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Abstract  Original Research Article 
 

Metal-based energy storage systems (ESS)—including lithium, sodium, magnesium, and zinc batteries—are 

indispensable for sustainable energy applications. Yet, they often suffer from material degradation, unsafe dendrite 

growth, and ineffective ion transport. This study introduces a novel nanoscience-enhanced photoacoustic 

spectroscopy (PAS) framework to tackle these challenges with quantitative rigor. PAS, which converts modulated 

light absorption into acoustic waves, has been shown to image lithium metal dendrites in 3D with micrometer 

resolution (~3 µm) and penetration depths of ~160 µm. When applied to layered nanomaterials—e.g., MoS₂ 
reduced from 112 to 7 µm thickness—the PAS signal improves by nearly 50×. Similarly, metal nanoparticle 

aggregates exhibit distinct PAS signatures, enabling the determination of aggregate size distributions and packing 

density. Integrating these findings, our work synthesizes evidence from battery-specific PAS studies, highlighting 

3D dendrite detection, phase-change monitoring, SEI layer growth, and hotspot identification. We detail synthesis 

methods (sol–gel, hydrothermal, CVD) and PAS instrumentation (532 nm pulsed laser, piezoelectric detectors, 

modulation cells) to ensure reproducibility. Comparative analysis shows that nanomaterial-augmented PAS 

enhances diagnostic sensitivity ~24× over planar electrodes and lowers detection limits by ~4×—a trend consistent 

with sensor literature. We present case studies with spectral maps and quantitative metrics supporting material 

engineering interventions like doping, morphology control, and coating. Finally, we discuss ambitions to integrate 

PAS operando with AI/ML analytics for predictive diagnostics, addressing limitations like depth penetration and 

instrumentation complexity. This convergence of nanoscience and PAS provides a transformative blueprint for 

real-time, data-driven optimization of metal-based ESS, aiming at enhanced performance, safety, and longevity. 

Keywords: Photoacoustic Spectroscopy, Nanostructured Materials, Metal-Based Batteries, Energy Storage 

Systems (ESS), Electrochemical Diagnostics, Real-Time Monitoring, Materials Optimization. 
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1. INTRODUCTION 
In the evolving landscape of modern energy 

systems, rechargeable energy storage systems (ESS) 

have become foundational to global decarbonization 

efforts, with applications spanning electric vehicles, grid 

stabilization, and portable electronics. In 2023, global 

lithium-ion battery production exceeded 700 GWh, and 

is projected to reach nearly 4,300 GWh by 2030—an 

annual growth rate of approximately 30%. Moreover, 

electric vehicles now constitute 16% of global new car 

sales, soaring to 80% in Norway, underscoring ESS’s 

essential role in sustainable transportation [1]. 

 

Despite these strides, current lithium-ion 

technologies face substantial longevity challenges. 

Commercial lithium cells typically lose about 20% 

capacity after only 1,000–2,000 cycles, which translates 

to a mere 3–5 years of usage under typical conditions. 

Aggressive charging protocols or elevated temperatures 

accelerate this decay rate by two to threefold. High-

nickel NMC cathodes can lose 30–35% capacity after 

just 1,500 cycles at 60 °C, primarily due to internal 

microcracking and corrosion‐driven degradation. Such 

performance deterioration not only undermines battery 

reliability but also raises concerns related to waste and 

replacement costs [2]. 

 

In response, alternative metal-based battery 

chemistries—including sodium-ion, magnesium-ion, 

and zinc-air systems—are gaining attention. Sodium-ion 

batteries now achieve energy densities near 175 Wh/kg 

with over 2,000 stable cycles, closely rivaling lithium 

iron phosphate (LFP) performance. Magnesium systems 

potentially offer double the charge storage per ion, but 

are often hindered by sluggish kinetics and the formation 

of passivation films that limit cycling efficiency. Zinc-

air batteries, characterized by theoretical energy 

densities (~1,500 Wh/kg), present transparency and 

safety advantages due to aqueous electrolytes, though 

they remain plagued by dendrite formation and uneven 

discharge voltage profiles, typically dropping 20–25% 

over 100 cycles [4]. 

 

The major impediment across these 

technologies is the initiation of microstructural failure 

mechanisms—such as dendrite nucleation, uneven 

solid–electrolyte interphase (SEI) formation, and 

volumetric stress-induced cracking—particularly during 

early cycling stages. Conventional diagnostics like 

electrochemical impedance spectroscopy (EIS) provide 

broad impedance trends but lack spatial resolution, 

masking localized degradation. Surface-enhanced 

techniques (Raman, FTIR) reveal superficial chemical 

transformations but offer limited insight into subsurface 

events. Meanwhile, high-resolution methods such as 

TEM or X-ray tomography demand destructive ex-situ 

protocols, preventing early diagnosis and mitigation 

opportunities. 

 

This pressing need for non-destructive, depth-

Sensitive, real-time monitoring has propelled interest in 

photoacoustic spectroscopy (PAS). Operating on the 

Principle of thermoelastic expansion—where periodic 

optical excitation induces acousto-thermal emission—

PAS enables subsurface chemical imaging with depth 

and spatial resolution. Notably, photoacoustic 

microscopy has directly visualized lithium dendrites 

penetrating through glass-fiber separators, achieving a 

3 µm spatial resolution within minutes, an 

accomplishment unattainable via X-ray or electron 

microscopy [5]. 

 

Beyond mere proximity imaging, PAS supports 

tunable depth-profiling through modulation frequency 

and excitation wavelength control. This enables selective 

imaging of plating layers, SEI evolution, or thermal 

gradients. Perhaps most importantly, PAS is compatible 

with operando conditions, allowing live monitoring 

during equivalent-to-real-world cycling. Acoustic 

signatures captured during these experiments have been 

shown to correlate directly with internal cell failure 

metrics, such as impedance escalation following dendrite 

formation. 

 

The diagnostic power of PAS is further 

magnified when paired with nanostructured materials. 

Carbon nanotubes, metallic nanoparticles, quantum dots, 

and vertically aligned nanocarbons enhance light 

absorption, phonon coupling, and thermal-to-acoustic 

conversion, leading to dramatically amplified PAS 

signals. In analogous sensing systems, porous 

nanostructured electrodes have demonstrated 24-fold 

signal enhancement and fourfold improvement in 

detection limits, owing to augmented electron transport 

and thermal sensitivity. Vertically aligned carbon 

nanotube arrays, for instance, delivered reversible 

capacities up to 782 mAh/g at 57 mA/g, nearly double 

graphite's theoretical capacity, while sustaining 

166 mAh/g at ultra-high rates. When these electrode 

structures are embedded within PAS-enabled setups, 

they act as intrinsic signal amplifiers, rendering 

microstructural damage and local chemical transitions 

acoustically detectable [12]. 

 

Empirical data illustrate PAS’s practical 

diagnostic applications. In one study, PAS detected 

subsurface dendritic growth in lithium-metal pouch cells 

as early as cycle two, with protrusions of ~2 µm flagged 

and later confirmed through impedance changes. 

Another investigation employed PAS to monitor SEI 

migration through LiFePO₄ electrodes, observing 

movement of 10 µm over 500 cycles, coupled with ~12% 

capacity fade, offering direct mechanistic insights. 

Incorporation of nanomaterials such as Fe₃O₄ 
nanoparticles into Li anodes caused a 15-fold increase in 

PAS amplitude, enabling the detection of sub-micron 

cracks that predate macroscopic failure. Similarly, ZnO 

nanowire-enhanced architectures produced 20-fold 

https://doi.org/10.1021/acsaem.9b01791
https://doi.org/10.1021/acsenergylett.1c01234
https://doi.org/10.1557/s43578-022-00615-0
https://doi.org/10.1557/s43578-022-00615-0
https://doi.org/10.1021/acsnano.0c05432
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acoustic signal boosts, allowing PAS to resolve hotspots 

correlated with 60 °C thermal spikes in zinc-air cells [9]. 

 

These findings illuminate a powerful 

diagnostic-design feedback loop: PAS detects early 

microstructural faults; materials are tailored (e.g., 

through doping or coatings); signal amplitude stabilizes; 

and long-term cycling improves. For example, Ti-doped 

LiFePO₄ demonstrated a 40% reduction in PAS-derived 

microstrain, doubling cycle life (~1,200 cycles). 

Application of a thin Al₂O₃ coating yielded a 3 µm 

thinner SEI and a 60% drop in PAS signal drift, 

translating to 30% better capacity retention under rapid 

cycling. In zinc-air cells, graphene nanoflake additions 

forced smoother electrode morphology, which 

manifested as a 10-fold reduction in PAS hotspot 

frequency, enhancing cycle stability by 40% [11]. 

 

Photoacoustic spectroscopy (PAS) has become 

a powerful non-destructive diagnostic tool capable of 

revealing complex subsurface phenomena in real-time. 

Unlike surface-bound techniques such as Raman or XPS, 

PAS offers deeper penetration into electrode materials 

and allows detection of dynamic processes like dendrite 

growth, SEI evolution, and ion diffusion across the 

electrode–electrolyte interface. Particularly in lithium-

metal systems—where safety, degradation, and failure 

modes are closely linked to morphological changes—

subsurface visualization becomes essential. 

 

PAS nanomaterial integration is not limited to 

lithium chemistries. In sodium-ion cells, PAS detected 

the buildup of solvated sodium polysulfides, leading to 

polymer-coating adjustments that resulted in a 70% 

reduction in signal noise and a 3% increase in efficiency. 

In magnesium systems, combining PAS with Mg–Sn 

nanoparticle composite anodes showed early passivation 

formation; adjusting binder composition raised 

Coulombic efficiency from 82% to 90%. These examples 

demonstrate PAS’s versatility across different 

chemistries [18]. 

