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Abstract: This study aims at introducing a multi-server queues with vacations 

according to two system performance metrics (average waiting time in row Wq, 

average row length Lq). We examine how such a dynamic impacts common system 

measures such as stability, expected number of customers in the system, probability of 

waiting and expected waiting time. We have designed a method to calculate 

performance metrics for the previous queue system defined as average system uptime 

and average vacation time. We designed a method to calculate performance metrics 

for the previous queue system defined as the average waiting time in the row and the 

average grade length. We changed the different parameters of access rates, service 

rates, and number of servers to achieve the best results and try to improve and develop 

the system, making it easier for servers to perform their service To obtain the 

appropriate vacations for them without being affected by the customer service and the 

system's interest is disrupted and we obtained the following results where the results 

related to average waiting time in row Wq, average row length Lq were found. 

Keywords: Multi-Server, Queues, vacations, Performance Metrics, waiting Time, row 

length 

 

INTRODUCTION 

Queuing Systems 

Queuing theory is a mathematical study of Queuing classes or Queuing lines. 

The Queuing system consists of customers or units that require a type of service and 

the Queuing lines that customers enter when the service is not available immediately 

and there are cases where customers leave the system without interest in the Queuing 

and the service center that provides service to the customers. 

 

The year 1910 was the real birth of the theory of Queuing by the Danish scientist Erlang, where he began that 

year to conduct experiments related to the problem of congestion in the center of telephone exchange through the 

workers in the telephone call center as it was found that callers are often subjected to some delays during the periods In 

which telephone calls are frequent because of the inability of staff to meet orders in a synchronous manner with the speed 

with which they occur. 

 
The Erling scientist calculated the duration of the delay for one worker in the division and then circulated his 

study and the results to a number of workers. The development of telephone traffic continued on the bases set by Erling 

and by the end of the Second World War, the use of this method was expanded and included a number of general cases 

with queues [1]. 

 

Kendall [39] was one of the individuals who want to view the theory of waiting rows from the perspective of 

random processes. 

 
The last century has witnessed a tremendous development in queue theory, which has been highly regarded as a 

research area in both operational research and operational probabilities. 

 

The concept of the Queuing model is that when the customer reaches the server, he enters the waiting line, and 

then the service provider serves the customer from this class. When the service is completed, the service is repeated to 

the new customer from the queue. 
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It is assumed that there is no time lag between the completion of the service to a particular customer and the 

commencement of service to the next customer in the queue if the service provider does not need time to prepare to 

provide service to a new customer. 

 

The key elements of the Queuing model are the customer and the service provider. In waiting queue models, we 

are concerned with the interaction between the customer and the service provider that affects the time required by the 

customer to obtain the service. 

 

Queuing systems are generally expressed in Fig. 1, which shows that customers arrive at the waiting row system 

expressed in a dashed rectangle and then stand in the queue waiting for their turn to get the service and then move to the 

service centers (service center) Customers system after obtaining the required service [2]. 

                    
Fig-1: Queuing system 

 

The queue consists of a group of customers (individuals or objects) who are waiting for their turn to receive the 

service. 

 

The service station is where customers go to get the service they need. If we combine service centers with 

queues, this is known as the system and system management (the system here is the channel or service channels plus 

rows) [3]. 

 
The Properties of Queuing System   

Queuing systems have the following characteristics: 

 

 Arrival Process 
  The Arrival Process is a description of how customer service seekers enter service stations [4]. 

 

Queue Capacity 

It is the largest number of persons allowed in the system [4] 

 
Service Discipline  

The Service Discipline is the way in which the service is provided to customers. The most popular customer 

service principles are: 

A. a. "Service in order of arrival" means that it first arrives, it will be first served or it first arrives first, it will 

first go out (First -Out- In- (First or FIFO), and this principle is the principle in most grade systems. 

B. B. "Service by Reverse Access Order" or who finally arrives serves first (Last-In-First-Out) or LIFO 

(abbreviation). This principle is used in most storage systems where the goods that are finally stored are 

consumed because they are within reach. 

C. C. "Random service" where items are randomly selected to serve them regardless of their arrival time 

(Random - In - Selection or SIRO) as in some data entry operations. 

D. Service according to "Priority" or "Priority" (PRI), where preference is given to some clients such as 

patients arriving at hospitals or clinics in serious condition and cases of important military messages. Or be 

a preference according to a particular order or scale. 

 

The percentage of time the server is busy providing service to the customer is given by the following formula: 

  
 

 
 Where   is the ratio between the rate of access, λ is the service rate μ is a dimensionless whose numerical value 

gives a measure of the service demand of the system and is known as the Erling units in honor of the Erling scientist.  

 

Customers 
flow 
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The quantity   
 

 
 is called the usage parameter where c is the number of servers where c     and where there is one 

server, so ρ = a [2]. 

  

Service Time  

The period of time spent in serving the client [2] (Service Stages and Number of Service Channels) 

 

Queuing queues models in terms of the number of channels and stages of service are classified into the 

following models [38]: 

 

 
Fig-2: A one-channel and one-phase waiting queue model 

 

For example machines in front of a single maintenance unit. 

 

B. Multiple Stages – Single Channel Model 

In this case, the customers constitute more than one waiting line on more than one stage. Each stage provides a 

different type of service than the other stages, as in Figure (3) below: 

 

      

 
Fig-3: Multiple Stages – Single Channel Model  

 

For example patients who move from one clinic to another for a comprehensive medical examination. 

 

C. Single Stage - Multiple Channel Model 
In this case, the service centers are multiple with one waiting queue  

  

 Queueing Applications 
The theory of Queueing has taken the form of progress, development and prosperity both in the field of 

methodological theory and in practical applications. 

 

In the field of methodological theories, we find that there are a large number of those interested in studying the 

models of Queueing and this number are university students in various stages of advanced university education and 

graduate students in different related disciplines. 
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Queuing theory has become a target for practical applications. For example, the CPU is the server and the 

programs that are waiting to be executed are the clients. 

 

In the area of air traffic planning, waiting for aircraft in the air taken into consideration waiting for the existence 

of an empty corridor that the aircraft is expected to use in landing operations. More complex wait queues have been 

developed to obtain the design of traffic lights at the crossroads. queues models are also widely used in industrial fields 

to overcome the waiting problems that accompany some of the work. These models are also applied to determine the 

optimal number of berths that receive vessels at ports in order to reduce total costs [5]. 

 

Birth -and -Death Process 
There are many systems that are interesting in their study that evolve over time. Their study focuses on the dynamic 

behavior of these systems. These systems always include randomness in some way such as [6]: 

 Study of queues systems 

 The number of successful students in a course over different years. 

 The temperature of the air in a particular city 

 Number of data packets in an information network. 

 

The random process x_t or x (t) is defined as a sequence of random variables by index (t), which is often the time. 

Thus, the random process is plotted from the sample S space to a function in time t so that the x_t (j) for each element jsS 

can say that: 

 

 For each value j,       becomes a function in time. 

 For each value t,       becomes a random variable 

 

The        called the function of a given value is called realization of the random operation and defines the set of 

possible    values in the state space. The set of t values is defined as the parameter space. 

 

Random processes are classified according to the fact that the vacuum of the case or the parameter space is 

connected or sporadic. For example, it is possible to talk about a random process that is time-related or time-spaced 

according to the parameter space. 

 

The study of random processes, for example, is concerned [7]: 

A. Time Dependent Distribution 

 

It is possible that   takes a value in a subset of S at a known moment t. 

B. Stationary Distribution 

 

It is possible that    takes a value in a subset of S when   → t ((assuming the existence of end). 

C.  Covariance(     ,    ) 

 

The heterogeneity or correlation between         is determined at two different times t, j. 

D. Hitting Probability 

 

The possibility of returning to a state of S 

E. (First Passage Time) 

 

Is the moment when the random process enters for the first time a case or set of cases when it starts from a certain 

initial state. 

 

Queueing Systems Notations 

As noted above, access and departure have their own allocations and that there are various service principles. 

We have also indicated that customers may be born from an end-to-end source as we have indicated that system capacity 

may be limited (limited to a certain number of customers) and may be unlimited. And that the system may contain one 

channel or several parallel channels. The scientist Kendall [39] suggested a symbolic way to denote all these things as 

follows: 

A/B/C/X/Y/Z 

Where the characters in this code mean the following: 

A: It represents the distribution of the number of customers accessing the system (or for the distribution of time between 

two consecutive accessions). The M code is usually used to indicate that the number of clients follows the Poisson 
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distribution or to indicate equivalently that the time between two consecutive hits follows the exponential distribution. 

This indicates Markov's property (relative to the scientist of Markov, whose name is associated with random processes). 

B: is the distribution of the number of customers who leave the system (or to divide the service time of a customer). The 

M code is usually used to indicate that the distribution of the service time of a customer follows the exponential 

distribution 

C. Denotes the number of parallel service channels (C= 1,2,3…….,∞ ) 

 

X: The service principle we have seen is LIFO FIFO, SIRO, PRI. The GD symbol is used to denote a general discipline 

that can be any of the above principles or any other principle. 

Y: The capacity of the system is the number of customers that can be accommodated by the system (in row or waiting 

rows and in the channel or service channels) so that, (Y= 1,2,…..,  ∞ ) 

Z: Source energy is the number of source elements from which customers are generated. This energy may be terminated 

or incomplete (Z= 1,2,…  ∞ ) 

Below are some of the known queue systems: 

The symbol (M/M/1/FIFO/∞/∞)indicates a queue system characterized by: 

The time interval between two consecutive access times and the time of a customer service following the exponential 

distribution and the system has one service channel and the service principle is "service in order of access" and the 

system power is unlimited and the source power is unlimited. 

