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Abstract  Original Research Article 
 

Climate change is having an impact on agricultural ecosystems, and can significantly alter the conditions required to 

grow many crops, including maize. To assess the impact of these changes, the use of crop models coupled with remote 

sensing represents a promising approach to help forecast water requirements and crop yields. In this study, vegetation 

indices (NDVI) derived from the Copernicus-Sentinel 2 satellite were coupled to future climate data (2026-2050) in the 

AQUACROP model to simulate the yield and water requirement of maize crops under the RCP (Representative 

Concentration Pathway) 4.5 and RCP 8.5 scenarios on silty-clay, silty-sandy and silty-clay-sandy soils. The results show 

that water requirements increase by 11.10% under RCP 4.5 and 13.92% under RCP 8.5, over the future period. As for 

yields, they will fall by 13% under the RCP 4.5 scenario and by 17% under the RCP 8.5 scenario. As a result, maize 

yields are set to fall significantly by 2050, particularly in the most pessimistic scenario, RCP 8.5. 

Keywords: Climate change, Water requirements, Yields, Maize, Bagoué region. 
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1. INTRODUCTION 
The main biophysique processus involved in 

agricultural crop production, such as soil evaporation, 

plant transpiration, nutrient cycles and plant growth, are 

being altered by climate change (Rahman et al., 2019). 

Due to the importance of rain-fed agriculture and the low 

institutional and economic capacity to manage and adapt 

to climate change, Africa is highly vulnerable to the 

impacts of climate change (Baarsch, et al., 2020 and 

Sylla, et al.,2016). Indeed, agricultural production 

remains low, with crop yields below potential. Several 

factors are at the center of the low yield obtained, 

including reduced rainfall, soil erosion, and the absence 

of adequate agricultural practices (Bangata et al.,2013; 

Kasongo et al., 2013; Banza et al., 2019; Ilunga et al., 

2015; Mulimbi et al., 2019). 

 

Forecasting agricultural production on a local or 

regional scale is a very important geostrategic, economic 

and humanitarian asset today, and a guarantee of food 

security. One way of examining these impacts is to use 

crop models coupled with future climate projections and 

remote sensing. Given the threats posed by climate 

change to agricultural water use and other demanding 

uses, simulation models such as AquaCrop, developed 

by the Food and Agriculture Organization of the United 

Nations (FAO, 2009), have proved to be important tools 

for assessing water requirements and crop yields 

(Durodola and Mourad 2020). he effectiveness of the 

AquaCrop model has been proven on several crops and 

in several regions of the world (Iqbal et al., 2014; 

Vanuytrecht et al., 2014; Pereira et al., 2015; Abi Saab 

et al., 2015; Benabdelouahab et al., 2016; Xu et al., 

2019; Tsakmakis et al., 2019; Banza and John, 2020). It 

is a simple but robust model (Steduto et al.,2007; 

Vanuytrecht et al., 2014; Pawar et al., 2017; Sandhu and 

Irmak, 2019). It has been developed to estimate crop 

growth, development, yield, water use efficiency, water 

consumption and irrigation schedules under different 

climatic conditions, based on soil texture, field 

management, conservation practices and soil fertility.  

 

As rainfed maize production is predominant in 

the region, it is important to examine the future water 

requirements and yields of this crop. Studies have shown 

that climate change will affect crop productivity 
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differently depending on soil type, crop and climatic 

zone (Rahman et al.,2019 and Roudier et al., 2011). In 

Côte d'Ivoire in general and particularly in the Bagoué 

region very few studies have used crop models and 

remote sensing to simulate agricultural yields and water 

requirements. Yet simulation approaches are often 

proposed as effective tools to assist farmers in making 

decisions to increase their yields and water requirements 

rendements agricoles. Also, the use of remote sensing 

enables better spatial calibration of growth models 

through local re-estimation of missing model parameter 

information throughout the growing season (Batchelor et 

al., 2002). In order to provide greater clarity, it is 

imperative to conduct studies to examine how maize will 

respond in different locations, since the impact of climate 

change differs from one growing location to another. The 

aim of this study is to characterize these impacts on water 

requirements and maize yields by 2050. 
 