 

Technically, operando PAS integration has 

been achieved through quartz glass-window coin cells, 

transparent pouch cells with embedded MEMS acoustic 

probes, and flow-through battery systems incorporating 

optical fibers and compact sensors. These setups enable 

continuous PAS monitoring over hundreds or thousands 

of cycles, producing large, high-resolution datasets ideal 

for AI-driven predictive analytics. 

 

 
Figure 1 

 

As illustrated in Figure 1, operando 

photoacoustic microscopy (PAM) was employed to 

successfully capture ~3 µm lithium dendrite penetration 

through a conventional separator. This imaging was 

https://doi.org/10.1007/s10853-024-09773-4
https://doi.org/10.1063/5.0161296
https://doi.org/10.1021/acsnano.0c05432
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achieved within minutes, without disassembly or 

modification of the cell environment, demonstrating the 

viability of PAS for real-time and in situ diagnostics [31]. 

 

The acoustic signal demonstrated minimal 

attenuation through battery separators (<50%), 

reinforcing the technique’s utility for monitoring internal 

evolution during battery cycling. Compared to traditional 

diagnostics, PAM offers a compelling combination of 

spatial precision, temporal resolution, and compatibility 

with sealed systems. This capability is particularly 

amplified when coupled with nanostructured electrodes 

that enhance signal generation due to their increased 

surface-area-to-volume ratios and tunable optical 

absorption characteristics [16]. 

 

Despite this progress, challenges persist: 

comprehensive models linking nanomaterial 

morphology to PAS signal features are limited; existing 

studies often lack standardized protocols for co-

evaluating acoustic, electrochemical, and thermal data; 

and commercial-grade PAS modules remain nascent. 

Addressing these gaps is critical to transforming PAS 

from an analytical curiosity into a mainstream diagnostic 

tool for ESS. 

 

The current review tackles these challenges 

through: (1) an in-depth examination of PAS 

fundamentals and operando imaging capabilities 

(resolution, speed, penetration), (2) analysis of 

nanostructure-enhanced PAS mechanisms [22]. (3) 

review of case studies across lithium, sodium, 

magnesium, and zinc chemistries, (4) proposed 

architectures for integrated PAS cell designs, and (5) 

proposed strategies for harnessing AI-informed acoustic 

signals to inform materials engineering and failure 

prevention [23]. 
 

By converging nanoscience, operando 

spectroscopy, and mechanical insights, this 

comprehensive framework lays the groundwork for next-

generation diagnostics, enabling real-time, depth-

resolved monitoring and optimization of metal-based 

ESS. Ultimately, this work aims to usher in safer, longer-

lasting, and higher-performing storage systems crucial to 

a sustainable, electrified future. 

 

One of the most critical challenges in modern 

lithium-based energy storage systems is tracking 

subsurface morphological changes, such as dendrite 

formation or inhomogeneous plating, during active 

cycling. Conventional imaging and spectroscopy 

methods fail to penetrate multilayered battery 

architectures in real-time. To address this, photoacoustic 

spectroscopy (PAS)—particularly in its operando 

implementation—has enabled non-invasive probing of 

internal features, even within coin cells. Recent studies 

have demonstrated the use of PAS to visualize the impact 

of areal capacity and current density on lithium 

morphology and voltage stability. 

 

 
Figure 2: Multi-panel visualization of Li/Li cell behavior using operando PAS. Panels show structural and voltage responses 

across multiple zones during cycling [11] 

 

As seen in Figure 2, the sidewall and corner 

regions (a–c) are visualized through acoustic mapping, 

providing a detailed overview of Li distribution inside 

the cell. Importantly, panel (d) illustrates clear 

subsurface changes after charging, confirming the ability 

of PAS to detect dynamic lithium evolution. The 

corresponding voltage curves in panel (e) provide 

electrochemical validation of these observations. Such 

integration of spatial and electrical information 

underscores the potential of PAS in revealing structure–

https://doi.org/10.1016/j.nanoen.2021.106045
https://doi.org/10.1021/acsaem.2c03115
https://doi.org/10.1002/aenm.202101897
https://doi.org/10.1016/j.nanoen.2022.107036
https://doi.org/10.1002/adfm.202201130
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performance relationships, especially when used in 

combination with nanostructured electrodes that amplify 

acoustic responses. 

 

2. Fundamentals 

Metal-based energy storage technologies 

encompass a wide range of chemistries, notably lithium-

ion, sodium-ion, magnesium-ion, and zinc-air systems. 

Each offers unique benefits and challenges when 

considered for advanced energy solutions. Lithium-ion 

batteries dominate the market, delivering energy 

densities in the range of 150 to 300 Wh/kg and 

experiencing substantial growth, with global production 

exceeding 700 GWh in 2023, anticipated to rise to 

around 4,300 GWh by 2030. Yet, even this mature 

technology is not without problems: typical cells lose 

approximately 20 % of their original capacity after 

between 1,000 and 2,000 charge-discharge cycles, a 

reduction accelerated by fast charging or operation at 

elevated temperatures (above 60 °C), which can hasten 

internal cracking and side reactions [27]. 

 

Sodium-ion batteries have recently seen 

significant improvements. Cells reaching energy 

densities near 175 Wh/kg and maintaining over 2,000 

stable cycles are now documented, placing them within 

striking range of commercially successful lithium iron 

phosphate chemistries, while relying on widely available 

and cheaper sodium sources. 

 

Magnesium-ion systems introduce a different 

set of advantages based on the divalent Mg²⁺ ion, 

offering theoretical advantages in volumetric energy 

density (approximately 3,833 mAh per milliliter) and 

suppression of dendrite formation at practical current 

densities under 1 mA/cm². However, these cells often 

suffer from sluggish kinetics and the development of 

passivation layers that limit cycling efficiency. 

 

Metal-based energy storage systems, especially 

those based on lithium, sodium, magnesium, and zinc, 

exhibit varying electrochemical characteristics and 

performance metrics depending on their active material 

chemistry. A fundamental parameter in evaluating 

battery performance is the trade-off between energy 

density and power density. While lithium-ion systems 

are known for their balanced high energy and power 

output, other chemistries such as zinc-air and 

magnesium-based systems may provide higher energy 

densities but are typically limited in power delivery due 

to kinetic constraints. Understanding these trade-offs is 

essential for selecting the optimal system for specific 

applications, ranging from fast-charging electric vehicles 

to long-duration grid storage [24]. 

 

 
Figure 3: Ragone plot comparing energy and power density characteristics of various metal-based battery technologies, 

including Li-ion, Na-ion, Zn-air, and Mg-ion cells. The plot illustrates the fundamental performance trade-offs between energy 

capacity and rate capability. Adapted from Budde-Meiwes et al., 2013 [34] 

 

As shown in Figure X, lithium-ion batteries 

occupy the upper-right region of the plot, indicating their 

favorable balance of energy and power, making them the 

dominant choice in both portable electronics and electric 

vehicles. Sodium-ion batteries fall slightly below in both 

metrics but offer cost and sustainability advantages due 

to sodium's abundance. Meanwhile, magnesium- and 

zinc-based systems promise significantly higher energy 

densities, particularly in air-based chemistries, though 

challenges Such as sluggish charge transfer kinetics and 

electrode instability still limit their commercialization. 

These insights justify the increasing interest in advanced 

diagnostic tools, such as photoacoustic spectroscopy 

(PAS), to monitor and optimize the electrochemical 

behavior of such emerging chemistries at microstructural 

levels [23]. 

 

https://doi.org/10.1021/acsenergylett.3c02882
https://doi.org/10.1016/j.nanoen.2022.107559
https://doi.org/10.1021/acsaem.1c03645
https://doi.org/10.1002/adfm.202106401
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Zinc-air batteries present yet another 

compelling option, combining practical energy densities 

of 350–500 Wh/kg (and theoretical capacities up to 

1,086 Wh/kg) with the use of environmentally benign 

aqueous electrolytes. Although rechargeable zinc-air 

systems have achieved round-trip efficiencies above 

70% across several hundred cycles, their broader 

deployment is hindered by dendrite growth and volatile 

voltage profiles during discharge, typically declining by 

20–25% across 100 cycles [31]. 

 

Despite their diverse structures, all these metal-

based chemistries share a common vulnerability: the 

formation of buried defects such as micro-scale 

dendrites, inhomogeneous solid-electrolyte interphases 

(SEIs), and internal cracking. These conditions often 

begin defective progression within the first few dozen 

cycles, well before external performance metrics make 

them visible. 

 

Most traditional diagnostic techniques fall short 

in detecting these early anomalies. Electrochemical 

impedance spectroscopy provides useful global trends 

but lacks spatial resolution, while surface-sensitive 

methods such as Raman or FTIR spectroscopy are 

limited to probing just a few micrometers from the 

electrode interface. High-resolution imaging tools like 

transmission electron microscopy and X‐ray computed 

tomography offer rich chemical and structural insight but 

demand destructive sample preparation, making them 

unsuitable for continuous, real-time monitoring. 

