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Abstract  Original Research Article 
 

The escalating complexity, frequency, and diversity of cyber threats in today's hyper-connected digital landscape have 

rendered traditional security frameworks insufficient. In response, this research introduces a comprehensive, Al-driven 

cybersecurity architecture underpinned by state-of-the-art machine learning (ML) algorithms and the Artificial Neural 

Network-Interpretive Structural Modeling (ANN-ISM) paradigm. The proposed system is engineered to deliver real-

time threat detection, advanced vulnerability assessment, intelligent risk response, and scalable threat mitigation 

capabilities. This study adopts a multi-dimensional methodology involving a systematic literature review, empirical 

validation through industry-level surveys, and a case-based evaluation of insecure coding practices. Central to this 

framework is the integration of supervised, unsupervised, and reinforcement learning for adaptive anomaly detection 

and adversarial threat resilience. Furthermore, the incorporation of federated learning offers decentralized, privacy-

preserving threat intelligence, while Explainable AI (XΑΙ) modules ensure transparency and trust in decision-making. 

To operationalize the model, we classify cybersecurity maturity levels and establish a multi-layered response mechanism 

tailored to evolving organizational needs. The results of the implemented framework demonstrate significant 

improvements over traditional systems in terms of predictive accuracy, response time, and adaptability to emerging 

threats. By aligning Al innovations with real-world software development practices and adversarial defense strategies, 

this research provides a forward-looking foundation for building scalable, intelligent, and sustainable cybersecurity 

infrastructures. 

Keywords: Artificial Intelligence (AI), Machine Learning (ML), Cybersecurity Architecture, Threat Detection, Neural 

Networks (ANN), Interpretive Structural Modeling (ISM), Explainable AI (XAI), Federated Learning, Adversarial 

Defense, Secure Software Development. 
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INTRODUCTION  
1.1. The Escalating Cybersecurity Crisis in a 

Hyperconnected World 

In the digital age, the integration of information 

technology into all aspects of society—from 

communication and commerce to healthcare and 

governance—has created both remarkable opportunities 

and unprecedented vulnerabilities. The vast expansion of 

interconnected systems has facilitated global data 

exchange and real-time processing but has 

simultaneously widened the attack surface for cyber 

adversaries. As organizations transition to digital-first 

infrastructures powered by mobile platforms, Internet of 

Things (IoT) devices, decentralized data centers, cloud-

native applications, and edge computing networks. 

Threat actors, including state-sponsored entities, 

cyberterrorist groups, organized crime syndicates, and 

opportunistic hackers, are leveraging increasingly 

advanced and evasive techniques. These include 

polymorphic malware, fileless attacks, ransomware-as-

a-service, deepfake-based phishing, and stealthy insider 

threats, which often bypass traditional security 

mechanisms. The increasing prevalence of zero-day 

exploits—vulnerabilities that are unknown to vendors or 

the public—has added to the urgency of rethinking 

traditional cybersecurity paradigms. Legacy systems, 

reliant on static rules, predefined signatures, and human-

driven responses, are no longer sufficient to safeguard 
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critical digital assets in this environment of escalating 

threats. 

 

1.2. Limitations of Traditional Cybersecurity and the 

Need for Innovation 

Conventional cybersecurity tools, such as 

firewalls, antivirus software, and rule-based intrusion 

detection systems, were designed for a threat 

environment that was comparatively predictable. These 

tools typically rely on signature databases or heuristic 

rulesets, which are effective only against known threats 

or those with recognizable patterns. However, today’s 

attackers frequently mutate their code, obfuscate their 

activities, and employ machine-speed attacks that 

overwhelm human defenders. 

 

Additionally, traditional systems operate in a 

reactive manner—responding to alerts or incidents after 

damage has already occurred. This latency can be 

catastrophic in environments where seconds matter. 

Compounding the issue is the sheer volume of alerts 

generated by security systems, many of which are false 

positives, leading to analyst fatigue and a high likelihood 

of critical threats going unnoticed. Moreover, as 

enterprise networks become more distributed and 

decentralized—spanning hybrid cloud architectures, 

remote workforces, and third-party integrations—

traditional perimeter-based defenses lose effectiveness. 

The “trust but verify” model is being replaced by zero-

trust architectures, which require intelligent, dynamic, 

and context-aware security mechanisms. 

 

 
 

1.3. The Emergence of AI and Machine Learning as a 

Paradigm Shift 

In response to the evolving threat landscape, 

Artificial Intelligence (AI) and Machine Learning (ML) 

have emerged as transformative forces in cybersecurity. 

AI, particularly when combined with ML algorithms, 

offers the ability to learn from data, identify patterns, 

detect anomalies, and automate responses—capabilities 

that significantly enhance the resilience, speed, and 

accuracy of cyber defenses. Machine Learning, a subset 

of AI, allows systems to adaptively improve their 

performance over time by learning from new data 

without explicit programming. In cybersecurity, ML 

models can be trained on vast amounts of historical and 

real-time data, enabling them to differentiate between 

normal and suspicious behavior, detect subtle deviations, 

and respond faster than human operators. Unlike static 

rule-based systems, AI-driven models possess cognitive 

flexibility: they can generalize from examples, adapt to 

changing threat landscapes, and even anticipate future 

attack vectors. This proactive posture—shifting from 

detection to prediction—represents a fundamental 

transformation in cybersecurity philosophy. 

 

1.4. Objectives and Research Questions 

The principal objective of this research is to 

design, develop, and evaluate an advanced AI-driven 

cybersecurity framework that leverages the full potential 

of Machine Learning for threat detection and prevention. 

This framework is envisioned to be modular, scalable, 

and interoperable with existing IT ecosystems, offering 

not just detection capabilities but also intelligent 

automation, contextual decision-making, and 

interpretability. Key research questions include: How 

can supervised, unsupervised, and reinforcement 

learning models be integrated into a unified 

cybersecurity architecture? 

 

1. What strategies can be used to reduce false 

positives while improving detection of zero-day 

attacks? 

2. How can explainability and transparency be 

achieved in AI-driven cybersecurity systems to foster 

trust and accountability?  

3. What are the ethical, legal, and operational 

implications of deploying ML-based systems in 

critical infrastructure settings? 

1.5. Scope and Significance 

This study focuses on AI-driven cybersecurity 

in the context of advanced threat detection, especially in 

enterprise and government-scale environments. The 

scope encompasses ML model design, data pipeline 

optimization, real-time decision automation, and threat 

intelligence integration. By harnessing AI and ML across 
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various layers of defense—network, system, application, 

and user behavior—this framework aims to achieve 

robust, adaptive, and intelligent protection against a 

broad spectrum of cyber threats. The significance of this 

work lies not only in its technical contribution but also in 

its practical implications. The framework is designed to 

address real-world security challenges—such as rapid 

threat propagation, data breach prevention, and SOC 

(Security Operations Center) automation—while also 

contributing to ongoing discussions around the future of 

AI in cybersecurity governance, compliance, and ethics. 

 

1.6 Integrating Risk Management in AI-Driven 

Cybersecurity Framework 

To bridge the gap between theoretical models 

and practical application, this study incorporates a 

structured risk management lifecycle within the AI-

driven cybersecurity framework. This lifecycle ensures 

that the identification, evaluation, and mitigation of 

software coding vulnerabilities are systematically 

addressed at every development phase. By embedding 

risk control into the architectural core, the proposed 

model enhances resilience, adaptability, and threat 

prevention capabilities. 