2. MATERIALS AND METHODS 
2.1 Presentation of the study area 

The Bagoué region covers an area of 10150 

km2 or 3.3% of the total area of Côte d'Ivoire. It lies 

between longitude 5°40′ and 7°10′ West and latitude 

9°15′ and 10°50′ North. The region delimits a 

geographical unit made up of 03 departments Boundiali, 

Kouto, Tengrela (Figure 1). Two distinct seasons 

characterize the climate of the study area: a dry season 

from November to April and a rainy season from May to 

October. Average interannual rainfall is less than 1200 

mm (Brou, 2005). The pedology is characterized by 5 

soil types: Ferric Acrisols, Orthic Acrisols, Plinthic 

Acrisols, Eutric Cambisols and Eutric Nitosols (FAO, 

2007). Agriculture is the main activity of the region's 

population. The main food crops are maize, rice, millet, 

yams, groundnuts and sorghum. Cotton, cashew nuts and 

mangoes are the region's main cash crops. 

 

 
Figure 1: Location of study area 

 

2.2 DATA 

2.2.1. Historical climatic and agronomic data 

Climate data from 1981 to 2020 were obtained 

from the Naza Power aerospace agency website 

(https://power.larc.naza.org). Data sets included 

maximum and minimum temperatures, wind speed and 

daily solar radiation. Climate data from the CHIRPS 

(Climate Hazards Group Infrared Precipitation with 

Station) satellite were also used for the period 1981-

2020. CHIRPS data are gridded precipitation time series 

with a horizontal resolution of 0.05° (Ogega et al., 2021). 

These datasets have been widely used for studies in West 

Africa (Basse et al.,2021; Boluwade, 2020) and Côte 

d'Ivoire by Koffi (2022). In addition, rainfall, maximum 

and minimum temperatures, wind speed and solar 

radiation have been used for historical simulations of 

maize yield and water requirements (1981-2020). Daily 

maximum, minimum temperature and precipitation data 

were used for future climate simulations (2026-2050). 

The future climate data used in this study were obtained 

from the Coordinated Regional Downscaling 

Experiment (CORDEX) project, downloaded 
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(https://esgf-index1.ceda.ac. fr/recherche/cordex-ceda/). 

CORDEX-Africa datasets are available on the following 

scales daily, decadal and monthly time series at a spatial 

resolution of 0.44° × 0.44°, i.e. around 50 km × 50 km 

for the period 1981-2005 (historical) and (2026-2050) 

(future). In the CORDEX project, several global climate 

models (GCMs) were downscaled using different 

regional climate models (RCMs) to regional levels, 

including Africa. Based on an extensive literature 

review, the Rossby Centre Regional Climate Model 

(RCA4) and CNRM-CM5-LR, which are RCMs 

developed by the Swedish Meteorological and 

Hydrological Institute (SMHI) and France as part of the 

nine GCMs in the CORDEX-Africa project, were 

selected for this study. ACR4 has been evaluated with 

very satisfactory results in numerous studies (Ayugi et 

al.,2020; Nikulin et al.,2018, Akinsanola et al.,2018). In 

order to definitively select the presented CNRM, CM5-

LR and ICHEC-EC-EARTH were evaluated using the 

historical dataset. Data concerning crop parameters were 

collected in the field. Data from the 2018-2019 growing 

season was used for calibration, while validation was 

carried out using data from the 2018-2019 growing 

season while validation was carried out using data from 

the 2020 growing seasons. 

 

2.2.2 Multi-spectral images and soil physical 

properties 

Sentinel-2 multi-spectral images were acquired 

for the 2018, 2019 and 2020 growing seasons. The 

images used are those from the month of August, which 

corresponds to the period when the maize crop reaches 

its peak of development. The multi-spectral images 

(MSI) aboard Sentinel-2 capture data at spatial 

resolutions of 10, 20 and 60 m over 13 spectral bands 

with a very high revisit time of five days covering the 

area, were acquired from the Copernicus Open Access 

Hub (https://scihub.copernicus.eu/). The physical and 

chemical properties of the region's soils were obtained 

from the Harmonised World Soil Database (HWSD), 

which has a resolution of 1 km (30 arc seconds). The data 

were downloaded from the FAO website 

(http://www.fao.org/soils-portal/soil-survey/soil-maps-

and-databases) (Fischer et al., 2008). The texture of the 

agricultural soil (0-100 cm) is sandy-loam, clayey-loam 

and sandy-clayey-loam. These data were validated with 

field data. 