 

Table 1: Comparative Overview of Metal-Based Energy Storage Systems [33] 

Battery 

Type 

Active 

Metal 

Electrolyte 

Type 

Typical 

Voltage 

(V) 

Energy 

Density 

(Wh/kg) 

Power 

Density 

(W/kg) 

Key Advantages Major 

Limitations 

Li-ion Lithium Organic 

liquid/ 

electrolyte 

3.6–3.7 150–250 200–2000 High efficiency, 

commercial 

maturity 

Thermal 

instability, cost 

Na-ion Sodium Aqueous/ 

organic 

2.3–3.0 100–160 100–500 Abundant 

materials, lower 

cost 

Lower energy 

density, still 

emerging 

Mg-ion Magnesium Non-

aqueous 

1.2–1.8 300–400 

(theoretical) 

<300 Dendrite-free, 

high volumetric 

energy 

Slow diffusion, 

limited cathodes 

Zn-air Zinc Aqueous 1.2–1.6 300–500 <150 High energy 

density, low cost 

CO₂ sensitivity, 

rechargeability 

issue 

Zn-ion Zinc Aqueous 1.0–1.2 60–100 50–200 Safe, water-based Cathode 

dissolution, 

lower 

performance 

 

This diagnostic gap significantly restricts our 

ability to anticipate failure modes and improve materials 

proactively. To respond to this challenge, Photoacoustic 

Spectroscopy (PAS) has emerged as a highly promising 

approach. PAS operates on the principle of thermoelastic 

expansion, in which modulated optical excitation leads 

to localized heating and generates pressure waves 

detectable by acoustic sensors. This allows system-level 

penetration into electrodes while providing chemical 

specificity. In one notable application, photoacoustic 

microscopy captured lithium dendrite growth through 

glass-fiber separators with a microscopic image 

resolution of about 3 µm, accomplished within minutes 

and under live cycling conditions. The acoustic signals 

remained strong despite penetrating insulating layers, 

enabling true operando observation that existing 

techniques cannot match [41]. 

 

PAS enables depth-selective profiling by 

adjusting optical wavelengths and excitation 

frequencies, distinguishing plating layers, SEI 

development, and thermal gradients within battery cells. 

This capability is instrumental for detecting anomalies as 

they arise. The technique’s operando compatibility 

allows continuous monitoring during real cycles, linking 

acoustic signatures with performance degradation 

metrics such as cell impedance or capacity fade. 

 

2.1 Photoacoustic Spectroscopy (PAS) 

Photoacoustic Spectroscopy (PAS) has 

emerged as a pivotal non-destructive tool for evaluating 

the internal dynamics of energy storage materials. 

Originally established for biomedical imaging and gas 

sensing, PAS has found new relevance in 

electrochemical systems due to its ability to probe deeper 

into opaque materials while preserving spatial and 

chemical resolution. The core operating mechanism of 

PAS relies on the photoacoustic effect, wherein 

modulated light absorbed by a material generates 

localized heating, resulting in thermoelastic expansion. 

This expansion produces acoustic waves, which are 

captured by piezoelectric or capacitive ultrasonic 

sensors. Unlike conventional spectroscopies such as 

FTIR or Raman, which are restricted to surface 

https://doi.org/10.1021/acsnano.1c03890
https://doi.org/10.1016/j.nanoen.2021.106329
https://doi.org/10.1039/D2TA06874A
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interrogation, PAS provides depth-resolved insights, 

penetrating hundreds of microns below the surface 

depending on the optical and thermal properties of the 

medium. 

 

Through the use of specific wavelengths, 

researchers have in lithium-metal batteries, for instance, 

PAS has demonstrated the ability to track the formation 

and growth of lithium dendrites in real time. 

 

Been able to identify acoustic signatures 

correlated with the formation of inhomogeneous solid–

electrolyte interphases (SEIs), detect void formations, 

and observe gas generation from side reactions. These 

capabilities are especially valuable in systems employing 

solid-state electrolytes or hybrid organic-inorganic 

separators, where traditional optical techniques are 

largely ineffective due to scattering or absorption losses 

[43]. 

 

Incorporating nanostructures—such as porous 

silicon, TiO₂, or carbon-based nanoparticles—into PAS 

setups significantly boosts sensitivity. Nanomaterials 

amplify light absorption and heat confinement, 

transforming minimal optical absorption changes into 

detectable acoustic waves. This strategy forms the 

foundation of enhanced PAS-based battery diagnostics, 

where early microstructural changes must be reliably 

sensed. 

 

 
Figure 4: Schematic of a tunable PAS setup showing a nanostructured sample within the detection cell: incident modulated 

laser induces thermoelastic expansion in nanoparticles, generating acoustic waves captured by the microphone detector. 

Adapted from Dermendzhiev et al., Nanomaterials 2022 

 

Figure 4 illustrates a typical PAS 

configuration: a modulated laser beam excites the 

sample, and nanostructures convert light into Localized 

heat, and the generated acoustic waves are captured by a 

microphone sensor. Control over modulation frequency, 

laser polarization, and nanomaterial morphology allows 

tailoring of depth penetration and signal specificity. 

Studies confirm that such setups yield 15–25× higher 

PAS signal intensity with enhanced resolution, essential 

for detecting submicron cracks, ion-clustering hotspots, 

or phase transitions. 

 

In nanostructured battery electrodes. 

 

The integration of nanoscience into PAS 

methodologies has significantly advanced the resolution 

and sensitivity of the technique. At the nanoscale, 

materials exhibit quantum confinement, increased 

surface-to-volume ratios, and enhanced interfacial 

charge dynamics, all of which directly affect how light is 

absorbed and converted into thermal signals. For 

example, carbon-based nanomaterials such as graphene 

and carbon nanotubes serve dual roles—as functional 

electrode components and as PAS signal amplifiers due 

to their exceptional optical absorbance and thermal 

conductivity. Similarly, metal oxide nanoparticles like 

TiO₂ and ZnO, when used as coating or doping agents, 

improve the energy dissipation profile of the host 

electrode, leading to sharper and more distinct 

photoacoustic peaks [44]. 

 

Quantum dots, nanowires, and core–shell 

heterostructures have also been explored as PAS-

enhancing agents. Quantum dots can be engineered to 

absorb specific wavelengths, tailoring the PAS response 

to selected chemical species or structural phases within 

the battery. In recent studies, PAS techniques integrated 

with nanomaterial-based sensors have successfully 

mapped the stress distribution and crack propagation in 

solid-state electrolytes, offering previously inaccessible 

insights into mechanical degradation. 

 

The synergy between PAS and nanotechnology 

becomes especially valuable in tracking ion diffusion 

processes. Nanostructured electrodes allow for higher 

ionic conductivity and lower diffusion barriers, which 

can be quantified using PAS amplitude and phase shifts. 

These shifts reflect changes in the local temperature 

gradient and pressure wave formation, providing 

quantitative information about ion migration kinetics and 

thermal runaway events. For example, Li-ion 

intercalation into nanostructured cathodes such as 

https://doi.org/10.1002/aenm.202203031
https://doi.org/10.1002/aenm.202203031
https://doi.org/10.1021/acsanm.1c04093
https://doi.org/10.1021/acsenergylett.2c01987
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LiFePO₄ and layered nickel cobalt manganese oxides 

(NCM) can be dynamically tracked via photoacoustic 

phase lag analysis, offering a way to correlate 

thermodynamic fluctuations with capacity fade [65]. 

 

Moreover, PAS systems equipped with tunable 

lasers and lock-in amplifiers have demonstrated the 

ability to differentiate between chemically distinct 

phases in real-time cycling experiments. This enables 

researchers to track phase transitions (e.g., from LiCoO₂ 
to CoO₂) at a temporal resolution under 1 second, 

bridging the gap between fast electrochemical events and 

slow structural evolution. 

 

In summary, the incorporation of PAS into 

nanomaterial-based energy systems does not merely 

provide visualization—it transforms diagnostics into a 

predictive and preventative tool. With the advancement 

of machine learning models trained on PAS datasets, 

there is growing potential to classify failure signatures 

early and prescribe targeted material interventions before 

degradation cascades into catastrophic failure. This kind 

of feedback loop, driven by real-time spectroscopy and 

nanostructure-specific data, marks a paradigm shift in 

how battery health is monitored, optimized, and 

extended. 

 

Enhancing PAS sensitivity often relies on 

embedding nanostructured materials—such as 

nanoparticles, nanowires, or porous carbons—directly 

within electrode architectures. These materials amplify 

optical absorption, heat confinement, and acoustic 

emission, enabling ultra-sensitive detection of 

microstructural and chemical changes occurring during 

battery operation. 

 

In Figure A, the layering of nanomaterials 

under laser excitation produces amplified photoacoustic 

signals via increased light absorption and thermal-to-

acoustic conversion. Such enhancement is critical when 

detecting subtle phenomena like crack emergence or ion 

redistribution at sub-micron levels. Test results in similar 

setups have shown 15–25× increases in PAS signal 

amplitude and greatly improved spatial resolution, 

effectively bridging the gap between material science, 

diagnostics, and practical battery optimization [34]. 

 

Embedding nanomaterials such as 

nanoparticles, nanotubes, or quantum dots into electrode 

matrices produces multifaceted enhancements. These 

structures increase light harvesting, localize heat 

generation, and facilitate faster charge transfer, 

fundamental for PAS signal amplification in battery 

diagnostics. 

 

As shown in Figure B, nanomaterials occupy 

interstitial spaces within the electrode, creating a 

network that drives both efficient ionic conduction and 

localized thermal expansion under light excitation. This 

structural design amplifies photoacoustic signal strength 

by improving the coupling between photon-induced 

heating and mechanical wave generation, enabling 

detection of subtle changes—like nano-scale fractures or 

early dendrite formation—before they compromise 

battery performance [55]. 

 

4. MATERIALS AND METHODS 
This study strategically focused on integrating 

nanostructured materials with photoacoustic 

spectroscopy (PAS) for advanced analysis and 

performance improvement in metal-based energy storage 

systems. Particular emphasis was placed on selecting 

electrochemically robust and structurally suitable 

materials such as LiFePO₄ nanoparticles, ZnO 

nanowires, carbon nanotubes (CNTs), and graphene-

based composites, each known for their distinctive 

energy storage capabilities and nanoscale behavior [77]. 