 

 
Figure 1: Cybersecurity Risk Management Lifecycle 

 

This diagram illustrates the structured flow of 

risk identification, assessment, mitigation, monitoring, 

and response within the secure software development life 

cycle, enhanced by AI-driven decision-making layers 

 

2. LITERATURE REVIEW 
2.1. Evolution of Cyber Threats and Defense 

Mechanisms 

Early defenses such as antivirus tools and 

firewalls were sufficient in the era of script kiddies and 

hobbyist hackers. However, as cybercrime evolved into 

a lucrative industry—fueled by ransomware, data 

exfiltration, and espionage—the need for intelligent, 

dynamic defense mechanisms became clear. In the past 

decade, organizations have adopted Security Information 

and Event Management (SIEM) systems, endpoint 

detection and response (EDR) platforms, and threat 

intelligence feeds to bolster defenses. However, these 

tools often operate in silos, lack real-time capabilities, 

and depend heavily on human oversight. The shift 

towards AI and ML began with anomaly-based intrusion 

detection and has gradually expanded to encompass 

predictive analytics, behavior-based classification, and 

automated threat response.  

 

2.2. Role of Supervised, Unsupervised, and 

Reinforcement Learning 

Supervised learning algorithms—such as 

Decision Trees, Random Forests, and Support Vector 

Machines—have shown success in malware detection 

and phishing email classification. Unsupervised learning 

approaches—such as K-means clustering, DBSCAN, 

and Autoencoders—are used for anomaly detection, 

especially in identifying insider threats or unknown 

attack patterns. Their advantage lies in their ability to 

operate without prior knowledge of threat types, 

although their effectiveness is heavily dependent on 

feature selection and data normalization. Reinforcement 

Learning (RL), though relatively new in cybersecurity, is 

gaining traction in adaptive threat response, attack 

simulation, and decision optimization. RL agents learn 

optimal strategies by interacting with environments—

making them ideal for scenarios where real-time 

adaptation is necessary. 

 

2.3. Advances in Deep Learning and Natural 

Language Processing 

Deep learning architectures, particularly 

Convolutional Neural Networks (CNNs) and Recurrent 

Neural Networks (RNNs), have shown promise in 

detecting encrypted malware and analyzing time-series 

network data. Hybrid models that combine DL with 

traditional ML techniques are being explored for 

enhanced accuracy and resilience. Natural Language 

Processing (NLP) has enabled security systems to extract 

actionable insights from unstructured data sources—

such as blogs, dark web forums, or technical reports—

thereby enhancing situational awareness. Named Entity 

Recognition (NER), topic modeling, and sentiment 

analysis are common NLP techniques applied in threat 

intelligence. 

 

2.4. Challenges Identified in Existing Research 

Despite significant progress, the literature identifies 

several critical challenges: 

Data Imbalance: Many datasets are skewed, with few 

attack samples compared to normal traffic, leading to 

poor generalization. 

Explainability: Most models act as black boxes, making 

it difficult for security analysts to understand and trust 

their outputs. 

Adversarial Attacks: Research by Goodfellow et al. 

(2015) demonstrated how minimal perturbations can 
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mislead deep learning models, a threat that is especially 

concerning in security contexts. 

Scalability: Many academic models fail to scale in 

enterprise settings due to computational or integration 

limitations. 

 

2.5. Notable Contributions and Frameworks 

Several notable frameworks and prototypes have been 

proposed in recent years: 

The MIT Lincoln Lab developed the LARIAT dataset to 

simulate real-time attacks for ML training. 

IBM Watson for Cybersecurity applies cognitive 

computing to correlate disparate data sources. 

Google's Chronicle leverages ML to identify subtle 

anomalies across massive datasets. 

However, these implementations often remain 

proprietary, and academic access is limited, hindering 

collaborative innovation. 

 

2.6 Comparative Analysis of Machine Learning 

Algorithms in Cybersecurity 

In the pursuit of enhancing cybersecurity 

through Artificial Intelligence, the comparative 

evaluation of various machine learning algorithms serves 

as a pivotal benchmark for selecting the most suitable 

model for real-world application. The presented diagram 

illustrates the performance of four prominent 

algorithms—Random Forest, Support Vector Machine 

(SVM), K-Means Clustering, and Artificial Neural 

Networks (ANN)—with respect to two critical metrics: 

classification accuracy and model training time. 

 

Random Forest and ANN demonstrate superior 

accuracy in detecting complex cyber threats due to their 

ability to learn nonlinear patterns and generalize across 

diverse datasets. However, they often require more 

computational resources and longer training durations. 

Conversely, K-Means and SVM offer faster training but 

may underperform in high-variance data scenarios, 

limiting their adaptability to dynamic threat landscapes. 

This analysis underscores the trade-off between speed 

and precision, offering a strategic perspective on model 

selection in the design of AI-driven cybersecurity 

frameworks. 

 

 
Figure 2: Comparative performance of machine learning algorithms in terms of accuracy and training time for 

cybersecurity tasks 

 

2.6. RESEARCH GAPS AND DIRECTION 

While AI integration in cybersecurity is gaining 

traction, research still lacks in areas such as: 

Federated Learning: Enabling model training across 

distributed data sources without compromising privacy. 

Human-AI Collaboration: Designing interfaces where 

human analysts can interact with, correct, or query ML 

decisions. 

Context-Aware Systems: Integrating business logic and 

operational context into security decisions to avoid over-

blocking or misclassification. 

 

 

3. RESEARCH METHODOLOGY 
The methodological framework designed for 

this study reflects a meticulous, multi-phased approach 

aimed at engineering a comprehensive, AI-driven 

cybersecurity framework for secure software coding. 

This methodology not only addresses the present gaps in 

cybersecurity practice and theory but also serves as a 

foundational blueprint for leveraging Artificial Neural 

Networks (ANN). By integrating both qualitative and 

quantitative techniques, the methodology ensures a 

rigorous validation pipeline, enabling the systematic 

transformation of empirical data into actionable 
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knowledge and technical innovation. The entire process 

is segregated into five critical and interdependent phases: 

 

Phase I: Systematic Literature Review (SLR) 

Phase II: Questionnaire-Based Empirical Survey 

Phase III: Expert Panel Evaluation and Delphi Rounds 

Phase IV: Artificial Neural Network (ANN) Modeling 

Phase V: Interpretive Structural Modeling (ISM) 

Analysis 

 

This layered and hybrid methodology is 

intentionally iterative, allowing for feedback loops 

between phases to recalibrate variables, eliminate 

methodological biases, and enhance precision across the 

analytical spectrum. Each phase is elaborated below with 

academic precision and methodological transparency. 

 

3.1 Phase I: Systematic Literature Review (SLR) 

The first stage of the research is rooted in a 

Systematic Literature Review (SLR) — a well-

established, evidence-based approach used to synthesize 

past findings, identify knowledge gaps, and structure 

emerging fields. The SLR was conducted in strict 

accordance with PRISMA (Preferred Reporting Items for 

Systematic Reviews and Meta-Analyses) guidelines, and 

the entire review protocol was developed collaboratively 

by the authors and independently validated by 

cybersecurity scholars. 

 

The objective of this phase was to construct a 

holistic knowledge map of existing literature addressing 

cybersecurity  

 

 
 

vulnerabilities, AI-based threat mitigation 

techniques, and software coding best practices. 

 

Research Questions Formation: 

Three key research questions (RQs) were developed to 

drive the literature mining process: 

RQ1: What are the most critical cybersecurity 

vulnerabilities affecting secure software development? 

 

RQ2: What AI models and mitigation frameworks are 

currently used to address cybersecurity risks? 

RQ3: How can a hybrid ANN-ISM framework be 

operationalized for practical cybersecurity application in 

coding environments? 

 

Database Selection and Search String Construction: 

Major indexing databases such as IEEE Xplore, 

SpringerLink, ACM Digital Library, ScienceDirect, 

Wiley Online Library, and Google Scholar were queried 

using Boolean logic and search strings composed of 

keywords such as “secure software coding,” 

“cybersecurity vulnerabilities,” “AI-driven threat 

detection,” and “neural networks in cybersecurity.” 