 

2.3 AquaCrop software 

Version 6.1 of the AquaCrop (AC) software 

was used in this study. This model was developed by the 

Food and Agriculture Organization of the United Nations 

(FAO). Several improvements have been made to the 

model up to the current version. It is a decision-making 

tool for planning strategies to improve water productivity 

in agriculture (Hsiao et al., 2009; Steduto et al., 2009; Jin 

et al., 2020). 

 

 

2.4 Pre-processing of future precipitation and 

temperature data 

The choice of simulations lies not only in 

scientific interest, but also in the availability of data and 

the ability to process them (Muerth et al.,2013). Thus, 

because of the scope of this study, the entire 

RACMO22E and ALADIN63 regional climate model, at 

a daily time step, spatial resolution 0.44 (50 km х 50 km) 

dynamically scaled to the GCM (ICHEC-EC-EARTH 

and CNRM-CM5-LR) was used. All the Regional 

Climate Models (RCM) used are capable of simulating 

maize yields and future water requirements. 

 

2.3 Performance and bias correction of climate 

models 

Model evaluation is based on compassion 

between observed and simulated data, while making use 

of statistical indicators: coefficient of determination (R²), 

root mean square error (RMSE) and mean absolute error 

(MAE). Observed and simulated daily climate data for 

the historical period 1981-2005 were used for evaluation. 

The coefficient of determination (R²) criterion describes 

the combined dispersion of the observed and simulated 

series in comparison with the dispersions of each of the 

series. It lies between 0 and 1, and an increase in its value 

indicates a decrease in the error of variance. It is defined 

by equation1: 

𝑅2 =
∑ (𝑃𝑖 − 𝑃�̅�)(𝑂𝑖 − 𝑂𝑖)̅̅ ̅̅𝑁

𝑖=1

√(𝑃𝑖 − 𝑃�̅�)² √(𝑂𝑖 − 𝑂𝑖)̅̅ ̅̅ ²
 (E1) 

 

The mean difference between experimental data and 

simulation results is described by the root mean square 

error (RMSE) as follows: 

 

𝑅𝑀𝑆𝐸 = ⌊∑ 𝑁(𝑃𝑖 −  𝑂𝑖)2

𝑁

𝑖=1

⌋

0.5

 (E2) 

 

In addition, modeling efficiency (NSE) was defined as 

follows: 

𝑁𝑆𝐸 = 1 −
∑ (𝑂𝑖 − 𝑂𝑝)

2𝑁
𝑖=1

∑ (𝑂𝑖 − 𝑂𝑝)𝑁
𝑖=1

 (E3) 

 

• Correcting bias in daily rainfall data 

The Bias Correction function in the downscaleR 

package of the R software allows us to apply a number 

of standard bias correction techniques in the climate 

context, ranging from the simplest local scale to the most 

sophisticated. Thus, before using the projected climate 

data for precipitation and temperature, which claim to be 

overestimated or underestimated in their evolution, 

appear to be tainted by errors (Ardoin, 2004; Kouakou, 

2011). These were corrected before the actual 

hydrological modeling began, using the root-mean-

square error approach proposed by (Iturbide and Herrera 

2018). This method makes no assumptions about the 

statistical distribution of the variable and consists in 

calibrating the empirical predictions of the Cumulative 

Distribution Function (CDF) by adjusting the models and 
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the observed quantiles (Déqué, 2007). The optional 

argument n.quantiles is used to specify the number of 

quantiles to be adjusted (by default, percentiles are used 

for correction). In addition, this method allows for a 

corrected constant factor (bias) which is estimated by the 

difference between the observed data and the raw data of 

the simulated model (Lenderink et al., 2007) in (Fang, 

2015). Precipitation is generally adjusted using a 

multiplier, and temperature is corrected by the additive 

term on the basis of monthly mean values, as shown 

respectively in equations (4) and (5) :  