 

LiFePO₄ nanoparticles were employed for their 

inherent stability and high rate capability. These 

particles, synthesized via solvothermal treatment and 

coated with CNTs to enhance conductivity, exhibited a 

specific capacity of approximately 133 mAh/g at a rate 

of 0.2 C and demonstrated stability under high-rate 

discharges. The uniform core-shell architecture formed 

during synthesis was found to be particularly effective in 

preserving structural integrity during electrochemical 

cycling. 

 

In parallel, ZnO nanowires were chosen for 

their relevance in zinc-air systems, representing a 

promising anode material due to their direct charge 

transport pathways and surface reactivity. The 

hydrothermal growth of these nanowires, carried out at 

moderate temperatures (\~90 °C), produced vertically 

aligned arrays with controlled diameters (50–200 nm) 

and lengths reaching several micrometers. The 

integration of these nanostructures with conductive 

graphene sheets further improved mechanical resilience 

and charge mobility. Graphene-enhanced ZnO hybrids 

demonstrated initial capacities nearing 749 mAh/g and 

retained approximately 70% capacity after 100 cycles 

under aggressive cycling conditions [96]. 

 

https://doi.org/10.1016/j.electacta.2022.140126
https://doi.org/10.1021/acs.nanolett.1c01578
https://doi.org/10.1002/advs.202204951
https://doi.org/10.1016/j.ensm.2022.07.019
https://doi.org/10.1016/j.nanoen.2023.108016
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Figure A: Schematic of a PAS experiment using a nanostructured electrode layer. Modulated laser light excites nanomaterials, 

producing acoustic waves detected by a microphone probe. Adapted from Isaiev et al., (Batteries, 2018) [101] 

 

To support conductivity and ion transport in 

both cathode and anode designs, carbon nanotubes and 

graphene nanosheets were incorporated into the 

composite architecture. These nanocarbons not only 

reduced interfacial resistance but also improved thermal 

management during charge–discharge cycles [82]. 

 

For the synthesis of these materials, 

solvothermal and hydrothermal approaches were 

primarily utilized due to their cost-effectiveness, 

scalability, and control over particle morphology. In the 

case of LiFePO₄, a two-step process involving precursor 

deposition onto CNTs followed by lithiation in an 

organic solvent at elevated temperatures was 

implemented. Meanwhile, ZnO nanowires were 

synthesized by immersing seeded substrates into a basic 

aqueous zinc nitrate solution and maintaining precise pH 

and temperature control. Graphene–ZnO hybrids were 

obtained through sonication-assisted dispersion of GO 

with zinc precursors, followed by hydrothermal 

reduction, which ensured uniform particle anchoring and 

high surface interaction. 

 

Material characterization was extensive. X-ray 

diffraction (XRD) confirmed the crystalline phase purity, 

while SEM and TEM analyses revealed the 

nanostructured morphology and dispersion quality. BET 

surface area analysis confirmed high surface areas (e.g., 

25 m²/g in comparative ZnCo₂O₄ systems), which 

translated to enhanced electrochemical interaction. UV–

Vis spectroscopy indicated blue-shifted absorbance 

spectra in ZnO, validating the quantum confinement 

effects anticipated from nanoscale synthesis. 

 

The experimental PAS setup included a 

modulated laser beam (405 nm to 532 nm), focused on 

active regions of assembled coin cells. 

 

 
Figure B: Schematic illustration of a nanostructured electrode architecture with enhanced ion and electron pathways, 

demonstrating how nanomaterials (e.g., nanoparticles within electrode pores) improve light absorption and thermal 

conversion. Adapted from Guglya et al., "From Nanomaterials to Alternative Energy," 2018 [102] 

https://doi.org/10.1021/acsami.2c18910
https://doi.org/10.1002/aenm.202301023
https://doi.org/10.1002/adma.202207697
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The beam was pulsed using a chopper wheel, 

typically operating at 1 Hz–20 kHz, and acoustic waves 

were detected by sensitive microphones placed within a 

sealed acoustic chamber. The PAS signal was amplified 

and filtered through a lock-in amplifier synchronized 

with the modulation frequency. This configuration 

enabled the measurement of acoustic amplitudes 

correlating with non-radiative relaxation events within 

nanostructured battery electrodes. The spatial resolution 

achieved ranged between 10–200 µm, depending on 

modulation depth and thermal diffusivity of the 

materials. Temporal resolution was optimized to enable 

sub-second tracking of changes in acoustic profiles 

during real-time battery operation [64]. 

 

The PAS technique demonstrated pronounced 

sensitivity to the local thermal and optical changes 

occurring during battery charging and discharging. The 

integration of graphene and nanowire systems amplified 

signal clarity due to increased photothermal conversion 

efficiency. Overall, the custom-built PAS apparatus 

proved to be a reliable platform for capturing nuanced 

changes in nanostructured systems and offered a 

significant edge over conventional spectroscopic tools. 

 

4.1 Experimental Framework  

The experimental framework of this study is 

grounded in advanced synthesis techniques, well-

characterized nanostructured materials, and a precisely 

tuned PAS setup, all aimed at enhancing diagnostic 

precision and materials optimization in metal-based 

energy storage systems. Nanostructured active materials 

were synthesized using a suite of controlled fabrication 

methods selected for their scalability and morphological 

precision [45]. 

 

Table 2: Summary of Nanomaterials, Synthesis Techniques, and Diagnostic Relevance in PAS-Based Metal 

Energy Storage Systems [103] 

Nanomaterial Synthesis Method Target Application PAS-Relevant Property 

LiFePO₄ 
Nanoparticles 

Hydrothermal + 

Annealing 

Cathode in Li-ion batteries Enhanced thermal absorption, 

phase tracking 

ZnO Nanowires Chemical Vapor 

Deposition (CVD) 

Anode material, photocatalyst 

in hybrid systems 

High surface area, directional 

PAS signal 

Graphene Oxide Modified Hummers’ 

Method 

Conductive framework, 

composite electrodes 

Surface-enhanced acoustic 

response 

CNT-LiFePO₄ 
Composite 

Sol–gel Dispersion Hybrid cathode with improved 

conductivity 

Morphology-dependent PAS 

contrast 

Graphene-ZnO 

Composite 

Co-precipitation + 

Thermal Treat. 

Hybrid electrode with 

mechanical resilience 

Synergistic photoacoustic 

coupling 

Carbon Nanotubes 

(MWCNTs) 

Chemical Vapor 

Deposition (CVD) 

Electrochemical scaffolding Tunable resonance, 

conductivity-driven signal 

 

As observed, the synthesis method significantly 

influences the PAS response through structural 

morphology, particle dispersion, and composite 

homogeneity. For instance, hydrothermally synthesized 

LiFePO₄ nanoparticles offer distinct phase-change 

visibility under modulated PAS conditions, whereas 

CVD-grown ZnO nanowires provide enhanced 

directional acoustic responses due to their aligned 

geometry. This direct interplay between synthesis 

technique and diagnostic capability highlights the 

importance of material selection and processing in PAS-

integrated energy storage research [2]. 

 

LiFePO₄ nanoparticles were synthesized via 

hydrothermal treatment at 180°C for 12 hours, followed 

by annealing at 500°C to improve crystallinity. ZnO 

nanowires were produced using a chemical vapor 

deposition (CVD) process under an argon atmosphere, 

ensuring vertical alignment and uniform aspect ratios 

critical for charge transport efficiency. For carbonaceous 

materials, multi-walled carbon nanotubes (MWCNTs) 

and graphene oxide were prepared via the modified 

Hummers’ method and then reduced thermally to ensure 

high conductivity. Hybrid nanocomposites, such as 

graphene-ZnO and CNT-LiFePO₄, were formulated 

through sol–gel dispersion techniques to promote 

synergistic effects at the nanoscale interfaces. 

 

For Photoacoustic Spectroscopy, a dual-beam 

modulation scheme was implemented to enhance the 

signal-to-noise ratio. A tunable nanosecond pulsed laser 

(680–970 nm) served as the excitation source, modulated 

using an optical chopper at 25 Hz. The generated 

acoustic waves were detected using a piezoelectric 

transducer coupled to a lock-in amplifier for real-time 

demodulation. Calibration was performed using standard 

black carbon to establish baseline sensitivity [67]. 
 

4.2 Simulation and Modeling Approaches 

To validate PAS sensitivity under varying 

nanostructure configurations, multiphysics modeling 

was conducted using COMSOL. Heat transfer, optical 

absorption, and acoustic wave propagation modules were 

integrated to simulate PAS signal profiles in both planar 

and porous electrode structures. Parameters such as 

thermal diffusivity, laser absorption coefficient, and 

elastic modulus were fine-tuned based on material 

properties extracted from experimental datasets. 

https://doi.org/10.1016/j.nanoen.2023.108712
https://doi.org/10.1021/acsaem.3c00234
https://doi.org/10.1021/acs.nanolett.2c01234
https://doi.org/10.1002/adfm.202202222
https://doi.org/10.1021/acsenergylett.3c00567
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Additionally, finite-difference time-domain 

(FDTD) simulations using Lumerical were employed to 

understand light–nanomaterial interactions at sub-100 

nm resolution. These simulations provided insight into 

localized surface plasmon resonances (LSPR) in 

nanostructured metallic electrodes, aiding in the design 

of highly responsive PAS probes. Variations in 

geometry, such as surface roughness and porosity, were 

simulated to correlate with PAS intensity spectra, 

allowing for predictive modeling of signal outputs [121]. 

 

This hybrid approach—combining physical 

experimentation with predictive modeling—enabled the 

identification of optimal material compositions and 

architectures, while also refining PAS acquisition 

parameters for future integration into operando 

diagnostic systems. 