When the last three symbols are deleted, they indicate FIFO /∞/∞. For example, the M / M / 1 symbol denote the same 

concept as the previous code. 

 

The symbol (M / M / 1 / FIFO / K /∞) has the same previous concept except that the system energy is defined by 

the number K elements. 

 

The symbol (M ^ X / M / S / N / FIFO) means that customers arrive in the system in the form of payments 

followed by the Poisson process and the service time follows the exponential distribution and the number of servers S 

server and the maximum number allowed to exist within system N, First serves the first, and X batch size which can be 

fixed or follows a given distribution. 

 

The symbol (M ^ X / E_K / S / N / FIFO) means that the time between the arrival of customer payments follows 

Exponential distribution. The service time is followed by the K-type distribution, the number of S servers and the 

maximum number allowed existing within System N, the next service principle first serves first, and X the batch size is 

fixed or follows a certain distribution. 

 

Now if we have a row system we mean that this system is a system of birth and death and in this case we will 

use the following symbols: 

N  

N (t): represents the random variable that represents the number of clients in the system up to the moment t where t≥0. 

We mean the number of customers in the Queueing system 

 

Number of customers in a row system = number of customers in row or queue rows + number of customers 

served in a channel or service channel. 

 

     : Is the probability distribution of the number of customers in the system at time t 

 

                                                            (1.5.1) 

 

            

As we define the parameters       and N (t), the study of queuing systems is generally dependent on time t. 

However, many queue systems depend on the beginning of their work over time, but over time they reach stability. 

 

In the stability case, the random variable N (t) and its probability distribution function       become 

independent of time and are denoted by N and    where: 

 

                                          (1.5.2) 

Performance Measures 

The main objective of the study of queue systems is to achieve an appropriate level of service with a reasonable 

level of costs. To achieve this goal, we need to find measures called efficiency or performance measures by which we 
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can study and analyze queue systems and then re-adjust or reconstruct these systems in such a way that we reach the 

desired goals. 

 

Such as determining the optimal number of service channels and the optimal speed of customer service [2] 

 

There are some concepts that are used in performance measures such as: 

a. Arrival Time 

Is the time when the customer reaches the class and is symbolized by AT. 

B. Departure Time 

This is the time when the customer completes the service and leaves the system and is symbolized by DT. 

C. Time of Beginning The Service 

Is the time when the customer leaves the class to start the service and is symbolized by the TSB 

D. Time in Queue 

Is the time in which the customer is waiting in line to receive the service and is symbolized by the symbol TiQ. 

E. Time to stay in the system (Sojourn Time) 

Is the time in which the client stays in the system until he takes the service and leaves the system and is symbolized by 

the symbol SJ. 

 

Customer Performance Measures 
Are measures that measure the effectiveness of the client; for Example: 

a. Time in a row: while the time in the row is a little, it is better for the customer. 

b. B. Service time whenever service time is short, it is better for the customer. 

c. C. Waiting costs If the waiting costs are few, it is the better the customer. 

 

Server Performance Measures 

These measures measure the effectiveness of the server. Examples include: 

a. Service time the faster the service time, it is the better. 

B. Server downtime if few is better. 

C. The rate of leaving customers from the server if large is better. 

 

Sultan [35] calculates some of the following criteria for the waiting queue system:  

1. Average customer waiting time per row. The average time between joining a customer's grade and joining the service 

is the following: 

 

 

                                                Total customer waiting times row           (1.6.1) 

                                             The total number of customers in row 

 

2. Average customer waiting time for the system. The average time between client joining the system and completing the 

service is the following: 

 

                                 

        The average number of customers by grade is represented in the following relationship: 

                                  Total customer waiting times in the system                         (1.6.2) 

                                      Total number of customers in the system 

 

                               

                                    Total number of clients waiting in row                              (1.6.3)             

                                    Total Customer time in the system 

 

4. The average number of customers in the system is represented in the following relationship: 

 

 

                                            Total number of customers waiting within the system     (1.6.4) 

                                                          Total customer time in the system      

 

5. Service Centers may be busy while a client is accessing the system. Of the following relationship: 

 

                                                  Average number of busy servers                                     (1.6.5) 

                                                 The total number of servers within the system 
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 Little's Law 

Assume that λ denotes the access rate in the unit of time, W the average waiting time in the system, and L the 

average number of clients in the system. The Little formula is a useful result in waiting queue systems and this formula 

gives the relationship between L and W as follows [8]: 

 

                                                                 (1.7.1) 
 

The relationship between the mean length of the waiting row     and the wait time    can be deduced: 

                       (1.7.2) 

  

The relationship between the average waiting time for the client in    and the average number of customers in the     

system can also be deduced: 

: 

                       (1.7.3) 

 

The significance of Little's formula is that the average waiting time can be calculated from the average grade length and 

vice versa. Thus, for example, it is enough to measure the length of the row and thus we can obtain the average waiting 

time so that: 

 (1.7.4)                
  

 
 

 

Since we are going to study the M / M / c queue model, we will address the potential distributions used for this type. 

 

Probability distributions used in the stud 
Poisson distribution 

The Poisson process of potential probability distributions is common in many applications, and the Poisson 

process of discrete probability distributions is named after Poisson. The Poisson experiment is a process that produces 

numerical values for a random variable X representing the number of times of an accident (or phenomenon) in a time 

period symbolized by the symbol t. The exponential distribution is characterized by loss of memory meaning that if we 

had a system, the time required for the holidays available to the servers does not depend on the previous holiday or the 

following in the sense that they are independent. 

 

Characteristics of the Poisson process: 

a. The probability mass function is given by relationship 

                 
       

  
                      (1.8.1) 

 

 

b. Distributing to a separate random variable takes non-negative values. 

 

c. the Poisson process is expected given from the relationship: 

 

               [ ]       (1.8.2) 

 

d. The variation of the Poisson process is given from the relationship [2]: 

               [ ]       (1.8.3) 

 The Exponential Distribution 
The exponential distribution is one of the important distributions because it has many applications, most notably 

the waiting lines. The time period between the arrival of a client and another of the service center follows the exponential 

distribution. The reason for this designation is that this distribution is based on an exponential mathematical equation and 

this equation is                              where t is the time period between the arrival of another client and λ 

Time unit. 

The exponential distribution has to do with the distribution of Poisson. If events occur following Poisson 

distribution, the period between two events follows the exponential distribution. For example, if customer access to a 

service center follows the Poisson distribution, the time between arrivals follows the exponential distribution. 

 

Characteristics of exponential distribution 

a. Continuous distribution and identification of all non-negative real numbers. 

b. B. The probability distribution function is:  
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              ∫          
 

  
                 (1.8.4) 

 

C. Expect exponential distribution given by the relationship: 

 

                      
 

  
   (1.8.5) 

D. The exponential distribution variation is given by the relationship [2]: 

                  
 

    (1.8.6) 

 
Phase Type Distribution 

PH is a probability distribution that results in the probability of one or more Poisson operations, a distribution 

that can generate random variables for time. Markov is able to achieve a Markov property for each phase. All random 

variables generated by this distribution are positive values. 

 

If the distribution of PH is one phase, it can be considered an exponential distribution, but if the distribution is 

more than one stage, it can be considered a generalization of the Erling process. 

 

Since we will study the multi-server wait queues with holidays, the holiday time follows PH distribution and 

this distribution was chosen because it is a mixture of continuous and intermittent distribution [9]. 

      

Below is the distribution of PH of grade m 

Is a Markovian process with a number of (m + 1) case, which has the generation matrix as follows: 

  *   

  
+ 

Where: 

 T is a square matrix of m, denoted by elements                 Check: 

1.       for each values k m  (where Tkk is the main diameter element). 

2.       for each values k l  These values give transfer rates from case k to case l. 

  T
0 is a     column vector that gives rates of transition to absorbent cases (absorbing states), those cases that 

cannot be transferred to any other case 

 As long as Q is the smallest generator of the transition potential (we will recognize it in Part 3), where 0 is the 

zero vector and e is its vector. 

 Vacation Time is always defined. 

The following is an example of PH class 2 distribution, the following is the distribution:  

 
Fig-4: PH distribution of rank 2 

 
The previous figure describes the vacations for our servers, where m = 2, ie, the number of cases, the number of 

cases 3, the transmission and the case of one, the system takes a holiday as long as it moves between cases 1, 2, and once 

it moves to the pipette with the possibility of    it returns to service and when the server leaves The server switches to 

one of the two cases 1 or 2 with the probability of  1   ، 2respectively, which means that the server is in a vacation state 

[10, 11]. 

 

State 1 State 2 State 
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Queueing Previous Studies of the Systems 
Many researchers have analyzed multi-server wait queues (multi-server) with vacations. 

Levi et al. [12] studies queues System from the kind of with M/M/C with vacation. The aim of this study is to 

analyze the M / M / C waiting queue system where it is assumed that the times between arrival and service times follow 

the exponential distribution and the number of service operators C and the principle of service is in order of arrival 

(FIFO) and the system and source power is unlimited. Vacation times follow exponential distribution. The researchers 

obtained the distribution of the number of servers occupied and the expected number of customers in the system. 

 

Fischer [13] also applied the function of the generated function. This study aimed to obtain the efficiency 

measures of a multi-channel control system and gave an analysis of the state of the system in stability mode.  

