# **Scholars Journal of Applied Medical Sciences**

Abbreviated Key Title: Sch J App Med Sci ISSN 2347-954X (Print) | ISSN 2320-6691 (Online) Journal homepage: <u>https://saspublishers.com</u> **∂** OPEN ACCESS

Radiology

# **Diagnostic Accuracy of Contrast-Enhanced Computed Tomography in Differentiating Benign and Malignant Adrenal Lesions: A Histopathological Correlation Study**

Dr. Mahfuja Jahan<sup>1\*</sup>, Dr. Khwaja Habib Salim<sup>2</sup>, Dr. Ferdous Jahan<sup>3</sup>, Dr. Khaleda Jahan<sup>4</sup>, Dr. Salma Jahan<sup>5</sup>, Dr. Md. Nazrul Islam<sup>6</sup>, Dr. Bishwajit Bhowmik<sup>7</sup>

<sup>1</sup>Medical Officer, Dept. of Radiology & Imaging, Bangladesh Medical University (BMU), Dhaka, Bangladesh

<sup>2</sup>Associate Professor, Dept. of Pediatric Surgery, STAMCH, Gazipur, Bangladesh

<sup>3</sup>Associate Professor, Dept. of Nephrology, Bangladesh Medical University (BMU), Dhaka, Bangladesh <sup>4</sup>Assistant Professor, NICRH, Dhaka, Bangladesh

<sup>5</sup>Professor, Dept. of Pediatric Nephrology, Bangladesh Medical University (BMU), Dhaka, Bangladesh <sup>6</sup>Professor, Dept. of Radiology& Imaging, Bangladesh Medical University (BMU), Dhaka, Bangladesh <sup>7</sup>Professor, Dept. of Radiology, Bangladesh Medical University (BMU), Dhaka, Bangladesh

DOI: https://doi.org/10.36347/sjams.2025.v13i07.016

| Received: 13.05.2025 | Accepted: 19.07.2025 | Published: 23.07.2025

\*Corresponding author: Dr. Mahfuja Jahan

Medical Officer, Dept. of Radiology & Imaging, Bangladesh Medical University (BMU), Dhaka, Bangladesh

#### Abstract

**Original Research Article** 

Background: The growing incidental detection of adrenal masses has emphasized the need for reliable, non-invasive diagnostic tools. Contrast-Enhanced Computed Tomography (CECT) is commonly employed to evaluate adrenal lesions due to its accessibility and detailed imaging capabilities. However, its diagnostic accuracy in distinguishing benign from malignant lesions must be critically assessed through comparison with histopathological findings, which remain the gold standard for definitive diagnosis. **Objective:** To evaluate the diagnostic accuracy of CECT in differentiating benign from malignant adrenal lesions using histopathological findings as the gold standard. Methods: A hospital-based cross-sectional study was carried out over a period of two years (April 2022 to March 2024) in the Department of Radiology and Imaging at Bangladesh University (BMU), Dhaka. Thirty patients with clinically or sonographically suspected adrenal masses were enrolled using purposive sampling. Each participant underwent a dedicated adrenal Contrast-Enhanced Computed Tomography (CECT) scan, performed using a standardized adrenal imaging protocol, including unenhanced, portal venous, and 15-minute delayed phases. Imaging findings were interpreted by experienced radiologists blinded to clinical and histopathological data. All patients subsequently underwent histopathological confirmation through biopsy or surgical excision, which served as the diagnostic gold standard. Comparative analysis between CECT and histopathology was conducted. Diagnostic performance metrics, including sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and overall diagnostic accuracy of CECT in differentiating benign from malignant adrenal lesions, were calculated using appropriate statistical tools via SPSS version 26. A p-value < 0.05 was considered statistically significant. *Results:* In this study of 30 patients with adrenal masses, the mean age was 40.9±17.8 years, with a male-to-female ratio of 1.3:1. On contrast-enhanced CT (CECT), 80% of lesions were identified as benign and 20% as malignant, while histopathology confirmed 76.7% as benign and 23.3% as malignant. Adrenal adenoma was the most common diagnosis on both imaging (50%) and histopathology (46.7%). Lesion size showed a significant association with malignancy; 85.7% of malignant tumors were  $\geq 4$  cm compared to only 21.7% of benign ones (p = 0.003), with malignant tumors having a significantly larger mean size (8.05 cm vs 3.90 cm). The agreement between CECT and histopathology was very strong ( $\kappa = 0.902$ ), with CECT demonstrating high diagnostic validitysensitivity 85.71%, specificity 100%, positive predictive value 100%, negative predictive value 95.83%, and overall accuracy 96.67%-in distinguishing malignant adrenal lesions. Conclusion: CECT shows high diagnostic accuracy and excellent agreement with histopathology in differentiating adrenal lesions, suggesting its potential to guide non-invasive management and reduce reliance on invasive procedures.