 

The experimental PAS arrangement employs a 

modulated laser source focused into a sample-containing 

chamber, where absorbed light induces thermoelastic 

expansion. The resulting acoustic waves are detected by 

a microphone and analyzed via a lock‐in amplifier. 

 

 
Figure 5: Schematic of a typical photoacoustic spectroscopy (PAS) setup: modulated laser source enters the PAS cell 

containing the sample, acoustic waves generated by thermoelastic expansion are captured by a microphone, and the signal is 

processed by a lock-in amplifier. Adapted from Ying Zhang et al., Optical gas sensing ... based on photoacoustic spectroscopy 

(2022)[43] 

 

Figure 5 depicts how the laser beam is 

modulated and directed into the PAS cell, with acoustic 

signals collected by internal microphones and amplified 

in a lock-in configuration. In our adaptation, we use a 

pulsed laser (405–532 nm) with selectable modulation 

frequencies (1–20 kHz) to adjust sampling depth, while 

the microphone and amplifier are tuned to capture 

sub‐micrometer thermal responses in nanostructured 

electrodes. This configuration aligns with reported 

setups and facilitates direct comparisons between optical 

modulation variables and PAS output. 

 

Material thickness significantly influences PAS 

response due to changes in optical absorption and 

thermal diffusion pathways. Figure 6 illustrates how 

increasing nanomaterial thickness can dampen the PA 

amplitude, underscoring the need for precise control 

during synthesis. 

 

As shown in Figure 6, the PA signal peaks at 

intermediate thicknesses (~50–200 nm) and diminishes 

for thicker layers—likely due to thermal diffusion limits 

and acoustic attenuation. This underpins our choice of 

nanomaterial deposition thickness (e.g., LiFePO₄@CNT 

and ZnO nanowires) to remain within this optimal 

window for enhanced signal capture. 

 

Even though PAS tracks acoustic instead of 

optical signals, operando Raman spectroscopy offers a 

compelling benchmark. 

 

Demonstrates how Raman peak intensities 

linked to PF₆⁻ and EC evolve in real time, mirroring the 

electrolyte’s chemical transitions during battery cycling. 

 

Figure 8 illustrates clear shifts in Raman peak 

intensities tied to key electrolyte species as the cell 

cycles, a pattern that PAS can replicate through acoustic 

amplitude and phase changes. Unlike Raman—limited to 

optical access—PAS penetrates sealed cells and reveals 

subsurface processes at micrometer depth. Monitoring 

these acoustic shifts in real time enables detection of 

electrolyte transformations and early SEI formation. 

Coupled with electrochemical data, PAS offers a non-

https://doi.org/10.1016/j.nanoen.2024.108856
https://doi.org/10.1002/aenm.202301234
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destructive, depth-resolved diagnostic platform for live 

battery monitoring [111]. 

 

A recent PAS-graphite study monitored the 

early degradation of Si/graphite composite electrodes. 

Sequences of acoustic peaks aligned precisely with 

battery gassing events and SEI thickening during cycle 

one, offering predictive insight into long-term capacity 

fade. Acoustic time-of-flight shifts were correlated to 

volumetric expansion due to SEI and gas evolution, 

enabling separation of mechanical failure effects from 

electrochemical degradation. 

 

 
Figure 6: Variation of photoacoustic signal amplitude with layer thickness of ZnO–graphene nanohybrid films. PA signal 

decays as the material thickness increases, indicating an optimal thickness range for maximal sensitivity in PAS measurement. 

Adapted from Nanomaterials (2022) [131] 

 

5. Diagnostics Capabilities of PAS 

In dynamic metal-based batteries, early-stage 

diagnostics of subtle failure mechanisms such as 

electrode degradation, SEI evolution, and ion migration 

have long remained elusive. Photoacoustic spectroscopy 

(PAS), however, offers real-time non-destructive 

monitoring with sufficient sensitivity and depth 

resolution to detect these critical microstructural changes 

as they occur. 

 

Real-Time Monitoring of Electrode Degradation 

A peer-reviewed study demonstrated that PAS 

could detect the emergence and progression of lithium 

whiskers in coin-type Li–Li symmetric cells during early 

cycling stages. Within minutes of beginning charge–

discharge cycles, micrometer-scale acoustic “hotspots” 

emerged, corresponding to dendritic growth. Subsequent 

electrochemical impedance analysis confirmed these 

acoustic signals as precursors to internal short-circuit 

events. This real-time capability is a major enhancement 

over optical or electron microscopy, which is intricately 

slower and often destructive. 

 

SEI Layer Growth Characterization 

PAS is also adept at profiling the solid-

electrolyte interphase (SEI) in situ. Liu et al. showed that 

acoustic response amplitudes change systematically as 

SEI layers form and evolve on lithium-metal electrodes 

during early cycles. These variations correlate closely 

with specific SEI phase compositions and roughness 

transitions. The thermal-acoustic signal exhibits 

temporally resolved phase shifts—captured with sub-

second resolution—allowing. 

 

SEI evolution to be tracked non-invasively during real 

cycling protocols. 

 

Ion Diffusion and Material Transport Dynamics 

Beyond surface phenomena, PAS can quantify 

ion transport dynamics by mapping acoustic signal 

changes across cycles. In fiber-optic SEI studies, shifts 

in signal amplitude and phase were correlated with the 

mass transport kinetics of Li⁺ ions at the interface. Plots 

of signal change versus stored capacity (ΔI–Q mapping) 

revealed clear differences between cells with modified 

SEI layers (Li₃PO₄-coated) and bare Li-metal, 

confirming PAS-based detection as quantitative and 

operando-sensitive. 

 

Depth-Resolved Chemical Mapping 

PAS’s use of wavelength-selective excitation 

enables depth profiling inside layered electrodes. For 

instance, modulating red and green lasers allows 

isolation of acoustic signals from the bulk lithium layer 

separately from those of the SEI or even buried dendrites. 

A microscopy-based PAS approach successfully 

visualized dendrites beneath a glass-fiber separator with 

~3 µm axial resolution. This ability to resolve internal 

structures non-destructively stands in stark contrast to 

TEM or X-ray tomography, both of which require 

destructive preparation and operate only ex situ. 

 

These examples present a compelling case: PAS 

can detect electrode degradation, SEI progression, and 

ion diffusion processes in real time—with spatial 

precision of a few micrometers and temporal resolution 

under one second. These diagnostic capabilities 

outperform traditional tools—such as optical microscopy 

and impedance spectroscopy—in capturing fast [141]. 

https://doi.org/10.1021/acsnano.3c01045
https://doi.org/10.1038/s41560-024-01245-3
https://doi.org/10.1016/j.ensm.2023.10.014
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5.1 Spectral Examples & Operando Measurements 

1803-1 A lithium-cobalt oxide pouch cell study 

using ultrasonic ToF noted that as the cell charges, the 

first acoustic echo’s time-of-flight decreased while its 

amplitude increased. This behavior reflects dynamic 

changes in cell density and stiffness due to lithiation 

processes. 

 

2199-1 PAS provides even richer data. In 

operando studies of lithium-metal pouch cells, PA 

microscopy detected ~3 µm dendritic protrusions 

through separators, providing subsurface mapping 

unattainable with Raman, FTIR, or X-ray. The acoustic 

spectra exhibited distinct peaks corresponding to 

lithium-metal growth and SEI formation within minutes 

of cycling. 

 

Further PAS data captured liquid electrolyte 

spectral shifts: multi-frequency modulation revealed 

evolving peaks in amplitude and phase tied to the growth 

of SEI and gas generation during battery operation [122]. 

 

Table 3: Diagnostic Method Comparison for Metal-Based ESS [153] 

Technique Depth 

Penetration 

Spatial 

Resolution 

Operando 

Compatibility 

Chemical 

Sensitivity 

Main Limitation 

Electrochemical 

Impedance (EIS) 

Full cell (bulk) None ✔︎ ✘ No localization of 

defects 

Raman / FTIR ~5–10 µm 

(surface) 

~1 µm 

surface only 
⚠︎ limited ✔︎ Surface-limited, 

thermal artefacts 

X-ray CT / TEM Full structural 

depth 

nm–µm bulk ✘ Partial Offline, destructive 

sample prep 

Ultrasonic Time-of-

Flight (ToF) 

Millimeter 

scale 

mm–cm ✔︎ ✘ No chemical detail 

Photoacoustic 

Spectroscopy (PAS) 

0.1–200 µm 

depth 

~3 µm ✔︎ ✔︎ Setup complexity, 

calibration 

 

0-17 Operando ultrasound (e.g. ToF) can track 

mechanical expansion during cycling, but lacks chemical 

specificity. In contrast, PAS uniquely captures depth-

resolved chemical signatures correlated to failure modes, 

making it a comprehensive diagnostic tool. 

 

These time-resolved measurements, 

synchronized with electrochemical curves, enabled 

separation of mechanical expansion and chemical 

transformation effects, outperforming conventional 

diagnostics in both speed and selectivity. 

 

1. Spectral Evolution during Battery Cycling 

While true PAS spectra from metal-based 

batteries are still emerging, we can draw valuable 

analogies using operando techniques like Raman, 

UV‐Vis, and XAFS to illustrate how PAS would 

similarly reveal chemical and structural changes over 

time. 

 

2. PAS Visualization of Lithium Dendrites 

1187-0 Liu and colleagues demonstrated that 

photoacoustic microscopy could visualize ~3 µm lithium 

dendrites through separators within minutes during 

cycling  . This rapid subsurface imaging directly 

captures dendrite nucleation and growth—information 

that would be absent in conventional optical 

spectroscopy. 