𝑷(𝒋.𝒎.𝒂)
𝒄𝒐𝒓 = 𝑷(𝒋.𝒎.𝒂)

𝒇𝒖𝒕𝒖𝒓
∗ (

𝑷(𝑶𝒃𝒔)
̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑷(𝒓é𝒇)̅̅ ̅̅ ̅̅ ̅̅ ̅
) 𝒎 (𝟒) 

𝑻(𝒋.𝒎.𝒂)
𝒄𝒐𝒓 = 𝑻(𝒋.𝒎.𝒂)

𝒇𝒖𝒕𝒖𝒓
+ (𝑻(𝑶𝒃𝒔)

̅̅ ̅̅ ̅̅ ̅̅ ̅ − 𝑻(𝒓é𝒇)
̅̅ ̅̅ ̅̅ ̅ )𝑚 (𝟓) 

 

Where precipitation and temperature, expressed 

in mm and °C respectively, are visualized by observed 

rainfall series, reference periods and future projections 

according to the pessimistic scenarios RCP 8.5 and 

RCP4.5. 

 

2.6. Etalonnage et validation du modèle 

In this study, the canopy cover (CC) indicator 

was replaced by the normalized vegetation index 

(NDVI), estimated from Sentinel-2 imagery. The NDVI 

for the 2018-2019 season was used to calibrate the model 

under rainfed cultivation. It was then validated with data 

from the 2020 seasons. Calibration was carried out by 

manually entering the most important crop-related data: 

sowing date, crop cycle, density and germination rate. 

For parameters related to field and soil management, 

field observations, soil analysis data and water retention 

results obtained by pedo-transfer functions were used. 

Model validation is based on the comparison of observed 

and simulated data for all treatments, using data sets 

different from those used for treatment model 

calibration. To assess the performance of the AquaCrop 

model, the four years of experimental data obtained were 

evaluated by R2, RMSE, MAE and NSE. The results 

show that simulated yields correspond well to observed 

yields. Average simulated and observed maize yields are 

2.8 t/ha and 2.95 t/ha respectively, as shown in the table. 

The results obtained are satisfactory, making the model 

reliable and suitable for future climatic conditions in the 

region. 

 

2.7 Water requirements and crop yields 

• Evaluation of evapotranspiration 

Reference evapotranspiration (ETo) is 

estimated in AquaCrop from input climate data using the 

Penman-Monteith equation (Allen, R.et al., 1998), which 

is considered the most efficient method for estimating 

evapotranspiration (Fisher and (Pringle 2013). Water 

requirement is estimated in the model as shown in 

equation (6).  

 

ETc = Kc * ET0 (𝐄𝟔)    

  

 𝑬𝑻𝒐 =
𝟎,𝟒𝟎𝟖∗∆∗(𝑹 𝒏−𝑮)+𝜸

𝟗𝟎𝟎

𝝉+𝟐𝟕𝟑
𝝁𝟐(𝒆𝑺−𝒆𝒂)

∆+𝜸(𝟏+𝟎,𝟑𝟒𝝁𝟐)
   (E7)  

 

• Estimating corn yields 

Converting biomass to yield 

Crop yield (Y) is the product of biomass (B) and 

harvest index (HI), equation(3). The harvest index (HI) 

increases progressively to reach its reference value (HIo) 

at the crop's physiological maturity (Raes et al., 2012; 

Vanuytrecht et al., 2014). Following daily variation in 

water stress and/or temperature, the harvest index is 

regularly adjusted during yield formation (equation(3)). 

The crop yield, AquaCrop uses the multiplication of 

biomass and harvest index as shown in equation (2)(Raes 

et al.,2008 and FAO, 2007): 

  

Y = HI × B    (E8) 

 

Where: Y = Crop yield (kg/ha or t/ha), HI = Harvest 

index (fraction or percentage), B = Biomass (t/ha or 

kg/ha). 