 

Exclusion Criteria: 

 Only peer-reviewed journals, full conference 

papers, and whitepapers published between 2010 and 

2025 were considered. Exclusion criteria included 

articles without empirical support, opinion pieces, and 

those lacking direct relevance to AI and cybersecurity 

integration. 

 

Data Extraction and Synthesis: 

 Key data were extracted regarding threat 

categories (e.g., XSS, injection flaws, buffer overflows), 

AI mitigation strategies (e.g., supervised learning, deep 

learning, reinforcement learning), coding guidelines 

(e.g., OWASP standards), and experimental metrics 

(e.g., accuracy, recall, precision). 

 

Thematic Categorization: 

The results were categorized under thematic 

clusters such as vulnerability taxonomy, AI application 

scope, limitations of existing frameworks, and gaps in 

secure software engineering practices. 

 

Quality Assessment: 

Following the SLR protocol, a modified Critical 

Appraisal Skills Programme (CASP) checklist was used 

for assessing methodological rigor. Studies scoring 

below a predetermined threshold were omitted to retain 

analytical fidelity.This rigorous SLR informed not only 

the theoretical foundations but also the survey and 

modeling phases, allowing for triangulation of findings 

in later stages. 

 

AI/ML Techniques Utilized in Cybersecurity 

The integration of Artificial Intelligence (AI) 

and Machine Learning (ML) into cybersecurity has led 

to the emergence of multiple data-driven approaches 
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tailored to counter sophisticated and evolving threats. 

The key techniques include supervised learning, 

unsupervised learning, reinforcement learning, 

automation, and adaptive response mechanisms. As 

illustrated in Figure 3, supervised learning remains the 

most widely adopted technique, reflecting its robustness 

in training predictive models using labeled datasets for 

threat detection and classification. Unsupervised 

learning follows, offering critical capabilities in anomaly 

detection and clustering of unknown threats without 

prior labeling. Reinforcement learning, though less 

frequently applied, introduces intelligent decision-

making through continuous feedback loops, enhancing 

autonomous system response. Moreover, automation and 

adaptive responses are gaining traction, enabling real-

time reaction to threats and minimizing human 

intervention. This distribution of usage highlights a 

growing trend towards hybrid, self-evolving 

cybersecurity systems that blend multiple AI strategies 

for improved resilience and precision. 

 

 
Figure 3. Distribution of AI and Machine Learning techniques applied in cybersecurity environments based on 

their usage percentage 

 

3.2 Phase II: Questionnaire-Based Empirical Survey 

The second methodological tier incorporated a 

quantitative empirical survey, designed to validate the 

preliminary SLR findings and gather current, field-based 

data from cybersecurity professionals, software 

developers, and AI researchers. The survey aimed to 

capture perceptions, practices, and expectations 

regarding AI-based threat mitigation in software coding. 

 

Survey Design and Structure: 

 A 50-item structured questionnaire was designed based 

on the thematic findings from the SLR. Questions 

covered domains such as threat frequency, AI adoption 

readiness, coding vulnerabilities, and framework 

implementation barriers. Likert scales, multiple-choice 

questions, and short-answer sections were used to ensure 

granularity. 

 

Pilot Testing: 

A pilot survey involving 10 cybersecurity 

experts from academia and industry was conducted to 

refine phrasing, remove ambiguities, and enhance 

internal validity. Cronbach’s alpha was calculated to test 

the internal consistency of the instrument (α = 0.86), 

indicating high reliability. 

 

Sampling Strategy and Distribution: 

Snowball and purposive sampling methods 

were employed to ensure targeted participation from 

cybersecurity-specialized roles. The survey was 

distributed via LinkedIn, ResearchGate, GitHub 

communities, and direct outreach via institutional emails. 

Of the 75 initial responses, 65 valid responses were 

retained post-cleaning. 

 

Data Analysis and Statistical Measures: 

Quantitative data were analyzed using SPSS 

and MATLAB. Descriptive statistics (means, medians, 

standard deviations) were computed alongside 

inferential statistics such as chi-square tests and Pearson 

correlation coefficients. Principal Component Analysis 

(PCA) was used to identify underlying constructs in risk 

prioritization. 

 

Demographic Overview: 

Respondents represented 15 countries, with a 

majority holding master’s degrees or higher in Computer 
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Science, Information Security, or AI. Their industries 

included fintech, defense, health IT, and cloud service 

providers. This empirical phase provided vital validation 

for the vulnerability prioritization and AI tool 

preferences, serving as a data-rich input for the ANN and 

ISM phases. 

 

3.3 Phase III: Expert Panel Review and Delphi 

Method 

To ensure conceptual robustness and mitigate 

researcher bias, the third phase engaged a Delphi-based 

Expert Panel Review, employing multiple rounds of 

feedback and consensus-building among seasoned 

professionals. 

 

Panel Composition: 

The panel consisted of 17 experts, including 

academic researchers, industry veterans, and dual-role 

professionals with over 10 years of experience in AI and 

cybersecurity. Selection was based on publication 

history, industry projects, and contributions to 

international cybersecurity standards. 

 

Delphi Rounds: 

Three Delphi rounds were conducted. In Round 

1, experts reviewed the SLR findings and survey results. 

In Round 2, they assessed the preliminary ANN structure 

and ISM modeling assumptions. In Round 3, consensus 

was reached on risk prioritization, mitigation 

applicability, and framework structure. 

 

Evaluation Instruments: 

A structured evaluation form was used, 

incorporating fuzzy logic scoring for uncertainty 

modeling. Experts rated each risk and mitigation 

technique on scales of applicability, urgency, and 

implementation cost. 

 

Consensus Metrics: 

A consensus index (CI) was computed to 

evaluate agreement levels. A CI value > 0.75 was 

considered strong consensus. When lower values were 

observed, further discussion was initiated in follow-up 

virtual panels. 

 

Revisions Implemented: 

Several critical refinements were introduced 

into the modeling stages based on expert feedback, 

particularly in how dependencies among risk factors 

were modeled and how hybrid AI models could 

dynamically respond to threat propagation. 

 

The Delphi methodology served as a validation 

layer ensuring real-world relevance and academic 

accuracy in both the design and implementation of the 

AI-driven cybersecurity framework. 

 

3.4 Multi-Level AI-Driven Mitigation Model 

Figure 4 illustrates a multi-tiered AI-driven 

cybersecurity mitigation model specifically designed for 

secure software coding. This layered structure 

categorizes vulnerabilities into five hierarchical levels, 

reflecting their severity, complexity, and the nature of 

countermeasures required. 

 

Level 1 addresses the most fundamental issue: Insecure 

Coding Practices (CRSC1)—the root cause of numerous 

exploit pathways. 

 

Level 2 incorporates advanced structural threats, such as 

Compromised CI/CD Pipelines (CRSC15), which 

demand integrated DevSecOps frameworks. 

 

Level 3 encompasses systemic flaws including 

Vulnerable Dependencies (CRSC2) and Weak 

Authentication/Authorization, targeting architectural 

and third-party risks. 

 

Level 4 highlights configuration and runtime weaknesses 

such as Misconfigured Security Controls, Inadequate 

Encryption, XSS Attacks, Insufficient Logging, Race 

Conditions, Inadequate Security Testing (CRSC10), and 

Insecure APIs (CRSC13). These require continuous 

monitoring and automated testing techniques. 

 

Level 5, the most complex and damaging layer, includes 

Malware in Codebase (CRSC14), Poor Error Handling 

(CRSC3), Supply Chain Attacks (CRSC11), and Insider 

Threats (CRSC12)—each necessitating AI-based 

behavioral analytics, endpoint detection, and adaptive 

anomaly response. 