 

Neuts [9] developed an analytical matrix (MAM) method that provides a powerful and effective tool for 

studying complex random systems. 

 

Gross and Miller [14] used both random and random variables for computational analysis of Markov's 

operations in both sporadic and continuous cases. The researchers aimed to obtain efficiency measures for some grade 

systems. The researchers calculated the server occupancy times and the average number of events occurring in the system 

During specific time periods as they discussed many of the applied random processes. 

 

Because of the complexity of multi-server holiday systems, birth and death are treated as inappropriate or 

inappropriate. The analytical matrix method was developed in the 1980s and was more suitable for analysis of the multi-

holiday system, which can be described as quasi-birth-and-death-process (QBD) 

 

Vinod [15] was the first to use the QBD process to study the exponential holiday M / M / C column and 

suggested using the numerical method to find constant distributions of row length and waiting time using the analytical 

matrix method. 

 

Igaki [16] studied the M / M / 2 queue system, This study aims to analyze the waiting queue of type M / M / 2, 

where it was assumed that the times between arrival and service times follow the exponential distribution and the number 

of service providers and allowed only one server to take the holiday. The researcher explained the characteristics of 

analysis of random systems and concluded the efficiency and effectiveness of measurement and performance when there 

are busy servers. 

 

Tian and Zhang [17] studied the M / M / C waiting line; it aimed at finding a clear algebraic expression of the 

relative rate matrix. The researchers obtained the longitudinal distribution of queues and the waiting time in the various 

holiday waiting systems. They established the characteristics of the analysis of the multi-server conditional random 

systems for both line length and waiting time and it resembles the Random systems of single-server non-conditional 

time-out. 

 

Chaudhry [18] studied the M / G / 1 model. The researcher's goal was to study the model taking into account the 

holiday times of the service providers following the general distribution and the arrival time of payments followed by the 

exponential distribution and the service provider was only one. 

 

The study of the researcher in 2003 was based on an analysis of the same model under the individual holiday 

policy, in which the service provider takes one holiday between two consecutive working periods. The potential 

distribution of the customers is queued at various points and in the case of stability. 

 

Madan et al. [19] [M & M / 2] conducted the study of the waiting line of M / M / 2 aimed at analyzing the model 

of vacation  servers Bernoulli plan and a single vacation, and researchers have been able to generate stable state functions 

of the system size of the different state of servers. 

 

Ke J.C [20] studied the policy of N for the M / G / 1 waiting line model, where the service-based employee is 

disconnected from work and takes a consecutive break when the number of clients is less than N and if the number of 

customers reaches N, In the service delivery and also some breakdowns and repair of the service-based periods of service 

The researcher analyzed this model and measured the total cost expected to perform the service and got better and less 

expensive. 

 

Wang [21] studied the M / G / 1 waiting row model where the service time is followed by a general distribution. 

Through this model, the customer service is essential and the service is optional. The researcher has obtained some 

measures of efficiency in the transition situation and also in the case of stability. 
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Wang et al. [22] has studied the M / G / 1 waiting line model and has taken care to remove the service provider 

when it has a temporary disability to serve all clients in each policy. The researchers used the available energy theory and 

reached a rough equation for distribution Potential customers in the system are in stable condition. 

 

Kawanishi [23] conducted a study entiteled the M / M / C queue patiently or patiently; this study aimed 

analyzing the queuing models of the communications center of any multi-server system in a practical way, so that each 

server can go to one holiday. It is assumed that the access numbers follow Poisson distribution and that the times of 

service and holiday follow the exponential distribution. It was also assumed that the client may leave the system due to 

impatience and that the clients' patience times are independent and has the same potential distribution. The QBD process 

was used to derive the appropriate waiting row model for this case. The case of forcing PH distribution as a basic 

distribution of customer impatience is not appropriate, as it cannot keep pace with the growth of the size of matrices that 

depend on different levels, while proving that the imposition of the case of those who abstained from service and finally 

left before the termination of the case of practical calculation to determine the efficiency of the system. 

 

In this study, we will analyze the multi-server M / M / c waiting queues with holidays. We describe the multi-

server wait queue system, how customers access service centers and then how to leave the system immediately after 

receiving this service. In the systems under study, the servers or the server take a holiday independently of each other in 

the case of the holiday inactivity and this holiday may be multiple or single or have time to prepare if the holiday 

multiple, the servers repeat this holiday until the advent of a client in the system, Or servers return to the system after the 

end of the holiday even if there is no client in the system, or there is a time to set up when the first client arrives for the 

system. 

 

In the case of simultaneous holiday, the servers take a holiday together and this holiday may be multiple or 

single or have time to prepare if this holiday multiple, the servers repeat this holiday until the advent of a client in the 

system, but if the holiday alone, the servers return to the system after the end of this Holiday even if there is no client in 

the system, or there is time to set up when the first client arrives for the system. 

 

Simlution of Queueing Systems 

Sometimes, in practice, there are many complex problems that are difficult to put into mathematical models or 

mathematical models are difficult to solve analytically. In such cases, we have to search for optimal solutions and 

methods that succeed in finding such optimal approximation solutions is simulation method 

 

There are cases where simulation is recommended: 

 Difficulty obtaining data about the real problem or the high cost of obtaining such data. 

 The difficulty of constructing a mathematical formulation that can be used to find an analytical solution to the 

problem. 

 There is no direct analytical way to solve the problems in question. 

 The difficulty of verifying results in some experiments 

 

Method of Randomized Trials 

The randomized method of experimentation expresses the simulation method using the sample. These samples 

are taken from a theoretical society, where the probability distribution of the variable we are studying is determined. We 

then generate random variables representing these samples. Is a simulation of the random processes that arise in the 

system, which leads to the development of an algorithm to formulate the functions of the system studied in doing various 

work, in addition to monitoring and analysis of random processes that arise in the system studied and the preparation and 

dissemination of monitoring results [24]. 

 

Methods of Generating Random Variables 

Several methods have been designed to generate random variables, including: 

 

Linear Congruential Method 
The linear Congruential method was used by lehmer in 1951, where it presents a series of integers where we find a set of 

random numbers that follow the regular distribution  [   ]. This method is based on generating a set of numbers 

between 0 and m-1. The same sequence of random numbers when required by the following repetitive relationship: 

 

                                                                         

 

Inverse Transformation Method 
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Rx ln
1






If the probability density function      and the Inverse distribution function    ) have an inverse distribution 

function        , it is known that the Inverse function field       Period            If y is a random number in the 

period [1.0], it will be: 

                                                 (2.11.2) 

Thus, 

 

                                                              )2.11.3( 

 

where        Inverse function of      and          

 

If we want to generate random variables that follow the exponential distribution of the parameter and whose probability 

density p.d.f is given as follows: 

          
  ;0

0  ;e
 )(x,

x-





 


otherwise

x
f




 )2.11.4(  

The cumulative distribution function is: 

        0  ,   e -1 d )( )   P(X )F(
λx-

-

 


xxxfxx

x

)2.11.5) 

In order to generate random variables from exponential distribution using the reverse conversion method, we 

find the cumulative distribution function of the random variable, as in (2.11.5), and then we put R  F(x)   on the X  

field and thus the equation become:  

By taking the logarithm of the parties 

where           )1,0(~ UR
   

(2.11.6( 

and thus    

    )1,0(~1 UR  

 

 

 

 

We generate the required number of random numbers and then calculate the views of the variable [25]. 

 

(2-11-3) Acceptance Rejection Method  

The method of acceptance and rejection is used to generate random variables from different distributions. The 

basis of this method is initially based on the generation of random numbers that follow the regular distribution in a 

repetitive manner and only accept them to meet certain conditions. These conditions are designed to accept the random 

variables that follow the required distribution Generate random numbers from it. 

   
Convolution Method 

The method of Convolution is a method for variables that consist of two or more independent random variables. 

If we assume that we have X, a random variable is the sum            where              Fixed number 

constant            is called a wrap of variable m [25]. 

  

Composition Method 

This method is a direct method for generating random variables. This method is used when the function consists 

of a sum of m of probability distributions as follows: 

 
)2.11.9)        

 

 

The method is to generate a separate random variable K that follows the distribution: 

 

)2.11.10)   
 

10,(x)f)(
i

m

1i

 


ii
ppxf

nip
i

,...,2,1,i]P[K 
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Then we generate )(~ xFY
i the cumulative distribution function of the function )( xf and then put 

i
YuX )( and then calculate the value u [36]. 

 

Midsquare Method 
This method was introduced by Von-Neumann in the mid-1940s, where this method starts with an initial 

number and is then squared. The random number is then selected after excluding the fractions and then quadrature this 

number to in turn generate the second random number and so on [26]. 

  

Costant Multiplier Technique 

 In this method, two points are chosen ),(
10

XX  so that the number 
0

X  is fixed and multiplied by the number

1
X  and then exclude the fractions to get the random number 

i
R  and continue as follows: 

Assuming that 7223
1
X   and 3987

0
X   and for getting random numbers we follow the following: 

8202.0

820231820247)7981)(3987(

7981.0

798128798101)7223)(3987(

2

3201

1

2100









R

XXXV

R

XXXV

 

 

The success of this technique depends on the choice of the constant [26]. 

 

Methods Terminating Trile 

There are several criteria by which the simulation of a system under study can be terminated [27]. 