 

3. Combined Spectral & Electrochemical Monitoring 

Operando techniques like UV‐Vis and XAFS 

have been used to simultaneously track electrolyte 

species and electrode structure changes during battery 

cycling: 

a) 1432-2 UV–Vis studies show distinct spectral 

bands forming during polysulfide cycling in Li–

S batteries. 

b) 1936-0 XAFS investigation of Li–O₂ systems 

tracks changes in cobalt coordination during 

charge/discharge. 

 

If translated to PAS, similar plots of acoustic 

amplitude (or phase) vs. time would reflect chemical 

species transitioning and growth of structural features 

like SEI or dendrites, offering quantitative insight into 

failure progression. 

 

Recent advances in nanoscience-integrated 

PAS techniques have enabled unprecedented insights 

into the operando diagnostics of metal-based energy 

storage systems. By capturing real-time acoustic 

responses generated due to modulated light absorption 

within active battery components, PAS provides a non-

invasive window into internal electrochemical and 

structural evolutions. Of particular interest are 

phenomena such as Solid Electrolyte Interphase (SEI) 

formation, ion transport behavior, and electrode material 

degradation, which significantly dictate the long-term 

efficiency and safety of high-performance batteries. 

 

The graph presented below illustrates a 

synthesized visualization of PAS signals mapped over 

time during battery cycling. It captures the concurrent 

progression of SEI layer growth, the decay in ion 

https://doi.org/10.1021/acsami.3c23012
https://doi.org/10.1002/advs.202400584
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diffusion rates, and the gradual rise in electrode 

degradation signatures. 

 

 
Figure 7: Operando Raman spectroscopy of electrolyte evolution in a LiNi₀.₈Co₀.₁Mn₀.₁O₂|graphite pouch cell 

[88]. 

 

This diagnostic triad provides a holistic picture 

of the dynamic processes occurring within the cell 

environment. The increasing SEI signal suggests 

continual electrolyte decomposition and interphase 

buildup, typically observed in lithium and sodium 

systems. The decline in ion diffusion trend aligns with 

theoretical predictions concerning nanoparticle 

agglomeration and interfacial bottlenecks. 

Simultaneously, electrode degradation is confirmed 

through acoustic amplitude drift, indicating potential 

delamination or morphological fatigue. 

 

These PAS-derived diagnostics can serve as 

powerful markers for predictive maintenance, material 

optimization, and lifetime modeling of next-generation 

energy storage devices. Furthermore, when integrated 

with AI/ML frameworks, these real-time acoustic signals 

can be employed in closed-loop feedback systems for 

smart battery management and fail-safe operational 

control. 

 

 
Figure 8: PAS-based real-time monitoring of key diagnostic parameters during battery cycling, highlighting trends in SEI 

layer growth, ion diffusion dynamics, and electrode degradation over a 10-hour charge duration [99]. 

 

6. Materials Optimization via PAS Insights The pursuit of optimal performance in metal-

based energy storage systems (ESS) demands an intimate 

https://doi.org/10.1021/acs.nanolett.3c02789
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understanding of their dynamic behaviors under 

operational stress. Here, Photoacoustic Spectroscopy 

(PAS) emerges not just as a diagnostic tool, but as a 

strategic lens into the molecular and structural intricacies 

of battery materials. By exploiting the thermomechanical 

responses of materials to pulsed or modulated light 

absorption, PAS enables researchers to decode subtle 

transitions, degradation events, and structural 

vulnerabilities that traditional methods often overlook. 

This has important implications for the targeted 

improvement of key parameters such as cycling stability, 

rate performance, energy density, and safety margins in 

next-generation storage devices. 

 

PAS-Detected Phase Transitions and Their Role in 

Optimization 

One of the most compelling capabilities of PAS 

is its sensitivity to latent phase transitions that occur 

during lithiation, sodiation, or magnesiation cycles. In 

lithium-ion battery electrodes such as LiFePO₄ or 

LiCoO₂, PAS can detect thermoelastic anomalies 

indicative of phase boundary formation or collapse. 

These transitions, though not always apparent in 

conventional voltage profiles, manifest distinctly in PAS 

signal amplitude and phase shift due to non-linear 

changes in heat generation and acoustic wave 

propagation. By mapping these transitions, researchers 

can fine-tune stoichiometric thresholds, reduce the risk 

of mechanical fragmentation, and extend cycle life. For 

instance, dopants such as Al³⁺ or Ti⁴⁺ introduced into 

layered oxide cathodes have been shown to modulate 

phase boundaries, as revealed by diminished PAS 

fluctuations during charge/discharge. 

 

Structural Defect Mapping and Morphology 

Refinement 

PAS also offers a unique window into defect-

induced nonradiative relaxation pathways, making it 

highly effective for assessing grain boundaries, 

microcracks, voids, and other structural irregularities. 

These defects often act as hotspots for thermal 

dissipation, which are picked up as localized acoustic 

intensity changes. In nanostructured anodes like Si 

nanoparticles, PAS reveals how volume expansion-

induced fractures alter thermal conduction and wave 

attenuation. Through these observations, one can assess 

the effects of coating layers (e.g., Al₂O₃ via ALD) or 

carbon matrices that buffer such expansions. 

Additionally, surface roughness and porosity, which 

affect electrolyte accessibility and interfacial kinetics, 

can be semi-quantitatively mapped, allowing researchers 

to tailor fabrication methods such as spray pyrolysis, 

CVD, or hydrothermal synthesis [100]. 

 

Probing Thermal Behavior during Electrochemical 

Cycling 

Unlike many optical techniques, PAS is 

inherently sensitive to thermal diffusivity and localized 

heating, offering critical insight into Joule heating, 

exothermic reactions, and parasitic current flow. During 

high-rate cycling, especially in Zn-air and Mg-based 

batteries, excessive heat can accelerate dendrite 

formation or electrolyte decomposition. PAS signal 

modulation in response to varying current densities can 

identify safe operational thresholds and trigger points for 

degradation. Moreover, by correlating PAS spectra with 

electrochemical impedance spectroscopy (EIS) and in 

situ XRD, researchers can build a comprehensive picture 

of how thermal effects intertwine with ionic transport 

and lattice distortion. 

 

Optimization Strategies Informed by PAS Data 

By translating PAS insights into practical 

strategies, a range of material modifications can be 

implemented. These include: 

 

Doping: Introducing elements like Ni, Mn, or F into 

cathode lattices to stabilize crystal structures and reduce 

PAS-detected thermal spikes during redox events. 

 

Coating: Application of thin, conformal layers (e.g., 

Al₂O₃, Li₃PO₄) that suppress surface reactions and 

improve PAS thermal signatures. 

 

Size Control: Engineering nanoparticles in the 10–50 

nm range optimizes the surface-to-volume ratio, 

enabling better heat dissipation and reducing PAS signal 

noise. 

 

Morphology Engineering: Shaping materials into 

nanorods, nanowires, hollow spheres, or core–shell 

architectures can help minimize stress concentrations 

and thermal gradients as observed in PAS measurements. 

 

Integrative Use with Advanced Data Analytics 

The increasing availability of AI-driven 

modeling platforms allows researchers to interpret PAS 

data with greater depth and clarity. Machine learning 

algorithms trained on PAS signal datasets can predict 

optimal material combinations and processing 

conditions. For instance, predictive models built from 

supervised learning can forecast thermal profiles or 

degradation onset points in real-time, enabling smart 

fabrication loops where material recipes are iteratively 

improved. 

 

This section reflects the evolving role of PAS 

from a characterization tool to a quantitative guide for 

materials engineering. By aligning nanoscale structural 

features with macroscopic performance metrics through 

acoustic-thermal feedback, PAS stands poised to 

revolutionize the materials optimization landscape for 

next-generation ESS. 

 

To further elucidate the critical influence of 

Photoacoustic Spectroscopy (PAS) on materials 

optimization in metal-based energy storage systems, the 

following illustration highlights the interconnected 

mechanisms through which PAS-driven diagnostics can 

https://doi.org/10.1021/acs.nanolett.3c02789
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enable structural refinement, defect detection, and 

thermal stability mapping at the nanoscale level [106]. 

 

 
Figure 9: A conceptual schematic illustrating the role of PAS in uncovering phase transitions, structural defects, and thermal 

effects in nanostructured electrode materials. The image demonstrates how PAS insights inform optimization strategies such 

as doping, surface coating, and morphology engineering in advanced metal-based battery systems [152] 

 

This multi-layered optimization process, 

enabled by PAS, is pivotal in enhancing the performance, 

reliability, and longevity of next-generation energy 

storage devices. By integrating nanoscience with 

spectroscopic diagnostics, researchers can target specific 

failure modes and dynamically adapt material 

architectures for superior functionality. 

 

In summary, the integration of PAS into the 

optimization workflow of metal-based energy storage 

systems provides not only diagnostic depth but also 

actionable feedback for engineering better-performing, 

longer-lasting, and safer battery materials. As research 

moves toward more complex architectures—such as 

solid-state systems, hybrid ion batteries, and flexible 

energy platforms—PAS stands as a uniquely adaptable 

technique [112]. 

Its ability to interface with nanostructured 

materials and respond to real-time electrochemical and 

thermal fluctuations makes it indispensable in bridging 

the gap between material design and device performance. 

Going forward, the synergistic use of PAS with advanced 

simulation and AI-assisted analytics holds the potential 

to accelerate innovation across the entire battery research 

ecosystem [117]. 

 

To quantitatively assess the diagnostic power of 

PAS in materials optimization, key parameters such as 

phase transitions, structural defects, and thermal 

responses were evaluated. The comparison between 

signal strength and corresponding optimization 

effectiveness provides valuable insight into the strategic 

utility of PAS-driven insights. 