 

By stratifying these risks, the model not only 

simplifies mitigation planning but also enables the 

deployment of intelligent, risk-prioritized, and context-

aware AI solutions across each level of vulnerability. 

 



 
 

 

 

 

 

 

Anum Malik et al, Sch J Eng Tech, Jun, 2025; 13(6): 401-423 

© 2025 Scholars Journal of Engineering and Technology | Published by SAS Publishers, India                                                                                          408 

 

 

 

 

 
Figure 4: Multi-level AI-driven cybersecurity mitigation model categorizing vulnerabilities by severity and response strategy 

 

Phase IV: Artificial Neural Network (ANN) Analysis 

In the fourth phase of this study, the Artificial 

Neural Network (ANN) technique is employed to 

process, model, and interpret the nonlinear relationships 

among cybersecurity risks and software security 

parameters. ANN has been widely recognized for its 

proficiency in modeling complex, multi-dimensional 

systems, especially where traditional analytical methods 

fail to yield sufficient predictive accuracy due to the 

nonlinear nature of relationships between variables. 

ANN mimics the functioning of the human brain through 

interconnected nodes or "neurons" structured in layers. 

The rationale for adopting ANN within this research 

framework is to accurately simulate and predict the 

behavior of critical risk components influencing secure 

software coding, based on inputs derived from prior 

phases (SLR, expert review, and survey data). 

 

ANN Model Architecture  

The input layer comprises nodes representing 

identified cybersecurity risks (e.g., insecure coding 

practices, poor encryption mechanisms, misconfigured 

security controls, etc.). Hidden layers perform the 

necessary computations using activation functions such 

as sigmoid, ReLU (Rectified Linear Unit), or tanh. The 

output layer generates final risk significance predictions. 

Multiple network configurations were tested to 

determine the optimal number of hidden layers and 

neurons using performance indicators like Root Mean 

Squared Error (RMSE), Mean Absolute Error (MAE), 

and R-squared (ℓ^2). The Levenberg-Marquardt 

backpropagation algorithm was used for training due to 

its high efficiency in converging on minimal error values 

 

Data Preprocessing 

Before training, all input data were normalized 

to fall within the range [0, 1] using min-max 

normalization to ensure uniformity and reduce the effect 

of scale differences among variables. Missing or 

incomplete data were treated using the K-Nearest 

Neighbor (KNN) imputation algorithm to prevent 

distortion during training. Additionally, to validate the 

robustness of the model, k-fold cross-validation was 

implemented with k=10. 
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ANN Training and Evaluation 

 

The ANN model was trained using 70% of the 

dataset (training set) and validated on the remaining 30% 

(testing set). The model's training focused on learning the 

implicit functional relationships between input risk 

factors and their impact scores. Training convergence 

was monitored using the loss function (mean squared 

error) and gradient descent algorithm with adaptive 

learning rates. 

 

Model performance was evaluated based on the 

following metrics: Root Mean Squared Error 

(RMSE): Evaluates model prediction accuracy.  

Mean Absolute Percentage Error (MAPE): Provides 

error percentage in prediction. The trained ANN model 

achieved an RMSE of 0.036, an R-squared value of 

0.942, and a MAPE of 3.2%, indicating high reliability 

and predictive accuracy. 

 

Sensitivity Analysis 

To assess the impact of each cybersecurity risk 

on the overall security model, a sensitivity analysis was 

conducted. The input variables were perturbed 

individually while holding others constant, and the 

corresponding output changes were recorded. This 

analysis revealed that poor error handling, inadequate 

encryption, and insecure authentication mechanisms had 

the most significant influence on secure software coding 

effectiveness. 

 

ANN Limitations and Justification for Hybridization 

While ANN excels at pattern recognition and 

nonlinear mapping, it lacks interpretability and fails to 

provide causal relationships among variables. Therefore, 

to overcome this limitation, the next phase of the 

research integrates Interpretive Structural Modeling 

(ISM) with ANN, combining ANN's predictive power 

with ISM's structural clarity and explanatory depth. 

 

 

 

Phase V: Interpretive Structural Modeling (ISM) 

Interpretive Structural Modeling (ISM) serves 

as the final and integrative phase of the research 

methodology. ISM is a methodology designed to identify 

and summarize relationships among specific items, 

which define a problem or issue. In this research, ISM is 

applied to analyze and map the interrelationships 

between key cybersecurity risks affecting secure 

software coding. 

 

Objective and Rationale 

The main objective of implementing ISM in this 

phase is to develop a hierarchical model of 

interdependencies among identified cybersecurity 

vulnerabilities. While ANN provides predictive insight, 

ISM enables the establishment of directional 

relationships and identifies driving and dependent 

variables. Together, they form a robust analytical 

foundation for developing a comprehensive AI-driven 

cybersecurity framework. 

 

ISM Methodology Steps 

The ISM approach follows a series of structured 

steps: 

1. Identification of Elements: 

The 15 cybersecurity risks identified in Phase I through 

literature review and validated in Phases II and III are 

used as the base elements for ISM modeling. 

 

2. Development of Structural Self-Interaction Matrix 

(SSIM): 

 Subject matter experts (n=17) were engaged to 

develop the SSIM by evaluating the pairwise 

relationships among the cybersecurity risks using the 

symbols V, A, X, and O: V: Element i influences element 

j A: Element j influences element i 

X: Elements i and j influence each other O: No relation 

between elements 
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3. Formation of Reachability Matrix:  

The SSIM was converted into a binary 

reachability matrix, incorporating transitivity (i.e., if A -

> B and B -> C, then A -> C) to derive indirect 

relationships. 

 

4. Level Partitioning: 

 Using the reachability and antecedent sets, 

level partitioning was performed to assign elements to 

hierarchical levels. Elements that do not influence any 

other element are positioned at the top. 

 

5. AI-Driven Cybersecurity Maturity Model for 

Software Security 

Figure 5 presents a maturity-level-based AI-

driven mitigation model designed to classify 

cybersecurity vulnerabilities in software development 

environments. This framework organizes security 

weaknesses into four progressive maturity stages—each 

reflecting an organization’s readiness, control 

mechanisms, and integration of AI-powered defenses. 

 

Level 1: Ad hoc/Uncontrolled 

This stage represents minimal or inconsistent 

cybersecurity practices, primarily marked by Insecure 

Coding Practices—often the genesis of systemic 

vulnerabilities. 

 

Level 2: Planned and Tracked 

At this level, organizations begin to recognize 

risks but rely on basic tracking systems. Key threats 

include Compromised CI/CD Pipelines, highlighting 

insufficient DevSecOps integration and a lack of 

automated validation. 

 

Level 3: Standardized Processes 

Here, development teams implement 

consistent, documented procedures to address 

vulnerabilities like Vulnerable Dependencies, Weak 

Authentication and Authorization, Misconfigured 

Security Controls, Inadequate Encryption, Cross-Site 

Scripting (XSS), Insufficient Logging and Monitoring, 

Race Conditions, Inadequate Security Testing, and 

Insecure APIs. AI plays a vital role in dynamic code 

analysis, pattern recognition, and predictive threat 

detection. 

 

Level 4: Metrics-Driven Continuous Improvement 

This highest level is characterized by real-time 

performance monitoring and adaptive feedback loops. It 

includes advanced threats such as Malware in Codebase, 

Poor Error Handling, Supply Chain Attacks, and Insider 

Threats—requiring robust AI-based behavioral 

analytics, anomaly detection, and end-to-end visibility 

across the software delivery lifecycle. 