1. Determine a certain number of events e.g 100 customer service. 

2. Determine the operating time e.g ended after 3 hours on the computer i.e 3 hours simulation. 

3. According to real time such as the start of the Hajj season. 

4. Internal event within the system such as malfunction of all devices. 

5. An external event such as that the user decides to change the experiment. 

M/M/c Queue with Asynchronous Vacations 
There are two holiday mechanisms [8]: 

• Holiday service station. 

• Holiday server. 

 

Chao and Zhao [37] studied the previous classification of the holiday. The study aimed at finding the stable 

probability of the different cases. The algorithms were created to arrive at numerical solutions. Both types of analysis 

were analyzed and compared by numerical observations of both systems, below we present both types as follows: 

 

Service Station Vaction 
All servers in the station get a holiday at the same time, and this happens whenever the system is empty, and 

then all system servers leave the system for a holiday and return to the system at one time when the holiday is over. 

 
Server Vaction 

It is the second mechanism of vacation and is often found in practice, which is the most common. In this case 

each server unit is independent and can take its own holiday when the customer service is finished and can be used in any 

other secondary work. 

 

This phenomenon occurs, for example, in post offices where and when there is a window without a queue of 

customers. Here the writer goes to other types of work (sorting, distribution, etc.). 

 

Note that if c = 1, where c is the number of servers, ie, one server system, the two holiday types match, Tian el  

al. [28] study that situation. 

 

They analyzed the queue of type GI / M / 1. The objective was to study the model taking into account the 

holiday time of the service providers followed by the exponential distribution and the arrival time of the customer 

follows the general distribution and the service provider was one 
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If we compare multi-server system vacation models with single-server vacation models, we find that multi-

server vacation models are more complex and have different dynamics than single-server vacation models [8]. 

 
Policies in Multi- Server Models (Vacation) 

Here are several holiday policies for wait queue servers for many practical applications. We will review four 

different policies here [29]: 

 
A. Asynchronous All Server Vacation Policy 

The definition of Asynchronous Vacation is that all servers in the M / M / c queue must start independently and 

randomly, where the server can take the holiday when it ends up serving one of the clients with another customer 

offering the service. At the moment there are servers that provide the service for other customers or on vacation or idle 

do not work (In the case of the only vacation). 
 

This holiday may take the so-called multiple vacation as the server or servers take another vacation if there is no 

customer or clients in the queue waiting for the completion of the previous vacation, and repeat the vacation until a 

customer appears in the waiting queue within the system and symbolizes this type (Asynchronus Multiple Vacation) (AS, 

MV). 

 

In the case of single-server Vacation, the server or servers take only one Vacation when the queue is empty. 

After completing this Vacation, either the server or the server will remain idle or serve up to customers, and this code is 

marked asynchronus single vacation (AS, SV) 

 

The difference between a multiple Vacation and one Vacation is that the server or servers on multiple Vacations 

repeat the Vacation in the absence of a client or clients on the waiting queue. The only Vacation after the Vacation ends, 

the server or servers will be idle if there is no customer or clients on the queue. 

 

However, if the server or servers took time to prepare before the client or customer service, this type is called 

the asynchronous setup time format and is abbreviated as ASynchronus Setup (AS, SU). 

 

It is noted that the ASynchronus vacation is not comprehensive, as the servers take a single vacation on a regular 

basis, as long as the waiting row is zero, and the concept of the ASynchronus vacation is not the same as the concept of 

vacation server 

 

B. Synchronous All-Server Vacation Policy 
First, I will refer to the definition of a recursive vacation. All the servers in the M / M / C server queue start 

simultaneously at the same time, for example in the multi-user terminal system, where the super computer is shut down 

or weak Power supply can be considered a synchronized vacation. 

 

This vacation may take the so-called multi- vacation, where all servers take another vacation together if the 

system is not busy for the completion of the previous vacation, and the vacation process is repeated until the customer 

appears in the waiting queue within the system where you resume customer service and continue servers c in the 

customer service, And is synonymous with Multiple Synchronization (SY, MV). 

 

In the case of unicast servers, all c-servers take only one vacation and together when the system becomes empty 

once the last customer service is completed in the system. After completing this vacation either the servers will remain 

idle or serve up from the customers, this type is Synchronous Single Vacation (SY, SV).    

 

Another type of synchronous vacancy is that the synchronous form is timed and synchronized Setup (SY, SU) 

and is called the synchronous setup time. In such a system, the system becomes empty once the last client service is 

completed in the system. In this case, All servers are out of service or out of business. When one or more clients arrive, c 

servers are going to open or run and there is time to set up before starting to work in the customer or customer service. 

 

It is noted that the vacation is inclusive, meaning that all servers are included in the vacation. 

 

The concept of synchronous vacation is like the concept of service station vacation. 

 

C. Some-Server Vacation Policy 

Is the number of servers allowed to take the vacation. The maximum number of servers on the vacation should 

not exceed the number d where d≤c>0 where c is the number of servers. For example, doctors in the hospital must 
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specify the number of doctors allowed to take the vacation. Doctors take the vacation so there is no harm to patients so 

we need to determine the number of doctors who take the vacation. 

  

D. Threshold Vacation Policy 
All servers start a vacation at the moment of service completion when the system becomes busy and the servers 

continue to take the concurrent holiday until the number of customers in the system is at least N, ie the system starts to 

serve customers when the number of customers in the system N number where N = 1,2, .... 

 

To be able to identify vacation waiting systems, we need to explain almost the process of birth and death. 

 

 Quasi-Birth-and-Death Process 
Most studies of multi-server holiday models have focused on M / M / C systems, which use Markov series for 

queues, the most commonly used mathematical tool that changes in time. The use of Markov's method is the advantage 

of this method in terms of ease of use and simplicity. Since the multi-server system serving a number of customers is a 

system in which the number of clients changes in time, Markov's method is ideal for designing a system that 

demonstrates how the system handles customers. 

 

The process of Quasi birth and death (QBD) is similar to the process of birth and death described previously. 

The difference between them is that the process of birth and death in one dimension, so it is one-dimensional, while 

Quasi birth and death is two-dimensional. In the process of birth and death, this dimension represents the number of 

clients in the Quasi birth and death in addition to the number of customers there is a second dimension which is the case 

of servers, and we need to add this dimension until the system is described. 

 

The infinitesimal generator (the smallest matrix with all probability) is a QBD represented by a three-tiered 

matrix whose elements are matrices within the original matrix. 

 

The process {X(t), J(t),t≥0} can be defined on the vacuum of the given         through: 

 

 

 

 

 

Where k stands for the number of clients, and j represents the state of the server in terms of the presence of a 

holiday or its absence and m represents the maximum case. 

 

The transition to k is limited only to the adjacent cases, but is not restricted in the case of case j, and in more 

detail where the system is in the case ( , )k j   where Ω represents the state space, it can move to one of the 

following situations: 

 ( {k, j   ( ، ) k-1, j   ( ، ) k+1, j  } )    

 

While you cannot move to the position with the following shape: 

 ( , ) : 2k n j n    . 

 

When the QBD transition method does not depend on k, it is called a homogenous QBD process or a semi-

spontaneous process of birth and death. 

 

If the transition process is dependent on k, we call it a heterogeneous QBD process, or a keratogenesis and k-

dependent process. 

 

The operation{X(t),J(t),t≥0} is called QBD if the finite generator of this process is given 

 

Ω ={(k , j) :  k=0,1,2,3,…. ,  j=1,2,3,…m} 
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As all the partial arrays of matrix Q are a square matrix of class c where c is the total number of servers [30, 31]. 
 

We note that the matrix    where     represents a matrix in which the arrival and departure rates and the 

country elements in this matrix are negative numbers and the non-Qatari elements are positive numbers. 

 

The matrix    where     represents a matrix with only the departure rates and all its elements positive 

numbers. 

 

The    matrix represents a matrix with only access rates and all its elements positive numbers. 

 

The matrix Q is required to be 

1,0)()(
00

 keCABeCA
kkk  

Where e is the vector of all its elements equals the correct one [Neuts (1981) 

 
The group {0,1}, ..., (0, c)} expresses the absence of clients, called boundary levels 

   

The group{(k,1),…..,(k,c)} expresses the existence of a number of clients, k where k = 1,2,3 ..., called non-boundary 

levels, called          border matrices. 

 

In some applications, if the micro-generator (infinite) matrices are not defined and independent and do not 

depend on k, the matrix Q is written on the image [29]: 
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where  

   Matrix of rank        

   Matrix of rank     

   Matrix of rank      

m1 represents the number of cases at the level k=1 

  

Matrix               can be explained by the following QBD model:  

 
Fig-(3-1): shows the status transition diagram of the M / M / 1 waiting queue model 

 

Figure (3-1) Example of Operation (QBD )In this case, the matrix Q is on the image: 

 

(3.3.1) 

(3.3.2) 
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where 

                  (
       

       
* 

 

   (
 

 
)            (

   

  
) 

 

                        ( 
  

  
) 

 

The following can be analyzed (QBD) in standard or legal status (canonical form): 

 

(QBD) is a positive recurrence process, that is, the same state can be accessed more than once through a process 

that is controlled by Markov chains. The number of system accessers follows Poisson distribution at λ, and the number of 

servers in the system also follows the distribution and the time between each successive access follows the exponential 

distribution at λ. The wait time in the queue follows the exponential distribution with an average of μt, and the 

probability of moving from case i to state j in n is a step given by the relationship 

( )

0
( / )

n

ij n
X j X i      ,                     

 

Where  represents case   and is a stand-alone random variable,    represents case  , which is a stand-alone random 

variable. 