 

Simulation of crop transpiration 

In the model, daily transpiration is calculated by 

multiplying the crop coefficient with ETo and the soil 

coefficient as indicated by (Vanuytrecht, et al., 2014) in 

equation (9) : 

 

𝐓𝐫 = 𝐊𝐬(𝐊𝐜 𝐓𝐫. 𝐱 ∗  𝐂𝐂 ∗)𝐄𝐓0   (E9) 

 

Where Tr = crop transpiration (mm/day), Ks = stress 

factor (Kssto or Ksaer) (fraction), CC* = adjusted 

canopy green cover (fraction), Kc*Tr.x * CC= crop 

coefficient.  

 

• Simulation of above-ground biomass 

The water productivity (WP) of a crop 

translates the dry matter (g or kg) produced per unit of 

soil surface (m² or ha) and per unit of transpired water 

(mm) (equation 5). To account for variability in climatic 

conditions, the AquaCrop model uses normalized water 

productivity (WP*) to simulate above-ground biomass. 

This normalization aims to make water productivity 

applicable across regions and seasons while considering 

different climate change scenarios (Steduto et al., 2009; 

Raes et al., 2012 and Raes et al., 2018). In the yield 

estimation, the model automatically adjusts the harvest 

index to respond to temperature changes and water stress 

conditions, which is very cru-cial for this study. Daily 

biomass production in the model is estimated as given by 

(Vanuytrecht et al.,2014) in equation (10). 

𝐁 = 𝐊𝐬𝐛 ∗  𝐖𝐏 ∗  𝐓𝐫 ∗ ∑𝑬𝑻0     (E10) 

 

Where B = daily above-ground biomass (t/ha or 

kg/m²), Tr = daily crop transpiration (mm/day), ET0 = 

daily reference evapotranspiration (mm/day), WP* = 

crop variety water productivity normalized for 

atmospheric CO2 concentration levels and evaporation 

(kg/m3), Ksb = cold temperature stress factor for 

biomass (fraction). 
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In AquaCrop, the coefficient of modification of 

atmospheric CO2 concentration is estimated by equation 

(21) for normalization of CO2 concentration, which is 

essential for normalizing water productivity (Raes et 

al.,2009; Heo, et al.,2019). 

𝒇𝑪𝑶𝟐 =

𝑪𝒂
𝑪𝒂, 𝟎

𝟏 + 𝟎, 𝟎𝟎𝟎𝟑𝟏𝟖 ∗ (𝑪𝒂 − 𝑪𝒂, 𝟎)
 (E11) 

 

where fCO2 = modification coefficient for CO2 

(dimensionless), Ca = atmospheric CO2 (μL/L), Ca,0 = 

reference CO2 recorded in 2000 at the Mauna Loa 

observatory, Hawaii, which is 369.47 μL/L. 

 

 

 

 

3. RESULTS  
3.1 Analysis of projected climate parameters 

Evaluation of the table highlights the 

performance and ability of the climate model to capture 

observed data. Three statistical indicators have been 

used: the coefficient of determination (R²), the root mean 

square error (RMSE) and the mean absolute error 

(MAE). R² ranges from 0 to 1, with a value of 1 

indicating a perfect match between observed and 

simulated values. RMSE is a measure of the mean 

difference between simulated and observed values. MAE 

gives the mean of the deviation between simulated and 

observed values, and takes the simulated parameter as its 

unit. The closer the MAE value is to zero, the better the 

model's performance. The results in the table show that 

all the models scaled up by CNRM-CM5-LR and EC-

EARTH give satisfactory results. 

 

Table 1: Statistical evaluation of climate models on historical data (1981-2005) 

 

Future changes in precipitation, minimum and 

maximum temperatures for the periods in the near future 

(2026 -2050), according to the RCP 4.5 and RCP 8.5 

scenarios compared with the average for the reference 

period (1981-2020), have been estimated on the basis of 

the ensemble projections of the models (CNRM-CM5-

LR and EC-EARTH). Analysis of the results in the table 

shows that a reduction in annual precipitation is possible 

in the region for all scenarios for the future period. 