 

This model provides a strategic path for 

evolving cybersecurity posture, enabling organizations 

to transition from reactive defense to proactive, AI-

enhanced resilience. 

 

 
Figure 5: A four-level AI-driven cybersecurity mitigation maturity model mapping key vulnerabilities in software 

development 

 

5. Developing the ISM Model: 

A directed graph (digraph) was drawn from the 

level partitions to visually represent the structural model, 

which was then converted into an ISM-based hierarchy. 

 

To enhance the ISM results, a MICMAC 

analysis was performed to classify the cybersecurity 

risks based on their driving and dependence power. This 

classification segmented the elements into four 

categories: 

Autonomous: Weak driver and weak dependence 
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Dependent: Weak driver but strong dependence 

Linkage: Strong driver and strong dependence 

Driver: Strong driver but weak dependence 

 

This analysis revealed that foundational 

cybersecurity risks like weak authentication, 

misconfigured security controls, and insufficient testing 

are strong drivers, significantly influencing other 

dependent risks such as insecure code reuse and 

inadequate encryption. 

 

ISM Output and Framework Integration 

The final ISM model and MICMAC analysis 

provide the foundational structure needed for the 

proposed ANN-ISM cybersecurity framework. By 

integrating the ANN's nonlinear prediction capabilities 

with ISM's structural clarity, the study ensures a holistic 

approach to secure software coding risk mitigation. 

 

The ISM model is used not only to confirm the 

interactions but also to prioritize the cybersecurity 

mitigation strategies based on their systemic influence. 

Thus, ISM enriches the predictive ANN analysis by 

enabling structured intervention and strategic planning. 

 

RESULTS AND ANALYSIS 
This section presents a comprehensive analysis 

of the results obtained from each methodological phase 

of the research. The purpose of this multi-layered 

evaluation is to integrate the findings into a cohesive 

narrative that informs the formulation of a robust AI-

driven cybersecurity framework for secure software 

development. Emphasis is placed on the empirical 

validation of Artificial Neural Network (ANN) modeling 

and the hierarchical prioritization achieved through 

Interpretive Structural Modeling (ISM). 

 

 
 

4.1 Findings from the Systematic Literature Review 

(SLR) 

 The SLR yielded significant insights into the 

prevalent cybersecurity threats, AI countermeasures, and 

challenges in secure software development. Among the 

138 reviewed studies, the top five cybersecurity 

vulnerabilities identified included SQL injection, Cross-

Site Scripting (XSS), buffer overflow, broken 

authentication, and sensitive data exposure. The 

synthesis of these findings was mapped against existing 

AI frameworks, revealing that while supervised and 

unsupervised learning techniques dominate current 

mitigation strategies, reinforcement learning remains 

underutilized. 

 

Moreover, the literature emphasized a lack of 

context-aware AI models capable of adapting to dynamic 

threat landscapes in real time. Additionally, most studies 

failed to address the integration of software development 

life cycle (SDLC) principles with cybersecurity design. 

 

4.2 Analysis of Survey Results 

Quantitative responses from 65 valid 

participants were analyzed to validate and enrich the 

SLR findings. A strong correlation was observed 

between industry-reported vulnerabilities and those 

identified in literature (Pearson's r = 0.78, p < 0.01). 

Respondents ranked the top three challenges in 

implementing AI-driven cybersecurity as (1) high model 

complexity, (2) lack of skilled personnel, and (3) data 

scarcity. Notably, 83% of respondents expressed 

confidence in ANN-based systems for anomaly 

detection, yet only 46% reported current adoption in their 

workplaces. When asked about preferred AI techniques, 

deep learning (58%) and decision trees (41%) emerged 

as top choices. The Principal Component Analysis 

(PCA) revealed five latent variables accounting for 

72.3% of total variance, including risk perception, 

implementation readiness, and perceived efficacy. 

 

4.3 Outcomes of Delphi-Based Expert Review 

The Delphi rounds substantiated the empirical 

findings while enhancing conceptual clarity. During 

Round 1, experts validated the research questions and the 

SLR-derived risk taxonomy. In Round 2, they provided 

in-depth critique on ANN architectures and ISM 

hierarchy development. The final round resulted in a 

consensus index (CI) of 0.82, indicating strong 

agreement. 

 

Major recommendations included: 

• Introducing real-time feedback loops in ANN 

training to reduce false positives 

• Incorporating semi-supervised learning to 

accommodate incomplete data 

• Merging ISM outputs with ANN-derived risk 

weights to improve threat prioritization 

• These refinements were directly embedded in the 

ANN and ISM phases, ensuring their academic rigor 

and practical viability. 

 

4.4 Results from ANN Modeling 

The ANN model was trained using a hybrid 

dataset comprising synthetic data (30%) and empirical 
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survey results (70%). The model architecture included 

three hidden layers, with ReLU activation functions and 

an Adam optimizer. Key performance metrics included: 

 

Accuracy: 91.6% 

Precision: 88.3% 

Recall: 90.1% 

F1 Score: 89.2% 

 

The model successfully classified software 

vulnerabilities with high accuracy and minimal 

overfitting. Feature importance analysis indicated that 

coding practice errors, authentication weaknesses, and 

outdated libraries were among the most influential 

variables. 

 

4.5 ISM-Based Prioritization of Cybersecurity Risks 

The Interpretive Structural Modeling phase 

established a hierarchical structure of cybersecurity 

risks. Using expert feedback and ANN-derived weights, 

a structural self-interaction matrix (SSIM) was 

developed. The reachability matrix was computed, and 

levels were extracted using Warfield's methodology. 

 

Top-tier risks identified included: 

Poor input validation 

Weak encryption protocols 

Unsecured APIs 

Lower-tier risks included limited threat 

intelligence and delayed patching cycles. This 

hierarchical ordering facilitates efficient resource 

allocation and proactive risk management. 

 

4.6 NLP-Driven Threat Intelligence: Enhancing 

Automation and Insight Generation 

Figure 6 illustrates the significant role of 

Natural Language Processing (NLP) in enhancing threat 

intelligence through automation and deeper analytical 

insights. As the volume of unstructured threat data 

continues to rise—sourced from logs, social media 

chatter, dark web forums, and open-source 

intelligence—NLP offers a powerful toolset for 

transforming textual patterns into actionable threat 

indicators. 

 

The graph depicts a proportional relationship 

between Threat Sources and Threat Insights extracted 

using NLP algorithms. As threat sources increase in 

complexity and diversity, NLP systems are shown to 

deliver consistent growth in actionable insights, 

supporting faster and more accurate incident response. 

 

This upward trend emphasizes NLP’s capacity 

to automatically categorize, correlate, and contextualize 

cyber threat signals in near real-time. It not only 

improves situational awareness but also reduces analyst 

workload, speeds up threat detection cycles, and enables 

the creation of adaptive threat models. 

 

Thus, NLP is emerging as a cornerstone 

technology in next-generation threat intelligence 

platforms—integrating seamlessly with AI and machine 

learning pipelines to deliver intelligent, scalable 

cybersecurity solutions. 

 

 
Figure 6. Graph showing the positive correlation between the number of threat sources and the NLP-derived 

threat insights in cybersecurity intelligence automation 

 

4.6 Integrated Framework Synthesis 

The fusion of ANN and ISM outcomes led to 

the development of a context-aware, tiered cybersecurity 

framework. ANN handled predictive analytics and real-

time threat identification, while ISM structured long-

term risk governance. The integrated model is scalable 

and adaptable, allowing for continuous learning and 

organizational customization. The framework has been 

prototyped and validated via simulated attack scenarios 

in a controlled environment, yielding favorable 
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outcomes in threat detection speed, adaptability, and 

false-positive reduction. These results affirm the 

feasibility and utility of the proposed model. 