 

If     represents the number of clients at the moment   and      represents the number of servers occupied. 

X = t = = X and that: (Jt) = J (t) = J Therefore the stability probabilities can be defined as follows: 

Assume that         
   

   
 and         

   

   
 , so Stability probabilities can be defined as follows: 

 

                  
   

                

 

Where     is the probability of being in case j of the previous case I and                , is the row i in the transition 

matrix where         is the vacuum of cases   [9]. 

 

Below we will present some of the special theories of the process (QBD) without proof [29]: 

 

Theory 1 

The irreducible birth and death (QBD) is recognized as where any case can be accessed from any other case that is a 

recurring positive means that we can reach the same situation more than once during Markov's process, if and only if: 

 

1. Array equation: R
2
B+ RA + C = 0 has the least non-negative (R or R), the matrix rate and the A, B and C 

matrices previously mentioned (3.3.2). 

2. The set of homogeneous linear equations on the image has a positive solution 0
 and satisfies the normal 

condition:
 0 0 1

( ) 0A R B             
, where e is the vector of all its elements equal to the correct one. 

3. Stable probability distribution can be expressed in a sequence of geometric matrices As follows:     
                           

 

            Thus, the final formula is as follows:       
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In many practical applications, the properties and variables defined in the QBD process are used in the standard 

image (QBD) in the non-canonical image called QBD with complex boundary behavior Which does not depend on the 

fact that the     level is only the boundary, but the value   changes and takes the values    = 0,1,2, ... c, so that the 

limits become variable levels and we note the following: 

 

The infinite probability generation matrix Q has the same pattern as the previous: 
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   Matrix of rank       

 

B1 Non-square matrix      

 

C0 Non-square matrix      

 

Where   represents the number of cases at the level k = 1 

 

The following is the theory of non-standard image: 

 

Theory 2 

 (QBD) is irreducible (Positive recurrent) if and only if: 

1. Equation of the following matrices: R
2
B + RA + C = 0 has the least non-negative solution R, since all matrices 

in the previous equation were defined by theory (3-3-1). 

2. The homogeneous linear equations on the image 0 1
( , ) [ ] 0B R    have a positive solution, where: 

 [ ]  

 

[
    

      
]
             

 Square matrix 

 

0 1
( , )   

Achieves the normal condition
                 

 

3. Stable probability distribution can be expressed in a sequence of geometric matrices where: 

 

                              

 

The final version is therefore as follows:       
                        

 

4. The probabilistic distribution of the previous case    where     is called the modified matrix distribution. 

 

In this case, the probability generation matrix Q differs from that in the case of the standard process only in the 

probability of transition from the border situations. 

 

When parsing multiple server wait queues with M / M / c vacation we will use QBD in a more complex and variable 

way. There is no single boundary level    = 0, but the limits are multiple to  = 1,2, 3, … , c, and those levels contain a 

different number of cases, and the number of cases at level   will be denoted by    where:          

 

 

The infinite micro generator gives the image: 
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(3.3.3) 

 

 

 

 

 

 

 

 

 

Where 

   Matrix of rank     ,         

    Matrix of rank        ,         

   Matrix of rank       ,          

     Matrix of rank        

   Matrix of rank        

A,B,C  Square matrices of rank     

   

The matrix Q in (3.3 3) can be divided as follows: 

 

 

(3.3.4)   
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where: 

    Non - square matrix of rank      

   Non - square matrix of rank     

According to the above, the previous theory can be reformulated as follows: 

 

Theory 3 

Non-reducing QBD be positive and repeated if and only if: 

 

1. Equation of the following matrices: R
2
 B + RA + C = 0 has the least non-negative solution R. 

2. Homogeneous linear equations is on the image 
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It has a positive solution (           ), where: 

0 0

1 1 1

2 2 2

2 2 2

1 1

C C C

C C

A C

B A C

B A C

B A C

B A

  

 

 

 

 

 

 


 

 

 

 

 
 

0 0

1 1 1

1 1 1C C C

C

A C

B A C

B A C
Q

B A C

B A C

  

 

 

 

 

 

 


 

 

 

 

 

  

http://saspjournals.com/sjpms


 

Shikhah Ibrahim Abdullah ALothman.; Sch. J. Phys. Math. Stat., 2018; Vol-5; Issue-1 (Jan-Feb); pp-1-35 

Available Online:  http://saspjournals.com/sjpms   19 

 































































RBA

C

B

AB

CAB

CAB

CA

RB

C

C

CC 111

222

111

00

][



 

 

The positive solution (            ) satisfies the standard requirement, where 

∑       [   ]       

   

   

 

3. In addition, the stable probability distribution of the M / M / c queues model with holidays can be expressed 

mathematically as a geometric matrix expression as follows: 

 

      
        

 
Conditional Stochastic Decomposition 
Assuming that the two-dimensional non-negative vector (X, J) has a common probability distribution: 

                         

 

Assuming that:                         

 

Also assuming that: (X, J) follows the geometric matrix distribution (a matrix of matrices follows the geometric 

distribution), and there is a non-negative matrix of grade c + 1 and therefore: 

                                    

 

                            When k = 0,                   

 

If R is a top trigonometric matrix (all elements below the main diameter are equal to zero) it can be divided as follows:

 

0

H
R

r

 
  

       

where H is a square matrix, cxc, and η is a cx1 column vector, and r is a real number. 

We know the following conditional random variable        |     , that is,      is a random variable equal to X 

provided that    is equal to c. 

 

The variable X
(c) is the sum of two independent random variables: X

(c)
=X0 + Xd 

Where X0 follows the engineering distribution with parameter r, and Xd follows the distribution of PH of class c and has 

the function generating the following probabilities: 

 

      
 

 
  

 
  ( 

 
  

 
    

   
)           

where 

    (3.4.1)     
     

 

   

If R is a trigonometric matrix,   [
  
  

] (all elements above the main diameter are zero), where H is a square matrix 

     and ζ is a cx1 vector and r is a real number located in category (0 , 1   ( . 

 

Thus we know the conditional random variable X
(c) as follows: 

        |     , that is,      is a random variable equal to X provided that   Equals 0. 

The variable     is the sum of two independent random variables: X
(c)

=X0 + Xd 

 

Where X0 follows the engineering distribution with parameter r, and Xd follows the distribution of PH of class c and has 

the function generating the following probabilities: 

1

0 1 1
( , , . . . ) ( )

c c
I H     




  
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where 

      
 

 
{ 

 
  ( 

 
  

 
    

   
)         } 

 [32]                    (3.4.2)    

 

We will also discuss the different models of the non-stop waiting queue systems, which include: 

 Multiple vacation models. 

  Single vacation models and setup time 

 (Multiple Vacation Model) 
 

In this case, we find that in a multi-service system M / M / c at the λ access rate and μ service rate, any server 

starts the vacation once a customer has finished serving and no client is waiting in the system. 

 

At the end of the vacation for a server, if there is no client waiting in the queue, the server starts on another 

vacation, but if there are clients waiting in the queue, the server starts to serve them immediately. 

 

Since servers start their own vacations independently of each other, this system is called the inertial vacation 

model and is symbolized by the symbol M / M / c (AS, MV). 

We will assume the following: 

 Vacation time follows 

 Non-square matrix                    ,  ( 1) *c c   

     Non-square matrix     (  

    
)  , * ( 1)c c   

 Ak   square matrix of rank         ,  

 

 Square matrix of rank known as the following: 

 

0

1

1

( 1)

( 1)

( )

k

k

h c

h c

A

h c k

k





 



 

 
 

 

 

 
   

 
  

 

where hk Is a function in λ  ،µ  ،θ defined as follows 

  

 

hk= hk(λ, µ, θ)= λ + k µ+ (c – k ) θ, 0 k c   
 

 A0 = -λ  ،
1

0
B



 
  

 

  ،  0
0C    

 B k  Non - square matrix of rank        ,           
 

( 1 )

0

0

2

( 1)

0

k

k k

B

k

k








 

 

 

 

 
  

 

 

 

 

 

1

0 1 1
( , , ... )( )

c c
I H      




  

0 1k c  
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 C k Non - square matrix of rank             ,          
 

 

( 1 ) ( 2 )

0
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 B A square diagonal matrix of the rank c + 1 

( 1 ) ( 1 )

0

( 0 , , 2 , .. . ) 2

c c

B d iag c

c



   


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 

 

 
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 

 
 
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 C is a square diagonal matrix of c + 1 

( 1 ) ( 1 )c c

C I





 


  

 

 

 

  

 

 
 
 

 

 

(Levy and Yechiali [12], Vinod [15], Tian and Li [33]) 

 

The analysis of the system of any queue to access the system stability condition and the condition of the system 

stability in the model used is that the access rate is lower than the departure rate. This is achieved if: c   , the 

split of the two extremes on cμ results in:
 

1c    stability condition, R is the solution of the equation of 

the famous matrices: 

 

B + RA + C = 0    , and in order to get to them the following theories must be used [29]: 
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Theory 1 

If 1c   , the following quadratic equation has two different solutions: 

     [           ]            , and the two solutions 
*

k kr r achieve the following 

condition:
 

*
k k0 r 1, r 1    

 

Theory 2 

If ρ <1 is the least negative solution R (where R is defined as in theory 1 is given by the following square (c+1) 

matrix: 

 

  

 

0 0 1 0 c

1 1c

c

r r r

r r
R

r

 

 

 


 

 
 
 

(3.5.2) 

where  

00 r 1( c )
  

  
 ,    

                 are roots that were previously defined in Theory 1. 