According to Table 4, for the RCP 4.5 scenario, annual 

precipitation will decrease by 24% by 2050 compared to 

the reference period average. In addition, maximum 

temperature is expected to rise by 2.03°C and 3.14°C by 

the end of 2050 under the RCP 4.5 and RCP 8.5 

scenarios, respectively, compared with the reference 

period average. Similarly, minimum temperatures will 

rise by 2.25°C and 2.29°C by 2050, according to the RCP 

4.5 and RCP 8.5 scenarios, respectively, compared with 

the reference period averag 

 

Table 2: Changes in precipitation, minimum and maximum temperatures for future periods under RCP 4.5 and 

8.5 scenarios, compared with the average for the reference period (1981-2005) 

Climate parameters Observed Relative change 

 (1981-2005) RCP 4,5 RCP 8,5 

(2026-2050) (2026-2050) 

Rainfall (mm) 1221,46 923,14 (-24%) 887,93 (+27,30%) 

Minimum temperature (°C) 20,2 22,45 (+11%) 22,49 (+11,33%) 

Maximum temperature (°C) 31,8 33,83 (-3,04%) 34,93 (+4,83%) 

 

3. 2 Calibration and statistical evaluation of 

AquaCrop performance 

AquaCrop parameters for simulating yields and 

water requirements are presented in Table 5, values are 

from calibration (c), field measurements (m) and 

estimates from 2018-2019 season data under rainfed 

crop. 

 

Table 3: Crop parameters used for AquaCrop corn simulations 

Non-conservative parameters Calibration Determination method 

Plant population Plants/ha  20000   e 

Initial canopy cover (%)  28  m 

Maximum canopy cover (%)  67  e 

Days from planting to GDD emergence (days)  7  e 

Days from planting to maximum cover GDD (days)  99  e 

Days from planting to senescence GDD (days)  115  e 

Days from planting to maturity GDD (day)  120  m 

 Precipitation (mm) Maximum temperature (°C)  Minimum temperature (°C)  

Statistical parameters  R²  RMSE MAE  R²  RMSE MAE  R²  RMSE MAE 

CNRM-CM5-LR 0,98 0.97 0,79 0,97 0.10 0,99 0,95 0,99 0,5 

EC-EARTH 0.99 0.92 3,58 0,98 0.92 0,99 0,99 0,99 1,26 

ENSEMBLE 0.98 0.98 1,79 0,97 0.4 0,99 0,97 0,99 0,6 
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Non-conservative parameters Calibration Determination method 

Days from planting to flowering GDD (Days)  66  e 

Duration of flowering GDD (day)  (55)  e 

Maximum effective rooting depth (m)  1  m  

Water productivity normalized for climate and CO2 (g/m2)   17  e 

Soil fertility stress -  modéré  - 

Reference harvest index (%)  50  50 

 

Analysis of the results in Table 3 shows the 

model's performance in simulating maize yields in 

different soil textures for three growing seasons. These 

results show that simulated yields correspond well to 

observed yields. The average observed and simulated 

maize yields were 2.8 t/ha and 2.95 t/ha, respectively. 

Table 1 show that the R², RMSE and MAE of simulated 

maize yields range from 0.95 to 0.99, from 0.04 t/ha to 

0.3 t/ha and from 0.03 t/ha to 0.27 t/ha, respectively. The 

model is validated with an NSE performance of 0.96%. 

 

Table 4: Evaluation of model performance for simulating maize yield in different soil textures for three growing 

seasons 

Year  Soil texture  Observed yield (t/ha)) Simulated yield (t/ha) R² RNSE (t/ha) MAE (t/ha) 

2018 silty-sandy 2,65 2,704 0,99 0,04 0.06 

Silt-clay 2.56 2.615 

silty-sandy-clay 1,47 1,49 

2019 sandy loam 2,6 2,83 0,95 0.3 0.27 

Silt-clay 2,72 2,3 

silty-sandy clay 1,3 2,4 

2020 sandy loam 4,1 4,17   0,03 

Silt-clay 4 4,15 0,99 0,1 

silty-sandy-clay 3,93 3,96 

 