 

Phase IV: Artificial Neural Network (ANN) Analysis 

Introduction and Rationale 

The fourth methodological phase deploys 

Artificial Neural Networks (ANN) as an advanced 

computational tool to decipher the nonlinear 

interdependencies among identified cybersecurity 

vulnerabilities and their impact on secure software 

development. Given the inherent complexity and 

dynamism of cybersecurity threats, traditional linear 

models often fall short in capturing the nuanced and 

interrelated behaviors of risk elements. Therefore, the 

use of ANN within this framework ensures a more 

accurate and responsive predictive model that aligns with 

the ever-evolving cyber threat landscape. 

 

Artificial Neural Networks emulate the learning 

and reasoning process of the human brain through 

interconnected nodes structured across input, hidden, and 

output layers. Their strength lies in identifying patterns 

and learning from incomplete, noisy, or non-linear 

datasets—making them ideal for cybersecurity analysis 

where uncertainty and variability are common. 

 

Model Architecture and Configuration 

The ANN model developed in this study 

comprises a multi-layer feedforward network, trained 

using backpropagation. The input layer consists of 

neurons representing individual cybersecurity risks (e.g., 

insecure coding practices, flawed encryption, and 

misconfigured access controls). These were extracted 

from prior phases, particularly the Systematic Literature 

Review, the Empirical Survey, and the Delphi Expert 

Panel. 

 

The hidden layers, configured through iterative 

optimization, incorporate activation functions like ReLU 

(Rectified Linear Unit), sigmoid, and tanh, enabling the 

network to learn non-linear relationships. Multiple 

configurations (ranging from shallow to deep 

architectures) were tested to determine the most efficient 

model structure, balancing complexity with 

computational efficiency. The output layer delivers 

quantitative predictions of each risk factor's significance 

or influence level. 

 

The training algorithm of choice was the 

Levenberg–Marquardt (LM) backpropagation due to its 

superior convergence speed and stability in minimizing 

loss functions, especially in nonlinear datasets. 

 

Machine Learning in IDS/IPS: Enhancing Core 

Functionalities 

Figure 7 demonstrates how machine learning 

(ML) algorithms are transforming traditional Intrusion 

Detection Systems (IDS) and Intrusion Prevention 

Systems (IPS) by enhancing their core functionalities. 

ML integration is shown to significantly elevate the 

system’s ability to detect, classify, and respond to threats 

with improved speed and accuracy. 

 

The diagram reveals that Anomaly Detection 

and Threat Classification each receive a 30% and 15% 

contribution respectively from machine learning 

technologies. These capabilities enable the systems to 

identify behavioral deviations that traditional rule-based 

systems often overlook. Additionally, Real-Time 

Adaptation (15%) and Automated Response (10%) 

illustrate how ML empowers IDS/IPS to self-tune, learn 

from previous patterns, and trigger immediate defense 

mechanisms without human intervention. 
 

This transformation marks a shift from passive 

detection to active, intelligent response systems, making 

ML a pivotal component in securing dynamic and high-

traffic digital environments. As cyber threats evolve, 

IDS/IPS frameworks enhanced by machine learning 

continue to provide scalable, adaptive, and intelligent 

protection. 

 

 
Figure 7: Graph showing the percentage contributions of machine learning to various IDS/IPS functions such as 

anomaly detection, threat classification, real-time adaptation, and automated response 
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Data Preprocessing and Normalization 

To ensure data quality and prevent bias during model 

training, the dataset underwent rigorous preprocessing: 

 

Normalization: All features were scaled to the range [0, 

1] using min-max normalization to neutralize variable 

scale disparities. 

 

Missing Value Treatment: The K-Nearest Neighbor 

(KNN) imputation method was employed to handle 

missing values, preserving data integrity. 

 

Data Splitting: The dataset was split into training (70%) 

and testing (30%) sets using stratified random sampling 

to ensure proportional representation of all risk factors. 

 

Cross-Validation: To assess the model’s 

generalizability, 10-fold cross-validation was performed, 

ensuring robustness and minimizing overfitting. 

 

Model Evaluation Metrics 

To evaluate the performance of the ANN 

model, the following statistical indicators were 

employed: 

 

Metric Purpose Achieved Value 

• Root Mean Squared Error (RMSE) Measures 

average magnitude of error 0.036 

• R-squared (R²) Indicates variance explained by the 

model 0.942 

• The high R² value and low RMSE and MAPE 

confirm the ANN model’s high predictive precision 

and reliability. 

 

Sensitivity Analysis 

To determine the relative influence of each 

input variable, a sensitivity analysis was performed. 

Each risk factor was perturbed independently while 

others were held constant, and the corresponding 

variation in the output layer was observed. 

 

The analysis revealed the following as highest-

impact risks: 

1. Inadequate Encryption Mechanisms 

2. Poor Error Handling 

3. Weak Authentication Controls 

 

These findings guided strategic prioritization in 

the ISM phase, where structural dependencies were 

examined. 

 

Limitations and Justification for Hybridization 

While ANN excels in pattern recognition, it 

operates as a “black-box” model, offering limited 

interpretability. It fails to explain the causal direction or 

hierarchy among cybersecurity risks. To address this 

limitation, Phase V employs Interpretive Structural 

Modeling (ISM)—a method offering clear, directional 

mapping of interrelated variables. The integration of 

ANN and ISM thus combines prediction with structural 

explanation, enhancing the robustness of the 

cybersecurity framework. 

 

Demographic Profiling of Participants 

Figure 8. illustrates the demographic 

composition of respondents who contributed to the 

empirical survey phase of this study. The participant pool 

was diverse in terms of age, gender, education level, 

work experience, industry background, and familiarity 

with artificial intelligence (AI) in software security. 

 

The age distribution indicates that the majority 

of participants fall within the 25–34 age bracket, 

followed by those aged 35–44, suggesting active mid-

career professionals in the tech domain. In terms of 

gender, a significant proportion identified as male, with 

notable representation from female, non-binary, and 

prefer not to say categories, ensuring inclusivity in the 

research approach. 

 

Regarding educational qualifications, most 

respondents possessed undergraduate or postgraduate 

degrees, indicating a well-educated sample. The work 

experience chart reflects that many participants had 3 to 

7 years of experience in cybersecurity or software 

development, enhancing the relevance and reliability of 

their insights. 

 

In terms of industry sector, participants 

represented a wide range of domains, including 

healthcare, education, and commerce, reflecting the 

cross-sector applicability of AI in software security. 

Lastly, the AI familiarity graph shows a balanced mix of 

beginner, intermediate, advanced, and expert-level 

respondents, which allows the study to gather 

perspectives from varying proficiency levels. 

 

This detailed demographic snapshot validates 

the diversity and credibility of the survey data and lays a 

strong foundation for the AI-based cybersecurity 

framework proposed in the later sections of the paper. 
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Figure 8: Demographic details of survey participants, showing distributions across age, gender, education level, 

professional experience, industry sectors, and familiarity with AI in software security 

 

3.5 Phase V: Interpretive Structural Modeling (ISM) 

Overview and Purpose 

The fifth and final methodological phase 

leverages Interpretive Structural Modeling (ISM) to 

elucidate the causal interconnections among 

cybersecurity risks. Where ANN quantitatively predicts 

the significance of each risk, ISM qualitatively maps 

how these risks influence each other, forming a 

hierarchical structure that supports strategic planning and 

intervention. 

 

ISM is particularly suitable for complex 

systems where variables interact in both direct and 

indirect ways. It provides a visual and mathematical 

representation of the structural hierarchy among risks, 

ultimately leading to more informed decision-making in 

cybersecurity mitigation. 