 

 rc =   < 1  .  

 Non- Diameter elements (ie, not located on the main country) achieve the following frequency relationship: 

 

(3.5.3)            ∑                          [           ]     
 
    

A relationship that gives the value of the element rkj in terms of the next element in the same column directly rk(j+1) which 

implies that j> k, so that: 

 

                 

It is clear that the calculation of rkk=  rk values can be computed directly from the square root value in theory (3.5.1) as 

follows: 

   [            √                  ]  [   ]⁄  

 

However, the calculation of non- Diameter values rkj is very difficult because it is calculated sequentially by calculating 

its previous values and the following figure (3-2) shows an example of the case of c = 4: 

0 0 1 0 2 0 3 0 4

1 1 2 1 3 1 4

2 2 3 2 4

3 3 4

4

r r r r r

r r r r

r r r

r r

r

   

   

  

  

 

 





 

Fig-(3-2): Sequential calculation of the non-national values of matrix R in the case of c = 4 
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After the previously mentioned, we assume that: 

 

The stable end of the random operation:   ( ), ( ) , 0L t J t t


  specified to the system M/M/c (AS, MV ) is (Lv, 

J) when t becomes ∞ .  

The stable probability of transition from case k to state j jis defined as follows: 

                   
   

                          

where Ω is Vacuum cases 

Below is the vector form of the transition probability: 

 

                                               

 

and in case k > c All probability vectors are equal: 

                   

 

The following theory illustrates the serial relationship of probability vectors: 

 

Theory 3 

If ρ <1, stable probability vectors investigate the relationship: 

             
  

where 

  
               

 
         

 

  
               

 
      

it is the relation Which gives the vector πk+1 in vector πk. 

 

For the comparison of M / M / c (AS, MV) and traditional M / M / c we do: 

 

First, we identify the probability of existing a number of clients in the system M / M / c (AS, MV) (Lv - c) provided that 

all the servers are busy and in the form: 

 

 
( c )
v vL P L c / J c  

 
 

Second, we know βk: is the positive solution to equation arrays: 

 (3.5.4) 
         0 1 c( , ,..., ) B[ R ] 0     

 

Where matrix B [R] is a square matrix of rank 

1
(c 1)(c 2 )

2
  on the image 

 

 

  
 

 

 

 

 

(3.5.5) 

 

 

 

 

 

 

Third, we rephrase βc, B [R] as follows: 
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c c 0 c 1 c c c c c 0 c 1 c ( c 1 )( , ,. . . , ) ( , ) , ( , ,. . . , )


            
 

 

(3.5.6)                      (
 

  
*    (

  

 

    

   

  

 

    

 
 
 
 

   

       

       

 
    

)

   

     (

   
   

 
       

) 

The following theories illustrate the relationship between M / M / c (AS, MV) and the traditional system M / M / c: 

 

Theory 4 

If ρ <1, the segment 
( c )
vL can be divided into two parts:

 

( c ) ( c )
v 0 dL L L  , where: 

( c )
0L

 Is the random variable that corresponds to the corresponding variable in M / M / c, the number of clients waiting in 

queue, provided that all servers are busy and follows the engineering distribution. 

 

and Ld  is The length of the extra line resulting from the vacation, follows the PH distribution of the class
 c: 

 

where 

                             {

 

 
                 

 

 
          

               ( 3.5.7) 

 

where 

               
 

Sengupta [32] has demonstrated that the distribution of the private PH in Ld must be a sporadic PH distribution 

of class c and that it has derived its distribution function. 

It was also concluded that predicting the conditional random variable 
( c )
vL  

( c ) 2
v

1 1
E[ L ] ( I H )

1


    
  

 

 

We also define the conditional waiting time:    
   

    |    . The following is the theory of conditional waiting 

time: 

 

Theory 5 

If ρ <1, the segment
( c )

vW  can be divided into two parts:
 

( c ) ( c )
v 0 dW W W  , where: 

( c )
0W

  Is the random variable that corresponds to the corresponding variable in M / M / c Any waiting time in the queue 

without vacation provided that all servers are busy, which follows the exponential distribution with the parameter cμ (1-

ρ).
 

Wd Is the delay time of the return of the vacation and follows the distribution of exponential matrices where: 

 (3.5.8)

   

   
1

d

1
P W x 1 . e x p c (I H )x (I H )        


 

It was also possible to infer the expectation of conditional waiting time: 

( c ) 2 ( c )
v v

1 1 1
E[ W ] (I H ) E[ L ]

c (1 ) c c


     
    

 

(Sengupta [32]( 
 

(Single Vacation and Setup Time Models)  
Assuming that we are studying the M / M / c (AS, SV) system model as a single vacation: 

In this system, every server gets a single vacation with a fixed time at the moment it is terminated for the service of a 

customer, and then returns to the service of a customer if someone is in the queue, or remains idle. 

Thus there are only three cases per server: 

1. To serve a customer. 
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2. Have a vacation. 

3. To be without work. 

 
M/M/c Queue with Synchronous Vacations 

We have mentioned earlier that there are multiple vacation policies for queue servers that are suitable for many 

applications and we have introduced one of these policies, which is the holiday policy of all the servers that are not 

synchronized, and here we will be interested in studying another policy which is the vacation policy of all servers 

synchronized whether this holiday multiple or single or have time Prepare and then build a system to evaluate the 

performance of this type of recess. 

 
M/M/c Queue with Synchronous Vacations 

 In this section we will learn about the different models of intercontinental waiting line systems that include: 

• Multiple Vacation model 

• Single Vacation models and setup time 

 

Multiple Vacation model 
The M / M / c multi-server queue system has the λ access rate, the μ service rate, the FIFO service provisioning 

system, and the c server system. The stability requirement for this system is [40]: 

 
In the system M / M / c (SY, MV): 

The number of customers at the moment t in this system is indicated by ( )
v

L t  

 

Then we identify J(t): the function that indicates the existence of a vacation for servers or lack thereof and is defined as 

follows: 

     {
                                                               
                                                     

 

 

 Because vacations are synchronized, at least one server is busy during the non-vacation period, and some servers 

may not be working. 

 

In the single synchronous holiday system, which is code M / M / c (SY, SV), all unoccupied servers take a single 

vacation together at the same time as the completion of the service for all customers, at which time the system becomes 

empty and at the end of the vacation either Servers remain idle, or serve customers if a customer (or clients) appears to 

request service from the system [34]. (Computational Analysis of Synchronous Vacations Systems)  

 

Analysis of Synchronous Vacations Systems with simultaneous vacations based on: 

1- Structural structure of the system under study. 

2. System operation policies. 

 

(System Structure) 
System Structure is the basic rules on which the system is based: 

1. The system consists of a set of servers and their number s where s = 1,2 .... 

2. The system allows an infinite number of clients with i where i = 1,2 .... 

3. Customers arrive at the system in a random way. 

4. Queue capacity is not finished 

5. Customers queue up to order service from multiple stations or service centers. 

6. Service time is random. 

7. Generate access times for customers from exponential distribution at λ. 

8. Generation of service times according to exponential distribution at  
 
 

9. Randomly generate vacation times from exponential distribution at a rate of 
 
  

 

Operating Policies 

In order to run this system, we are working on a model to simulate this system and running this system through the 

following steps: 

1. Assume that the number of customers requesting service is i where i = 1,2 ... and to generate the arrival time for 

customers from exponential distribution at λ according to Banks [27]. 

 

AT(i+1)=AT(i)+IAT(i),      i=1,2,….                       (4.3.1)   
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Where AT(i) is the time of client access i , IAT(i) time between client i and i+1 AT(i+1)   client arrival time.   

2. Service time varies from one customer to another depending on the status of the service provider where the 

customer can receive the service directly if the service provider is idle or waiting in line until the service 

provider finishes providing service to the previous customer. 

3. The service principle that will be used from first comes first served (FIFO). 

4. Randomly generate vacation times from exponential distribution at a rate of 
 
  

5. Customers are serviced from customer 1 to client S where S is the number of servers on the system without 

waiting to assume that the system receives the first S customer without giving a holiday to the system when the 

system starts 

6. As for the rest of the customer from customer S + 1 to the last client can indicate the timing of the completion of 

the provision of the server i for the client to whom this server provides the required service With Dts (i) where i 

= 1,2, ... S. Therefore, we have a vector of S elements, DTs, which represents each of its elements. When each S 

server can provide the service to a new customer after its end to provide its current customer service. 

 

RESULTS AND DISCUSSION 
This section shows the results and evaluation of the performance of the wait-and-wait system. We have sought 

to obtain the best results for the calculation of performance measures. We have worked to change the λ access rate, which 

varies from 5client to 20 client., 10 The number of servers c takes values. We also imposed different values for exit rates 

that take μ = 1,3,5,10 and the number of servers c takes values 5,4,3,2,1c
 

 

We designed a method to calculate performance metrics for the previous queue system defined as the average 

waiting time in the row and the average grade length. We changed the different parameters of access rates, service rates, 

and number of servers to achieve the best results and try to improve and develop the system, making it easier for servers 

to perform their service To obtain the appropriate vacations for them without being affected by the customer service and 

the system's interest is disrupted and we obtained the following results: 

 

Standard 1: Average waiting time in row 

We found that the average waiting time in the row was clearly affected by the number of servers, the λ access 

rate and the service rate μ, which resulted in a change in the value of



   , where we found the following: 

A. The higher the access rate of λ for the same number of servers, the average waiting time in the class is clearly 

increased, ie, there is a direct correlation between them. The increase in one of them results in an increase in the other 

and we can observe this increase from Table (1). 