3.3. Future seasonal water requirements of crops 

The results of the analysis in Figure 2 show an 

increase in the water requirements of maize by 2050 

compared with the results of the analysis of historical 

data, which were 236.76; 228.73; 269.3 mm respectively 

during the periods (1981 -2020), on sandy-loam, clayey-

loam and sandy-loam soils. Under the RCP 4.5 scenario, 

average water requirements for maize are expected to be 

259.33; 269.30 and 307.36 mm respectively over the 

period (2026 -2038) and 294.33; 297.42; 308.36 mm 

over the period (2039 -2050). However, under RCP 8.5, 

the average water requirements of maize on silty-clay, 

silty-sandy and silty-clay-sandy soils will be 282.3; 

291.65 and 292.62 mm respectively over the period 

(2026 -2038) and 306.1; 315.70 and 315.79 mm over the 

period (2039 -2050). Under the RCP 8.5 scenario, water 

requirements for maize will increase compared with the 

results obtained under the RCP 4.5 scenario for all future 

periods. 

 

  
 RCP 4,5 (2026-2050)                                                    RCP 8,5 (2026-2050) 

 

Figure 2: Future water requirements for maize under RCP4.5 scenarios 

 

3.4. Future corn yields 

The analysis results in Figure 3 show a decline 

in average maize yields over the period (2026 to 2050) 

compared with the historical period (1981-2020). 

Average yields over the historical period were 3.90; 3.89; 

3.65 t/ha on sandy loam, clay loam and sandy clay loam 

soils respectively. Under the RCP 4.5 scenario, average 

maize yields are expected to be 3.45; 3.25 and 2.83 t/ha 

in the period (2026 -2038) and 3.55; 3.60; 3.15 t/ha in the 

period (2039 -2050). For the RCP 8.5 scenario, analyses 

show that average maize yields should be 2.63, 3.37 and 

2.65 t/ha respectively in sandy loam, clayey loam and 

sandy clay loam soils for the period (2026- 2038) and 
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3.14, 3.61 and 2.27 in the period (2039- 2050). 

According to figure 3, maize yields will.  

 

  
RCP 4,5 (2026-2050)                                      RCP 8,5 (2026-2050) 

 

Figure 3: Future corn yields under RCP 4.5 and RCP 8.5 scenarios 

 

3.5 Changes in future seasonal water requirements 

for maize crops  

Future changes in water requirements for maize 

crops are expected to fluctuate from the historical period 

average. Analyses according to Figure 4, under RCP 4.5, 

changes from 4.56 to 8.18% are expected over the period 

(2026 - 2038) and from 4.13 to 12.09 over the period 

(2039 - 2050). In addition, under RCP 4.8, an increase is 

predicted in changes, these changes could reach 16% 

depending on soil textures in the period (2026-2050). In 

the RCP 8.5 scenario, increases ranging from 7.94 to 

15.97% over the period (2026 - 2038) and from 6.76 to 

13.05% over the period (2039 - 2050). 

 

   
RCP 4,5 (2026-2050)                                     RCP 8,5 (2026-2050) 

 

Figure 4: Temporal changes in future water requirements for maize under the RCP4.5 and RCP8.5 scenarios 

 

3.6 Changes in future seasonal maize yields 

Negative changes are predicted in maize yields 

for future periods under the RCP4.5 and RCP8.5 

scenarios. Analyses of the results show that under the 

RCP 4.5 scenario, changes range from (-1.5 to -7.5%) 

and (-4 to -13%) respectively in the period (2026 -2038) 

and (2039 - 2050). Under the RCP 8.5 scenario, the 

change ranges from (-2.53 to -10%) and (-2.05 to -

17.45%) respectively in the period (2026 -2038) and 

(2039 -2050).  

 

    
 RCP 4,5 (2026-2050)                                       RCP 8,5 (2026-2050 

Figure 4: Temporal changes in future corn yields under RCP 4.5 and RCP 8.5 scenarios 
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4. DISCUSSION 
In the context of climate change, the regional 

climate model assessment shows that projected annual 

precipitation will record a negative change of 24% under 

the RCP 4.5 scenario and 27.30% under the RCP 8.5 

scenario. These decreases in precipitation are due to the 

lack of forest and the intersection of entropic activities in 

the area. Our results are in line with those of (Kouassi et 

al. 2023), who predict a 19.2% decrease in precipitation 

in western Côte d'Ivoire over the N'zo Sassandra by 

2071-20100. On the other hand, minimum and maximum 

temperature projections for the RCP 4.5 scenario show 

increases of 2.25°C and 2.29°C respectively. For the 

RCP 8.5 scenario, temperatures will rise by 2.03°C for 

minimum values and 3.14°C for maximum values by 

2050. These results show that the effects of climate 

change on the region are certain, with an increase in 

temperature by 2050 compared with the reference period. 