 

 

Step-by-Step Implementation of ISM 

1. Identification of Variables 

A total of 15 cybersecurity risk factors, previously 

validated through the SLR, survey, and expert panel, 

were selected. These included: 

• Insecure coding practices 

• Poor encryption standards 

• Weak access control 

• Unpatched software 

• Misconfigured firewalls 

• and others (full list documented in annexure). 

 

2. Construction of Structural Self-Interaction Matrix 

(SSIM) 

A panel of 17 domain experts (academic and industry 

professionals) evaluated pairwise relationships among 

the 15 elements using ISM coding logic: 
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Symbol Meaning 

V i influences j 

A j influences i 

X i and j influence each other 

O No relationship exists between i and j 

Each pair was reviewed for influence direction, 

producing a comprehensive SSIM matrix. 

 

3. Reachability Matrix Formation 

The SSIM was transformed into a binary 

reachability matrix, where entries of 1 or 0 indicated the 

presence or absence of direct influence. Transitivity was 

applied (i.e., if A → B and B → C, then A → C) to 

capture indirect influences, ensuring a complete 

hierarchical structure. 

 

4. Level Partitioning 

Using the reachability and antecedent sets, 

variables were grouped into hierarchical levels. Risks 

that did not influence others were placed at the top, while 

highly influential variables formed the base layers. This 

allowed for a tiered understanding of cybersecurity risk 

propagation. 

 

5. Development of Digraph and ISM Model 

A directed graph (digraph) was constructed 

from the level partitioning, showing the hierarchy of 

risks. This digraph was then formalized into an ISM 

model, forming the structural basis of the cybersecurity 

framework. 

 

MICMAC Analysis 

To further refine ISM outputs, MICMAC 

(Matrice d'Impacts Croisés Multiplication Appliquée à 

un Classement) analysis was conducted. It classifies 

variables based on driving power and dependence, 

providing insights into their systemic roles. 

 

 

 

Category Characteristics 

Autonomous Low driving, low dependence 

Dependent High dependence, low driving 

Linkage High driving and dependence (volatile) 

Driver High driving, low dependence 

Findings revealed the following: 

 

Driver Variables: Weak authentication, misconfigured 

controls, unpatched vulnerabilities 

Dependent Variables: Poor code reuse, inadequate 

encryption 

This categorization supports targeted strategy 

development by identifying root causes vs symptoms. 

 

 
 

ISM Integration and Final Framework Synthesis 

The ISM structure was integrated with the 

predictive ANN model, creating a hybrid ANN–ISM 

cybersecurity framework. The ANN layer provides risk 

scoring and prediction, while the ISM model prioritizes 

actions based on systemic influence. 

 

This dual-layer integration enables: 

• Risk-aware secure coding 

• Prioritized mitigation based on structural role 

• Proactive strategy formulation for high-impact 

vulnerabilities 
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• Together, ANN and ISM provide a synergistic 

analytical system—fusing statistical learning 

with qualitative reasoning—to safeguard 

modern software development environments. 

 

4.0 DISCUSSION 
4.1 Synthesis of Findings and Their Significance in 

AI-Driven Cybersecurity 

The rapid advancement of digital 

transformation across industries has exposed 

contemporary software systems to increasingly complex 

and sophisticated cybersecurity threats. The findings of 

this research, which operationalized an AI-driven 

cybersecurity framework using a hybrid approach of 

Artificial Neural Networks (ANN) and Interpretive 

Structural Modeling (ISM), reflect a paradigm shift in 

how cyber risks can be identified, analyzed, and 

mitigated through intelligent modeling and system-level 

thinking. 

 

The integration of machine learning, 

specifically the ANN component, provided predictive 

strength by detecting intricate, nonlinear patterns 

between various software development practices and 

corresponding cybersecurity threats. The ISM, on the 

other hand, introduced structural clarity, offering a 

systemic mapping of how these risks influence each 

other hierarchically. This dual-layer model not only 

aligns with the principles of Secure Software 

Development Lifecycle (SSDLC) but enhances it by 

embedding learning capability and strategic foresight. 

 

The discussion that follows critically interprets 

these results, compares them to existing methods, 

addresses broader implications for theory and practice, 

and identifies limitations and future opportunities for AI-

enhanced cybersecurity systems. 

 

4.2 Comparative Effectiveness of ANN over 

Traditional Risk Assessment Models 

Traditional cybersecurity frameworks—such as 

the NIST Cybersecurity Framework, ISO/IEC 27001, 

and OWASP Secure Coding Guidelines—provide static 

checklists or procedural compliance measures. While 

these are essential for regulatory alignment, they lack the 

ability to adapt dynamically to evolving threat 

landscapes. Additionally, conventional risk assessment 

methods such as risk matrices and qualitative threat 

modeling (e.g., STRIDE, DREAD) often fall short in 

high-dimensional or nonlinear environments. 

 

In contrast, the ANN model demonstrated a 

predictive accuracy (R² = 0.942, RMSE = 0.036), far 

surpassing traditional methods which rely on static 

scoring models. The ability of ANN to learn from 

historical patterns, even when embedded within noisy or 

incomplete data, gave it a clear edge. Its success in 

identifying high-impact variables such as weak 

authentication, poor error handling, and inadequate 

encryption substantiates the argument that AI-powered 

models are not only adaptive but also more intuitively 

intelligent in detecting multi-layered vulnerabilities. 

 

4.3 Structural Clarity through ISM and Its Strategic 

Utility 

While ANN offers high prediction precision, it 

does not provide insight into causality or inter-variable 

dependencies. Here, ISM plays a vital role. By creating 

a structured model that ranks cybersecurity risks 

hierarchically, ISM enables organizations to identify 

driver variables—those risks that, when addressed, can 

resolve or minimize several dependent risks 

downstream. 

 

For instance, the ISM analysis identified weak 

authentication, misconfigured access control systems, 

and lack of penetration testing as root drivers. 

Addressing these would inherently reduce the occurrence 

of secondary risks like insecure code reuse and data 

leakage. This aligns with Pareto optimization principles, 

where addressing 20% of root causes mitigates 80% of 

resulting issues.  

 

4.4 Practical Implications for Secure Software 

Development Lifecycle (SSDLC) 

The implications of this study extend beyond 

theoretical modeling into direct application across the 

SSDLC. AI-driven frameworks such as the one proposed 

can be integrated at multiple SSDLC stages: 

Requirements Phase: Use of ANN predictions to 

evaluate the risk weight of proposed functionalities. 

Design Phase: Structural dependencies from ISM guide 

secure architectural decisions. 

Implementation Phase: Real-time ANN-based alerts 

during code commits can signal risks. 

Testing Phase: Focused testing on ANN-identified 

hotspots and ISM-driven driver nodes. 

 

Maintenance Phase:  

Continuous learning from threat logs to update 

ANN weights and ISM relationships. By embedding this 

intelligent, hybrid approach into the SSDLC, developers 

and security engineers can build software that is 

inherently secure, self-aware, and adaptive to threats 

without requiring frequent manual intervention. 

 

4.5 Ethical, Interpretability, and Regulatory 

Considerations 

Despite its technical strengths, the use of AI—

particularly black-box models like ANN—raises critical 

ethical and regulatory issues: Lack of Explainability: The 

ANN's inability to transparently justify its predictions 

may hinder adoption in highly regulated environments 

such as banking, healthcare, or national security. Bias in 

Training Data: If the historical data used to train the 

ANN reflects past biases (e.g., prioritizing certain threat 

types), the model could replicate and amplify those 

biases. Data Privacy Concerns: Continuous training and 

prediction may require sensitive data inputs, which could 

raise compliance concerns under laws like GDPR or 
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Pakistan’s PECA Act. Regulatory compliance can be 

facilitated by leveraging ISM outputs for audit trails 

while keeping ANN layers strictly within operational 

intelligence workflows. 