 

B. The higher the rate of service μ for the same value of the access rate and the number of servers itself, the lower the 

waiting time in the row, ie, there is an inverse relationship between them and we notice this decrease from Table (1). 

 

C. As for the number of servers, the greater the number of servers and the values of both the access and service rates, the 

lower the average waiting time in the row, and we notice this decrease from Table (1). 

 

 In general, the lower the value of ρ, the more stable the system, and the values converge to a fixed value, 

which shows the average waiting time in the row as in the following table: 

http://saspjournals.com/sjpms


 

Shikhah Ibrahim Abdullah ALothman.; Sch. J. Phys. Math. Stat., 2018; Vol-5; Issue-1 (Jan-Feb); pp-1-35 

Available Online:  http://saspjournals.com/sjpms   27 

 

Table-1: Average waiting time in row 
 Λ 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

μ = 

1 

c = 1 1.979 16.668 27.293 39.791 46.079 51.876 56.372 60.859 63.871 66.629 69.235 71.559 73.119 74.679 76.239 77.799 

ρ 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 20.00 

c = 2 2.703 17.172 28.647 36.806 44.166 50.591 55.080 58.855 62.809 65.609 67.762 69.872 71.492 73.112 74.732 76.352 

ρ 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00 6.50 7.00 7.50 8.00 8.50 9.00 9.50 10.00 

c = 3 4.687 16.615 27.162 35.529 42.149 48.020 52.708 56.146 59.504 62.068 64.598 66.320 67.840 69.360 70.880 72.400 

ρ 1.67 2.00 2.33 2.67 3.00 3.33 3.67 4.00 4.33 4.67 5.00 5.33 5.67 6.00 6.33 6.67 

c = 4 1.354 13.443 25.868 34.636 41.198 46.841 51.562 55.210 58.460 61.401 63.641 65.632 67.212 68.792 70.372 71.952 

ρ 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.00 

c = 5 1.667 13.019 21.759 30.499 38.126 44.271 48.299 52.881 55.815 58.623 61.271 63.313 64.833 66.353 67.873 69.393 

ρ 1.00 1.20 1.40 1.60 1.80 2.00 2.20 2.40 2.60 2.80 3.00 3.20 3.40 3.60 3.80 4.00 

μ = 

3 

c = 1 0.0217 0.0367 0.0517 0.0683 0.0993 0.1191 0.1413 0.1887 0.3379 0.6087 1.8043 2.9276 4.3261 5.7826 7.3033 8.5000 

ρ 1.67 2.00 2.33 2.67 3.00 3.33 3.67 4.00 4.33 4.67 5.00 5.33 5.67 6.00 6.33 6.67 

c = 2 0.0217 0.0367 0.0517 0.0679 0.0949 0.1222 0.1569 0.2039 0.3265 0.5127 1.0990 2.3261 4.1485 5.8850 7.2062 8.3913 

ρ 0.83 1.00 1.17 1.33 1.50 1.67 1.83 2.00 2.17 2.33 2.50 2.67 2.83 3.00 3.17 3.33 

c = 3 0.0217 0.0337 0.0457 0.0577 0.0745 0.1001 0.1249 0.1923 0.2488 0.4596 0.7608 2.2826 4.1760 5.7173 6.9097 8.0000 

ρ 0.56 0.67 0.78 0.89 1.00 1.11 1.22 1.33 1.44 1.56 1.67 1.78 1.89 2.00 2.11 2.22 

c = 4 0.0217 0.0327 0.0437 0.0547 0.0661 0.0811 0.0989 0.1222 0.1600 0.2692 0.4565 1.4352 3.2336 4.8286 6.3239 7.3696 

ρ 0.42 0.50 0.58 0.67 0.75 0.83 0.92 1.00 1.08 1.17 1.25 1.33 1.42 1.50 1.58 1.67 

c = 5 0.0217 0.0367 0.0517 0.0681 0.0971 0.1249 0.1463 0.1691 0.2055 0.3046 0.5459 1.0216 2.4132 4.1304 5.3479 6.3696 

ρ 0.33 0.40 0.47 0.53 0.60 0.67 0.73 0.80 0.87 0.93 1.00 1.07 1.13 1.20 1.27 1.33 

μ = 

5 

c = 1 0.000678 0.001468 0.002258 0.003048 0.003838 0.005083 0.008153 0.010978 0.015194 0.019720 0.025424 0.035144 0.046594 0.061040 0.081040 0.102500 

ρ 1.00 1.20 1.40 1.60 1.80 2.00 2.20 2.40 2.60 2.80 3.00 3.20 3.40 3.60 3.80 4.00 

c = 2 0.000000 0.000660 0.001020 0.001556 0.002136 0.003373 0.004683 0.006623 0.008833 0.012513 0.016949 0.025596 0.035206 0.052916 0.073750 0.096669 

ρ 0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90 2.00 

c = 3 0.000000 0.000660 0.001450 0.002308 0.003094 0.004274 0.006453 0.008743 0.012071 0.014941 0.020521 0.027464 0.038394 0.050542 0.067082 0.086252 

ρ 0.33 0.40 0.47 0.53 0.60 0.67 0.73 0.80 0.87 0.93 1.00 1.07 1.13 1.20 1.27 1.33 

c = 4 0.000000 0.000660 0.001427 0.002285 0.003195 0.004765 0.007709 0.010604 0.014124 0.018937 0.023857 0.028777 0.034824 0.045133 0.051923 0.063123 

ρ 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 

c = 5 0.000000 0.000260 0.000535 0.001277 0.002307 0.004201 0.005552 0.007325 0.010112 0.013662 0.019096 0.022857 0.030435 0.038655 0.047772 0.058982 

Ρ 0.20 0.24 0.28 0.32 0.36 0.40 0.44 0.48 0.52 0.56 0.60 0.64 0.68 0.72 0.76 0.80 

μ = 

10 

c = 1 
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88 

0.0005510

1 
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23 
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93 
0.00104689 
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83 

0.001403

73 

0.0017142

1 

0.002046

55 

0.002395

75 

ρ 0.500 0.600 0.700 0.800 0.900 1.000 1.100 1.200 1.300 1.400 1.500 1.600 1.700 1.800 1.900 2.000 

c = 2 
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00 
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61 

0.000514

16 
0.00065622 

0.000872

89 

0.001096

69 

0.0013517

2 

0.001782

21 

0.002278

61 

ρ 0.250 0.300 0.350 0.400 0.450 0.500 0.550 0.600 0.650 0.700 0.750 0.800 0.850 0.900 0.950 1.000 

c = 3 
0.000000

00 
0.00000520 

0.000010

40 

0.000030

70 

0.000040

00 
0.00004930 

0.000078

62 

0.0001210

8 

0.000181

14 

0.000304

92 
0.00043509 

0.000671

19 

0.000940

65 

0.0012864

7 

0.001666

69 

0.002239

59 

ρ 0.167 0.200 0.233 0.267 0.300 0.333 0.367 0.400 0.433 0.467 0.500 0.533 0.567 0.600 0.633 0.667 

c = 4 
0.000000

00 
0.00000210 
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20 

0.000006

30 

0.000008

40 
0.00001280 

0.000037

90 

0.0000630
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40 

0.000224

00 
0.00033860 

0.000529

50 

0.000758

55 

0.0009780

5 

0.001307

26 

0.001625

00 

ρ 0.125 0.150 0.175 0.200 0.225 0.250 0.275 0.300 0.325 0.350 0.375 0.400 0.425 0.450 0.475 0.500 

c = 5 
0.000000

00 
0.00000420 

0.000008

40 

0.000029

15 

0.000049

95 
0.00007552 

0.000101

62 

0.0001803

7 

0.000257

62 

0.000317

72 
0.00039062 

0.000544

28 

0.000664

58 

0.0007916

7 

0.000996

51 

0.001213

51 

ρ 0.100 0.120 0.140 0.160 0.180 0.200 0.220 0.240 0.260 0.280 0.300 0.320 0.340 0.360 0.380 0.400 
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Follow Table (1) shows the average waiting time in row 

 

The following are the data shows for the average waiting time in the row which confirm all of the above results: 

First, if we follow the results of the average waiting time for the grade in the case when setting the service rate (μ = 1) as 

in Figure (5) we observe that the values tend to increase as the access rate increases and the average waiting time in the 

row decreases as the number of servers increases. 

 

  
Fig-5: Average waiting time curve in row for each case of number of service providers c = 1,2,3,4,5 and constant 

service rate μ = 1 

 

Second, if we also follow the results of the average values of the waiting time in the class in the case when the 

service rate is set: (μ = 3) As in Figure 6 we observe that the values tend to be stable until the arrival rate is λ = 12 and 

thus the increase in the average waiting time The λ access rate has increased and the average waiting time in the class has 

decreased as the number of servers increases. 

 

 
Fig-6: Average waiting time curve in row for each case of the number of service providers c = 1,2,3,4,5 and 

constant service rate μ = 3 
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Thirdly, if we also follow the results of the average values of the waiting time in the class in the case when the 

departure rate is set: (μ = 5) As in Figure (7) we find the increase in the average waiting time as the access rate increases 

and the average waiting time in the row decreases as the number of servers increases. 

