﬂz
, = , we have
2

f(t,z)=—t> < (u, -z fortefoaandall zefo,r,],

&

f(t,z) > (u, +e,)z fortefor] andall ze[p,,»).
Then by Theorem 3.1, (1.1)-(1.2) has a positive solution z in c[o.1].

f(t,z)

Remark 3.1 Since f(t,z) in Example 3.1 does not satisfy f(t,0)> 0 [9, 10], lim min - c<w [2],
z—> o a<t<h z
b f(t, .
and J‘ lim inf 02 gy (b —a)c <o [6] forall o < a<b<1.Then the existing results can not be used to
a 7o w® Z

treat it. Hence Theorem 3.1 is a new result.
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