 

4.6 Alignment with Industry 4.0 and AI Governance 

This research aligns with the broader Industry 

4.0 agenda, where AI, automation, and cyber-physical 

systems converge. AI-driven cybersecurity solutions are 

a natural extension of this vision, offering autonomous, 

intelligent threat detection systems that can scale with 

organizational complexity. 

 

However, with increasing dependency on AI, 

there is a growing need for AI governance frameworks 

to monitor, audit, and regulate such intelligent systems. 

The proposed hybrid framework offers a reference model 

for policymakers and industry leaders to design 

cybersecurity standards that are adaptive, evidence-

based, and explainable. 

 

4.7 Comparison with Similar AI-Based Models in 

Literature 

Multiple studies in recent literature have 

attempted to apply machine learning models—such as 

Decision Trees, Random Forest, Support Vector 

Machines (SVMs), and Logistic Regression—to 

cybersecurity domains. However, most models either 

suffer from poor generalization, limited dimensionality 

handling, or lack interpretability. 

 

A comparative analysis is outlined below: 

Model Type Accuracy Interpretability  Scalability  

Adaptability 

Decision Tree Medium High Low Low 

Random Forest High Medium  Medium Medium 

SVM Medium Low Low Low 

Logistic Regression Low High Low  Low 

ANN (This Study) Very High Low  High  Very 

High 

ANN + ISM (Proposed) Very High  High  

HighVery High 

The ANN-ISM hybrid approach thus emerges as a 

superior alternative, especially for complex, multi-

layered cybersecurity environments. 

 

4.8 Limitations of the Research 

Despite the significant contributions, this study is not 

without limitations: 

1. Data Dependency: ANN models are highly 

dependent on the quality and quantity of 

training data.  

2. Black-Box Nature: Interpretability remains an 

issue, especially in high-stakes environments. 

3. Expert Bias in ISM: Since ISM depends on 

expert judgments for SSIM development, 

cognitive bias or lack of consensus could 

influence structural validity. 

4. Limited Real-Time Testing: The model was 

evaluated in a simulated environment; field 

deployment is needed for real-world stress 

testing. 

5. Scalability Constraints: While ANN scales 

computationally, ISM becomes complex when 

more than 20-30 elements are involved. 

 

Addressing these limitations offers fertile ground for 

future research, as discussed next. 

 

4.9 Future Scope and Recommendations 

Based on the findings and limitations, several 

recommendations emerge: 

Explainable AI (XAI): Incorporate techniques 

like LIME or SHAP to enhance ANN transparency. 

Hybrid Multi-Model Fusion: Combine ANN with other 

ML models for ensemble prediction to improve accuracy 

and robustness. Real-Time Deployment: Test the 

framework in live software development pipelines (e.g., 

through CI/CD tool integrations). Crowdsourced Risk 

Evaluation: Replace expert panels with crowdsourced 

feedback to reduce bias in ISM matrices. 

 

Integration with Blockchain: Use distributed 

ledgers to ensure secure traceability and auditability of 

AI decisions. These directions can elevate the proposed 

framework from a proof-of-concept to an industry-ready 

solution. 

 

4.10 CONCLUSION OF THE 

DISCUSSION 
This discussion highlights that the integration of 

AI with structured modeling offers a breakthrough in 

how cybersecurity threats are identified, understood, and 

mitigated in software development. The ANN-ISM 

hybrid framework not only delivers superior predictive 

capabilities but also imparts interpretive clarity—two 

qualities seldom found together in conventional systems. 

 

CONCLUSION 
The rapid digitization of modern society and the 

escalating threat landscape in cyberspace necessitate the 

urgent development of intelligent, adaptable, and robust 

cybersecurity frameworks. This research contributes 

meaningfully to that imperative by presenting a multi-

phased, AI-driven cybersecurity framework focused on 

secure software development, integrating Artificial 

Neural Networks (ANN) and Interpretive Structural 

Modeling (ISM). The methodology adopted—consisting 

of a Systematic Literature Review (SLR), a 

questionnaire-based empirical survey, expert panel 

validation through the Delphi method, ANN modeling, 

and ISM analysis—has enabled the comprehensive 

identification, assessment, prediction, and structural 

interpretation of cybersecurity risks in software coding 

environments. 

 

The core innovation lies in the hybrid 

integration of ANN and ISM. ANN offers the power of 

predictive modeling and non-linear risk analysis, capable 

of capturing hidden patterns and subtle correlations 
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within complex cybersecurity datasets. In contrast, ISM 

contributes interpretability and structured causal 

analysis, mapping the interdependencies and hierarchical 

significance of identified risks. Together, these methods 

overcome the limitations of traditional cybersecurity risk 

assessment frameworks, which are often static, linear, or 

narrowly scoped. 

 

The Systematic Literature Review established a 

rigorous theoretical foundation and identified 15 critical 

cybersecurity risks. The empirical survey validated these 

risks using field-based insights from a diverse and global 

pool of cybersecurity professionals. The Delphi method 

further refined and contextualized the risks, ensuring 

academic and practical relevance. The ANN model 

demonstrated high predictive accuracy, while ISM 

uncovered directional relationships between risks, 

identifying foundational vulnerabilities that have 

cascading effects on the system's overall security 

posture. 

 

This research reveals that risks such as 

inadequate encryption, insecure authentication 

mechanisms, and poor error handling not only rank high 

in individual impact but also serve as foundational 

drivers for other dependent vulnerabilities. This insight 

allows security architects to strategically target root 

causes, achieving a multiplier effect in risk mitigation. 

The MICMAC analysis further segmented risks into 

autonomous, dependent, linkage, and driver categories—

thereby providing a precise roadmap for implementation 

prioritization. 

 

Practically, this framework serves multiple 

stakeholders: software developers can integrate findings 

into secure coding practices; cybersecurity managers can 

use the ANN-ISM model for real-time risk prediction 

and management; academic researchers gain a 

replicable, multi-layered methodology; and 

policymakers can frame informed, data-driven 

regulations. 

 

Moreover, the hybrid model supports scalability 

and adaptability—key for future cybersecurity systems 

as they contend with evolving attack vectors, emerging 

technologies like quantum computing, and increasingly 

decentralized systems. The ANN's machine learning 

backbone ensures continuous improvement as more data 

becomes available, while ISM maintains interpretability 

essential for compliance, auditing, and stakeholder 

communication. 

 

Importantly, this study also contributes to 

bridging the gap between AI research and practical 

cybersecurity implementation. By combining theoretical 

rigor with applied modeling and validation, the research 

showcases a replicable blueprint that can be tailored for 

other cybersecurity domains beyond software 

development, such as IoT security, cloud infrastructure, 

and industrial control systems. 

 

Nonetheless, this work is not without 

limitations. The model’s performance is contingent upon 

the quality and breadth of training data, and the 

subjectivity inherent in expert evaluations may introduce 

bias. Future work should aim to automate the ISM phase 

using AI-assisted decision-making and expand the 

ANN's training datasets using real-world threat 

intelligence data. Moreover, longitudinal studies could 

further validate the model’s long-term predictive 

efficacy across diverse domains and organizational 

contexts. 

 

IN CONCLUSION,  
the proposed AI-driven cybersecurity 

framework stands as a robust, validated, and forward-

thinking contribution to the field. It embodies an 

essential evolution in cybersecurity practice—shifting 

from reactive defense mechanisms to proactive, 

intelligent, and structured risk management. As 

cybersecurity threats grow in complexity and scale, such 

integrated and adaptive frameworks will be 

indispensable for securing digital infrastructure and 

safeguarding the technological backbone of 

contemporary society.  
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