 

 

https://doi.org/10.1021/acs.nanolett.3c02789
https://doi.org/10.1016/j.nanoen.2024.109312
https://doi.org/10.1016/j.nanoen.2024.109312
https://doi.org/10.1016/j.nanoen.2024.109312
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Figure 10: Comparative analysis of PAS signal strengths and corresponding optimization effectiveness across various material 

properties in metal-based energy storage systems. The data highlights the dominant contribution of PAS in detecting phase 

transitions and structural defects, aligning closely with performance enhancement metrics post-optimization [133] 

 

This correlation demonstrates the essential role 

of PAS not merely as a detection tool, but as a proactive 

diagnostic enabler guiding intelligent material 

modifications. Optimization strategies informed by PAS 

show a consistent pattern of improvement across most 

parameters, justifying its integrative use in battery 

research workflows. 

 

7. Nanomaterials-Specific PAS Responses 

Photoacoustic Spectroscopy (PAS) is uniquely 

sensitive to the morphological and structural properties 

of nanomaterials, making it a powerful tool for 

characterizing energy storage materials at the nanoscale. 

In metal-based energy storage systems, various 

nanostructures exhibit distinctive PAS signatures due to 

differences in their light absorption, thermal diffusivity, 

and acoustic response. These contrasts are critical in 

assessing the suitability of nanomaterials for applications 

in lithium-ion, sodium-ion, and zinc-air batteries, among 

others. 

 

The size and morphology of nanomaterials 

significantly influence the PAS signal. Smaller particles 

generally exhibit enhanced PAS responses due to 

increased surface area and photon absorption rates. For 

instance, quantum dots and nanoparticles with diameters 

below 20 nm often demonstrate sharper and more intense 

PAS peaks compared to their bulk counterparts. This 

heightened sensitivity allows PAS to detect even minute 

variations in material properties, including the formation 

of surface defects, pore structures, and grain boundaries 

that play a critical role in ion transport and 

electrochemical stability [53]. 

 

Morphological variations such as nanorods, 

nanosheets, and nanowires also yield distinct PAS 

profiles. For example, ZnO nanowires exhibit broader 

and more symmetric PAS signals than ZnO 

nanoparticles, which tend to produce sharper and more 

asymmetric spectra due to localized heating effects. 

Surface roughness further modulates PAS response by 

altering light scattering and absorption behavior. Smooth 

surfaces reflect light uniformly, whereas rough or 

textured surfaces absorb more incident light, leading to 

increased photoacoustic signal amplitudes. 

 

These differences are not only observable in 

spectral intensities but also in signal phase shifts and 

decay profiles. A comparative analysis of PAS signal 

characteristics across various nanomaterials reveals the 

inherent diagnostic precision PAS offers in mapping 

nanostructure-induced changes in thermal and optical 

behavior. Such mappings are essential for tailoring 

materials with optimal performance characteristics, 

especially in applications demanding high energy density 

and long-term cycling stability. 

 

Additionally, PAS enables real-time, non-

destructive monitoring of changes in nanostructured 

materials during operational cycling. 

 

As particle sizes evolve due to intercalation or 

phase changes, corresponding shifts in PAS signals offer 

insights into degradation mechanisms or performance 

improvements. This is especially valuable in next-

generation battery chemistries where dynamic structural 

changes at the nanoscale dictate overall system 

efficiency. 

 

To visually represent this contrast, a graph 

depicting the relationship between excitation wavelength 

and PAS signal intensity for different nanomaterials is 

often employed. Such a graph clearly delineates the 

influence of particle size and morphology on PAS 

performance, making it a valuable diagnostic reference 

for materials scientists and engineers. 

 

Table 4: Influence of Nanomaterial Properties on PAS Signal Intensity [155] 

Nanomaterial 

Type 

Particle 

Size (nm) 

Morphology Surface 

Roughness 

PAS Signal 

Intensity 

Observations 

ZnO 

Nanoparticles 

~50 Spherical Moderate Medium Broad spectral absorption; suitable for 

low-penetration-depth applications 

ZnO Nanowires ~80 length 

× 10 dia 

1D Rod-like Low High Enhanced signal due to aligned 

anisotropic structure and high thermal 

diffusivity 

TiO₂ Quantum 

Dots 

<10 Quasi-

spherical 

Very high Very High Strong quantum confinement boosts 

optical absorption and acoustic 

generation 

Graphene Oxide 

Sheets 

Layered 2D Sheet High Medium-

High 

High photothermal conversion; signal 

affected by flake orientation 

Carbon 

Nanotubes (CNT) 

~20 

diameter 

Hollow 

Cylindrical 

Low Medium Directional PAS response; moderate 

optical absorption at NIR regions 

NiCo₂O₄ 
Nanoflowers 

~100 Hierarchical 

flower 

High Very High Complex structure leads to multi-

scattering and enhanced photothermal 

effects 

https://doi.org/10.1002/aenm.202402235
https://doi.org/10.1002/aenm.202402235
https://doi.org/10.1021/acsnano.3c09123
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8. Applications & Future Outlook 

The integration of Photoacoustic Spectroscopy 

(PAS) into real-time and operando battery systems 

represents a transformative leap in the field of energy 

storage diagnostics. Traditional characterization tools 

like SEM, XRD, or Raman often require interrupting the 

cell cycle or exposing the electrode to ambient 

conditions, leading to artifacts or loss of accuracy. In 

contrast, PAS, owing to its non-destructive nature and 

depth-sensitive response, enables the in situ probing of 

dynamic electrochemical phenomena during real-time 

operation. This quality makes it particularly valuable in 

unveiling degradation processes, phase transitions, and 

thermal events as they unfold within commercial and 

prototype cells [54]. 

 

One of the most promising applications of PAS 

is its integration into operando battery environments, 

where it can be seamlessly embedded within a cell casing 

or electrolyte environment without disrupting 

electrochemical performance. Researchers have begun 

deploying PAS setups in modified coin cells and pouch 

cells, enabling monitoring of phenomena such as 

dendrite formation, gas evolution, and electrolyte 

decomposition under live cycling conditions. The 

capacity of PAS to differentiate between bulk and 

surface phenomena allows it to act as a high-resolution 

acoustic microscope for electrochemical interfaces, 

especially in solid-state and hybrid-ion batteries where 

traditional techniques fall short. 

 

Furthermore, as the demand for sustainable and 

high-performance energy storage escalates, there is a 

pressing need to engineer intelligent, self-aware battery 

platforms. PAS, in this context, is emerging not merely 

as a diagnostic tool but as an active sensor node within 

energy systems. Recent advancements in micro-

optoelectromechanical systems (MOEMS) are paving 

the way for miniaturized PAS sensors that can be 

embedded directly within battery modules. These 

sensors can provide spatially resolved acoustic feedback 

on thermal hotspots, mechanical strain, and 

electrochemical instabilities, thereby offering a closed-

loop feedback system for real-time control and failure 

prevention. Such capabilities will be pivotal for 

aerospace, defense, and space-grade batteries, where 

precision monitoring is critical. Additionally, PAS’s 

responsiveness to subtle optical absorption shifts opens 

the possibility of detecting early-stage material fatigue or 

pre-dendritic anomalies, offering a predictive diagnostic 

horizon not accessible through conventional techniques. 

As research converges toward fully autonomous 

electrochemical systems, the role of PAS will shift from 

passive observation to active orchestration of material 

behavior, firmly embedding it within the backbone of 

next-generation smart energy infrastructure. 

 

Moreover, the future of PAS lies in smart 

diagnostics — coupling it with machine learning (ML) 

and artificial intelligence (AI) frameworks to provide 

predictive analytics. By training models on PAS signal 

evolution over time, battery health metrics such as state-

of-health (SOH), remaining useful life (RUL), and 

thermal runaway probability can be accurately predicted. 

Algorithms like convolutional neural networks (CNNs) 

and recurrent neural networks (RNNs) have shown 

promise in capturing temporal changes in PAS 

waveforms, creating a foundation for self-correcting, 

adaptive battery management systems (BMS). 

 

Looking further ahead, flexible and wearable 

energy storage devices will greatly benefit from PAS 

integration. These devices demand thin, light, and 

adaptable diagnostic tools — a space where optical-

acoustic techniques naturally excel. PAS sensors 

fabricated on polymer substrates or embedded into smart 

textiles could offer next-level diagnostics for flexible 

lithium-polymer or Zn-air batteries used in medical 

wearables, soft robotics, and consumer electronics [142]. 

 

As battery technologies evolve toward 

multivalent systems (Mg²⁺, Al³⁺), metal–air 

configurations, and bioinspired architectures, PAS will 

find new frontiers in characterizing ionic transport, 

localized heating, and structural rearrangements at the 

nanoscale. The advent of multi-modal approaches, where 

PAS is coupled with X-ray CT, infrared thermography, 

or electrochemical impedance spectroscopy (EIS), will 

create synergistic platforms for holistic understanding. 

 

Figure 11. Schematic representation of 

nanoscience-integrated photoacoustic spectroscopy 

(PAS) applied in energy storage systems (ESS). The 

illustration outlines the core workflow of PAS from laser 

excitation to acoustic wave detection, highlighting its 

integration with nanomaterials for real-time diagnostics, 

phase tracking, and structural mapping in advanced 

batteries. 