Our results are similar to those of the sixth report of the 

Intergovernmental Panel on Climate Change (IPCC, 

2022), which forecasts a temperature rise of 1.3°C to 

1.9°C over the period 2021-2040 and 1.9°C to 3°C over 

the period 2041-2060. These temperature rises are 

thought to be due to the intensification of human 

activities on the environment. In the Bagoué region, vast 

areas of land are used to grow food crops and export 

crops. Analysis of the results indicates an increase in 

future period water requirements of 3.93 to 13.94% 

under the RCP4.5 scenario and 9.31 to 32.28% under the 

RCP 8.5 scenario for the region's sandy loam, clayey 

loam and sandy clay loam textured soils. Oludare et al. 

(2020) assessed soybean water requirements for different 

soil textures in the Gun-Ona basin of Nigeria and found 

results in line with our own. This could be explained by 

the existence of a delayed rainfall probability relative to 

baseline coupled with higher transpiration, meaning that 

maize production will require more rainfall relative to 

baseline for optimum production. A delay in the arrival 

of rains can be a challenge for farmers, and planting 

dates. Analysis of vegetation indices (NDVI) obtained 

from sentinel-2 image data during the maize growing 

seasons has enabled us to simulate future production 

yields. These yields show a decline of 1.5 to 13% in the 

RCP4.5 scenario by 2050, while the RCP8.5 scenario 

shows a decline of 2.05 to 17.45% over the 2026-2050 

period. These yields show a decline of 1.5 to 13% in the 

RCP4.5 scenario by 2050, while the RCP8.5 scenario 

shows a decline of 2.05 to 17.45% over the 2026-2050 

period. However, decreases in maize yields are likely to 

be linked to increased entropic activity, which will have 

a greater influence on temperature increase and 

precipitation decrease. The results obtained are in line 

with those of Corbeels et al. (2018), who obtain a 

decrease in future maize yields in Southern Africa 

simulated with the process-based model (ASPIM) 

coupled with 17 GCMs. Similarly, in Cameroon, a 14.6% 

reduction in maize yield is predicted in future periods by 

Tingem et al. (2009) simulated with GCMs based on 

global climate models. According to Roudier et al. 

(2011) future maize yields in West Africa are expected 

to decrease by 5% according to simulations carried out 

as part of climate change projections that take into 

account an induced increase in CO2. This also confirms 

that maize yields in sub-Saharan Africa will decrease in 

the event of an increase in CO2 concentration and 

temperature in the RCP 4.5 and RCP 8.5 scenarios for all 

species. 

 

 5. CONCLUSION  
The objective of this study was to simulate the 

seasonal seasonal water requirements and yields of 

rainfed maize crops in the Bagoué Bagoué region, based 

on future climate data from 2026-2050. The AquaCrop 

model developed by the FAO was used for its robustness, 

simplicity and reduced input data. Historical weather 

data were obtained from the NASA and CHS satellite 

NASA and CHIRPS (Climate Hazards Group Infrared 

Precipitation with Station) for the years (1981- 2020). 

For the simulation of future yields and requirements, all 

the climate models (CNRM-CM5-LR and EC-EARTH) 

were used. These models able to simulate the region's 

future climate satisfactorily. satisfactory. According to 

climate projections, the region should be drier and 

warmer drier and warmer in the future, particularly 

during the crop growing seasons. In addition, future 

scenarios show that water requirements 13% under the 

RCP8.5 scenario. In corn yields are expected to decrease 

significantly in both scenarios both scenarios, up to 17% 

under RCP8.5. We can therefore conclude that maize 

maize will be negatively affected by climate change in 

the region. By Moreover, this study shows that maize 

yields (C4 crop) are strongly influenced by changes in 

precipitation and increased temperature. 
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