 

 
Fig-7: Average waiting time curve in row per case of number of service providers c = 1,2,3,4,5 and fixed service 

rate μ = 5 
 

Fourthly, if we also follow the results of the average values of the waiting time in the class in the case when the 

departure rate is set: (μ = 10) as in Figure 4, we also find the increase in the average waiting time as the access rate 

increases and the average wait in the row decreases as the number of servers increases. 

 

 
Fig-8: Average waiting time curve in row for each case of number of service providers c = 1,2,3,4,5 and constant 

service rate μ = 10 
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In each of the previous cases, we find that as the service rate increases, the average waiting time in the row 

decreases as shown in Figs. (1), (2), (3) and (4) 

 

2. Standard 2: Average grade length 

We mean that the average length of the row is clearly affected by both the number of servers, the access rate λ and the 

service rate μ. This results in a change in the value of ρ, since 



  we found the following  

A. As the previous criterion shows, the greater the rate of λ access for the same number of servers, the average 

length of the row increases significantly, ie, there is a direct correlation between them. The increase of one of 

them leads to an increase in the other and we can observe this increase from Table (2). 

B. Also, the higher the rate of service μ for the same value of the access rate and the number of servers itself, the 

lower the average length of the row, ie, there is an inverse relation between them and note this decrease from 

Table (2). 

C. As for the number of servers, the greater the number of servers and the values of both the access and service 

rates, the lower the value of the average length of the row, and we notice this decrease from Table (2). 

 

In general, the lower the value of ρ, the more stable the system is, and the values converge to a fixed value, where the 

average length of the row is determined as follows:    
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Table-2: follows the average grade length 
 λ 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

μ = 1 c = 1 884.00 980.66 983.99 987.32 990.65 994.00 994.10 994.20 994.30 994.40 994.50 994.60 994.70 994.80 994.90 995.00 

ρ 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 20.00 

c = 2 853.00 986.88 992.00 993.01 993.11 993.21 993.31 993.41 993.51 993.61 993.71 993.81 993.91 994.01 994.11 994.21 

ρ 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00 6.50 7.00 7.50 8.00 8.50 9.00 9.50 10.00 

c = 3 914.00 980.00 990.00 990.00 990.00 991.00 991.00 991.00 992.00 992.00 992.00 992.00 992.00 992.00 992.00 992.00 

ρ 1.67 2.00 2.33 2.67 3.00 3.33 3.67 4.00 4.33 4.67 5.00 5.33 5.67 6.00 6.33 6.67 

c = 4 813.00 975.00 985.00 990.00 990.00 990.00 990.00 990.00 990.00 990.00 990.00 990.00 990.00 990.00 990.00 990.00 

ρ 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.00 

c = 5 916.00 987.00 987.00 988.00 988.00 988.00 988.00 988.00 989.00 989.00 989.00 989.00 989.00 989.00 989.00 989.00 

ρ 1.00 1.20 1.40 1.60 1.80 2.00 2.20 2.40 2.60 2.80 3.00 3.20 3.40 3.60 3.80 4.00 

μ = 3 c = 1 41.00 71.00 95.00 143.00 228.00 335.00 441.00 563.00 678.00 825.00 915.00 969.00 979.00 984.05 984.53 985.01 

ρ 1.67 2.00 2.33 2.67 3.00 3.33 3.67 4.00 4.33 4.67 5.00 5.33 5.67 6.00 6.33 6.67 

c = 2 39.00 69.00 110.00 161.00 234.00 326.00 430.00 537.00 657.00 789.00 914.00 979.67 984.20 986.05 986.53 987.01 

ρ 0.83 1.00 1.17 1.33 1.50 1.67 1.83 2.00 2.17 2.33 2.50 2.67 2.83 3.00 3.17 3.33 

c = 3 41.00 69.00 106.00 137.00 211.00 295.00 417.00 504.00 615.00 739.00 874.00 980.27 982.95 985.63 988.31 990.99 

ρ 0.56 0.67 0.78 0.89 1.00 1.11 1.22 1.33 1.44 1.56 1.67 1.78 1.89 2.00 2.11 2.22 

c = 4 32.00 54.00 101.00 135.00 193.00 263.00 363.00 461.00 588.00 722.00 847.00 965.00 978.00 988.05 988.53 989.00 

ρ 0.42 0.50 0.58 0.67 0.75 0.83 0.92 1.00 1.08 1.17 1.25 1.33 1.42 1.50 1.58 1.67 

c = 5 40.00 66.00 106.00 148.00 196.00 256.00 346.00 452.00 574.00 698.00 807.00 932.00 974.00 980.33 984.09 985.00 

ρ 0.33 0.40 0.47 0.53 0.60 0.67 0.73 0.80 0.87 0.93 1.00 1.07 1.13 1.20 1.27 1.33 

μ = 5 c = 1 5.00 5.77 11.00 20.17 29.00 45.00 70.66 98.00 135.00 165.00 223.00 296.00 352.00 413.00 463.33 549.00 

ρ 1.00 1.20 1.40 1.60 1.80 2.00 2.20 2.40 2.60 2.80 3.00 3.20 3.40 3.60 3.80 4.00 

c =2 12.00 20.99 26.00 34.00 47.00 65.00 82.00 111.00 145.00 178.00 229.00 285.00 342.00 408.00 443.00 529.00 

ρ 0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90 2.00 

c = 3 5.00 9.00 19.00 32.00 43.00 66.00 93.00 108.00 138.00 161.00 208.00 257.00 316.00 373.00 444.00 502.00 

ρ 0.33 0.40 0.47 0.53 0.60 0.67 0.73 0.80 0.87 0.93 1.00 1.07 1.13 1.20 1.27 1.33 

c = 4 3.00 5.73 19.00 27.00 41.00 58.00 82.00 101.00 128.00 159.00 193.00 232.00 275.00 330.00 400.00 457.00 

ρ 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 

c = 5 6.00 8.00 17.00 29.00 42.00 62.00 88.00 109.00 142.00 166.00 196.00 231.00 270.00 318.00 369.00 441.00 

ρ 0.20 0.24 0.28 0.32 0.36 0.40 0.44 0.48 0.52 0.56 0.60 0.64 0.68 0.72 0.76 0.80 

μ = 10 c = 1 0.000 0.400 0.800 3.330 6.143 9.000 14.000 19.644 20.004 24.660 29.572 32.400 38.500 45.000 55.000 64.000 

ρ 0.500 0.600 0.700 0.800 0.900 1.000 1.100 1.200 1.300 1.400 1.500 1.600 1.700 1.800 1.900 2.000 

c = 2 0.000 0.500 1.000 1.625 2.250 2.875 5.125 7.500 10.800 14.250 22.650 28.666 37.425 44.330 52.000 60.000 

ρ 0.250 0.300 0.350 0.400 0.450 0.500 0.550 0.600 0.650 0.700 0.750 0.800 0.850 0.900 0.950 1.000 

c = 3 0.000 0.310 0.620 0.930 2.000 2.710 6.000 10.500 14.000 19.400 25.000 30.000 36.000 41.000 51.360 65.000 

ρ 0.167 0.200 0.233 0.267 0.300 0.333 0.367 0.400 0.433 0.467 0.500 0.533 0.567 0.600 0.633 0.667 

c = 4 0.000 0.250 0.500 0.750 1.000 2.249 3.330 4.400 12.340 18.000 23.000 27.000 34.800 39.000 51.500 57.000 

ρ 0.125 0.150 0.175 0.200 0.225 0.250 0.275 0.300 0.325 0.350 0.375 0.400 0.425 0.450 0.475 0.500 

c =5 0.000 0.400 0.800 1.355 2.053 2.583 3.125 4.600 5.800 9.500 15.000 19.400 21.200 27.000 34.000 43.500 

ρ 0.100 0.120 0.140 0.160 0.180 0.200 0.220 0.240 0.260 0.280 0.300 0.320 0.340 0.360 0.380 0.400 
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The following are the special graphs: Average row length: 

 

First, if we follow the results of the average values of the length of the row in the case at the rate of service (μ = 

1) we note that the values tend to increase as the access rate increases λ and then observe the stability of the average 

length of the row with increasing access rate and we note the decrease in the average length of the row, It is clear in form 

(9). 

 

 
Fig-9: Average row length curve for each case of the number of service providers c = 1,2,3,4,5 and constant service 

rate μ = 1 

 

Second, if we also follow the results of the values of the average length of the row in the case when the rate of 

service is developed (μ = 3). Note that the values are increased until the arrival rate is λ = 17. Therefore, the average 

values of the length of the row are constant. The higher the access rate λ, the lower the average length of the row, the 

greater the number of servers. 

 

 
Fig-10: Average row length curve for each case of the number of service providers c = 1,2,3,4,5 and constant 

service rate μ= 3 
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Third: If we also follow the results of the average values of the length of the row in the case when setting the 

departure rate (μ = 5) we find the increase in the average length of the row as the access rate increases and the average 

length of the row decreases as the number of servers increases as shown in figure (11). 

 

 
Fig-11: Average row length curve for each case of the number of service providers c = 1,2,3,4,5 and constant 

service rate  μ  = 5 
 

Fourthly, if we also follow the results of the average values of the length of the row in the case when the service 

rate is set (μ = 10), we also find the increase in the mean length of the row as the access rate increases, and the average 

length of the row decreases as the number of servers increases as shown in figure 12. 

 

 
Fig-12: Average row length curve for each case of the number of service providers c = 1,2,3,4,5 and constant 

service rate μ = 10 
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In comparison with each of the previous cases, we find that with the increase in the rate of service μ, the average 

length of the row decreases as shown in the previous figures. 
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