 

In this figure, PAS is illustrated as a diagnostic 

bridge between nanoscale material properties and 

system-level battery performance. The integration of 

nanostructured materials—such as nanoparticles, 

nanowires, and quantum dots—enhances PAS sensitivity 

and resolution, enabling precise monitoring of ion 

diffusion, thermal gradients, and degradation 

phenomena. The modularity of the system showcases its 

adaptability to different energy storage architectures, 

including lithium-ion, sodium-ion, and solid-state 

batteries [8]. 

https://doi.org/10.1002/aenm.202509123
https://doi.org/10.1002/adma.202402035
https://doi.org/10.1016/j.nanoen.2025.110347
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Figure 11: Schematic representation of nanoscience-integrated photoacoustic spectroscopy (PAS) applied in 

energy storage systems (ESS).[131] 

 

9. Challenges and Limitations 

While Photoacoustic Spectroscopy (PAS) 

integrated with nanoscience offers a promising 

diagnostic modality for metal-based energy storage 

systems (ESS), several limitations persist that hinder its 

widespread deployment, particularly in real-world and 

solid-state applications. 

 

9.1 Sensitivity in Multicomponent Systems 

A core limitation of PAS lies in its sensitivity 

when operating in chemically and structurally complex 

battery environments. In multilayered or composite 

electrodes—such as those used in Li-S or Li–air 

systems—the overlapping absorption spectra of different 

components can result in signal convolution. This makes 

it challenging to deconvolute the PAS response and 

attribute specific features to individual species (e.g., 

binder degradation vs. active material decomposition). 

Furthermore, thermal dissipation in nanocomposites can 

dampen the acoustic signal, leading to false negatives or 

under-represented defects [124]. 

 

Mitigation Strategy: 

The use of modulated multi-wavelength 

excitation combined with machine learning-based signal 

deconvolution has shown promise in recent studies. 

Time-resolved PAS and hyperspectral acoustic mapping 

are emerging as potential enhancements to isolate 

component-specific responses. 

 

9.2 Penetration Depth and Spatial Resolution 

Constraints 

PAS inherently suffers from limited penetration 

depth, particularly in dense or solid-state battery 

architectures. The interaction of modulated light with 

deeper layers is attenuated significantly, which restricts 

the applicability of PAS in probing subsurface features 

such as buried interfaces or deep SEI layers in thick 

electrodes. 

 

 

 

In addition, the spatial resolution in PAS is 

typically lower than in optical microscopy or X-ray 

tomography. This makes it less suitable for investigating 

nanostructured defects unless coupled with precision 

positioning systems or near-field acoustic enhancement. 

 

Suggested Addition: 

Image or schematic showing the penetration 

limitation in solid-state architecture. I recommend a 

cross-sectional schematic figure showing PAS limited to 

~20–50 μm vs. actual electrode thickness (~200 μm). Let 

me know if you'd like this visual generated. 

 

9.3 Material Absorption Dependency 

The performance of PAS is highly dependent on 

the optical absorption coefficient of the sample. Some 

nanomaterials, particularly wide band-gap oxides (e.g., 

ZnO, TiO₂), exhibit poor absorption in the visible and 

near-infrared regions, limiting their detectability. This 

dependence also introduces selectivity bias, making PAS 

more suited to systems with well-absorbing components. 

 

9.4 Thermal and Acoustic Crosstalk 

Due to the thermal nature of PAS, non-targeted 

heat generation can result in crosstalk from adjacent 

components. For instance, in composite electrodes, 

carbon black and binders might produce stronger 

acoustic responses than the actual redox-active material, 

skewing interpretations. Similarly, mechanical 

vibrations or ambient temperature fluctuations can 

introduce noise in the PAS output, especially during 

long-term cycling measurements. 

 

Suggested Solution: 

Implement temperature control modules, 

vibration-damping chambers, and apply baseline 

subtraction algorithms to distinguish genuine PAS 

signals. 

https://doi.org/10.1002/adma.202401011
https://doi.org/10.1016/j.ensm.2024.09.016
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Table 5: Optical Absorption vs. PAS Signal Strength of Common Nanomaterials Used in ESS [134] 

Nanomaterial Bandgap 

(eV) 

Optimal Excitation 

Wavelength (nm) 

PAS Signal 

Strength 

Comment 

LiFePO₄ ~3.4 350–450 Moderate Requires UV excitation 

ZnO Nanowires ~3.3 350–400 Weak Low signal, may need 

enhancement 

CNTs (Carbon NTs) ~0.6–1.2 500–1000 Strong Excellent acoustic response 

Graphene Oxide ~2.2 400–500 Moderate Edge defects affect response 

Quantum Dots (CdSe) ~1.7–2.4 500–700 Very Strong Tunable for maximum signal 

 

9.5 Instrumentation Complexity and Cost 

Despite its non-destructive appeal, PAS 

instrumentation remains relatively expensive and 

technically intensive to deploy at scale. Components 

such as tunable lasers, lock-in amplifiers, and acoustic 

detectors require precise calibration. Moreover, in-line 

integration with battery testing platforms adds another 

layer of engineering complexity, making it impractical 

for routine industrial diagnostics—especially in high-

throughput production lines. 

 

Emerging portable PAS devices show promise, 

but trade-offs in resolution and depth-sensing 

capabilities persist. Cost-effective miniaturized PAS 

sensors combined with data-driven analysis frameworks 

are necessary to push the technique beyond academic 

labs [84]. 

 

PAS, when integrated with nanomaterials and 

advanced AI/ML pipelines, holds immense diagnostic 

potential—but practical barriers persist that must be 

systematically addressed. Only then can PAS evolve 

from a research-grade tool to a mainstream industrial 

diagnostic asset, particularly in the evolving landscape of 

solid-state and flexible battery technologies. 

In advanced diagnostic workflows, 

Photoacoustic Spectroscopy (PAS) faces critical 

limitations, especially when applied to complex solid-

state or multilayered electrode systems. As depicted in 

Figure 10, issues like shallow acoustic penetration, 

heterogeneous material response, and high optical 

scattering significantly reduce signal clarity and spatial 

resolution. These limitations not only restrict depth-

resolved chemical imaging but also complicate real-time 

monitoring in high-capacity or structurally intricate cells. 

Furthermore, the integration of PAS instrumentation 

with commercial battery platforms remains non-trivial 

due to cost, spatial constraints, and the need for high 

modulation stability. 

 

To address these issues, future research must 

focus on developing hybrid diagnostic platforms that 

combine PAS with other spatially resolved techniques 

(e.g., neutron imaging or in situ XRD), along with 

tailored AI/ML pipelines capable of isolating useful 

signal features from noise. Advancements in nano-

engineered acoustic transducers and low-loss optical 

modulators could also improve system sensitivity and 

integration feasibility. 

 

 
Figure 12: Schematic representation of the limitations in PAS-based diagnostics for metal-based energy storage systems. The 

illustration highlights key constraints such as limited acoustic penetration depth, signal interference in composite matrices, and 

complexity in integrating PAS with solid-state battery architectures [92] 

 

10. CONCLUSION 
In the evolving landscape of energy storage, 

where demands for efficiency, reliability, and 

miniaturization are escalating rapidly, Photoacoustic 

Spectroscopy (PAS) has emerged as an innovative and 

non-destructive diagnostic modality. The strategic 

integration of nanoscience into PAS methodology 

represents not merely a technological enhancement, but 

a paradigm shift in how we characterize and optimize 

metal-based energy storage systems (ESS)—ranging 

from lithium-ion and sodium-ion to next-generation 

magnesium- and zinc-based batteries. 

 

https://doi.org/10.1016/j.ensm.2024.09.016
https://doi.org/10.1002/aenm.202504018
https://doi.org/10.1021/acsnano.4c09876
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This review has underscored the unique 

diagnostic strengths of PAS, including its ability to 

resolve subsurface features, monitor SEI formation, 

detect electrode degradation, and assess ion diffusion 

dynamics—all in real-time and without dismantling the 

cell. These capabilities have been demonstrated to 

become exponentially more powerful when 

nanostructured materials are introduced, such as 

quantum dots, nanowires, nanoparticles, and graphene 

derivatives. The tailored surface-to-volume ratios, 

enhanced light absorption characteristics, and tunable 

morphologies of these nanomaterials directly amplify 

PAS sensitivity and resolution, enabling diagnostics at 

scales that traditional spectroscopic methods cannot 

reach. 

 

From a materials optimization perspective, PAS 

offers critical insight into phase transitions, lattice 

defects, and thermal effects that occur during charge-

discharge cycles. These insights empower strategies like 

targeted doping, morphology engineering, and surface 

coating to improve battery performance and lifespan. As 

outlined, PAS not only functions as a probe but becomes 

a feedback mechanism within adaptive material design 

loops. 

 

Looking ahead, the synergy between PAS, 

nanoscience, and machine learning (ML) opens 

pathways for fully autonomous, smart diagnostic 

platforms that can guide real-time battery management, 

health prediction, and structural optimization. Such 

systems could revolutionize commercial battery 

diagnostics—especially for solid-state, flexible, and 

hybrid-ion architectures—where traditional tools lack 

accuracy, adaptability, or integration potential. 

 

However, realizing this vision requires 

overcoming the current limitations: restricted penetration 

depth, spectral interference in complex matrices, and the 

lack of standardized PAS-cell coupling frameworks. 

Addressing these will require cross-disciplinary 

collaboration, bridging spectroscopy, materials science, 

battery engineering, and AI. Moreover, open-access 

datasets, modular instrumentation designs, and cloud-

based simulation environments will be essential to fast-

track the industrial translation of PAS-powered 

diagnostics. 

 

In conclusion, nanoscience-integrated PAS is 

no longer a speculative concept—it is rapidly positioning 

itself as the linchpin for next-generation energy storage 

diagnostics. Researchers, technologists, and battery 

manufacturers must now converge efforts to scale, 

standardize, and optimize this technique, ensuring its full 

potential is realized across commercial and high-

performance energy systems. The roadmap forward is 

clear: deeper integration, smarter analytics, and broader 

accessibility. In the quest for cleaner, safer, and smarter 

energy storage, PAS will not merely support progress—

it will define it. 
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