Keywords: Adrenal mass, CECT, histopathology, diagnostic accuracy, benign adrenal lesion, malignant adrenal tumor. Copyright © 2025 The Author(s): This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY-NC 4.0) which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original author and source are credited.

### **INTRODUCTION**

The adrenal glands are susceptible to a wide spectrum of pathological processes, ranging from benign adenomas to aggressive malignancies such as adrenocortical carcinoma and metastatic disease. With the increasing utilization of cross-sectional imaging modalities like ultrasonography (US), computed tomography (CT), and magnetic resonance imaging

Citation: Mahfuja Jahan, Khwaja Habib Salim, Ferdous Jahan, Khaleda Jahan, Salma Jahan, Md. Nazrul Islam, Bishwajit Bhowmik. Diagnostic Accuracy of Contrast-Enhanced Computed Tomography in Differentiating Benign and Malignant Adrenal Lesions: A Histopathological Correlation Study. Sch J App Med Sci, 2025 Jul 13(7): 1441-1446. (MRI), adrenal lesions- particularly incidentalomas- are being detected with growing frequency during imaging for unrelated abdominal or thoracic complaints [1]. These lesions are found in approximately 3–7% of the adult population, with prevalence rising with age [2].

Although most adrenal incidentalomas are benign and hormonally inactive, a subset may exhibit malignant potential or hormonal hypersecretion. Differentiating between benign and malignant adrenal masses is critical for guiding appropriate clinical decision-making. Surgical resection is typically indicated for primary adrenal malignancies and functional tumors, whereas benign, non-functioning lesions may be managed conservatively with imaging follow-up [3]. Therefore, non-invasive, accurate characterization of adrenal lesions remains a clinical priority to minimize unnecessary surgeries and avoid missed diagnoses of malignancy.

Contrast-enhanced computed tomography (CECT) is widely regarded as the first-line imaging modality for adrenal lesion evaluation, primarily due to its accessibility, high resolution, and ability to delineate lesion morphology and enhancement characteristics. CECT enables radiologists to assess important imaging features such as lesion size, shape, internal attenuation, contrast washout dynamics, and presence of calcification, necrosis, or vascular invasion- all of which are critical in lesion characterization [4,5].

Benign adenomas adrenal typically demonstrate low attenuation on unenhanced CT scans (<10 Hounsfield Units) due to their intracellular lipid content, show homogeneous enhancement, and exhibit rapid contrast washout. In contrast, malignant lesions such as adrenocortical carcinoma or metastatic deposits often present with irregular margins, heterogeneous enhancement, larger size (commonly >4 cm), delayed contrast washout, and signs of local invasion or metastasis [6,7]. Washout analysis using absolute and relative percentage washout values after delayed imaging further improves diagnostic specificity- adenomas usually demonstrate an absolute washout of >60% or relative washout of >40% at 15 minutes. [8]

Despite these well-defined imaging characteristics, overlap in radiological featuresparticularly in lipid-poor adenomas and necrotic malignant lesions- can limit diagnostic certainty. Thus, histopathological examination remains the gold standard for definitive diagnosis and validation of imaging-based assessments.

In this context, this study aims to evaluate the diagnostic accuracy of Contrast-Enhanced Computed Tomography (CECT) in differentiating benign from malignant adrenal lesions by correlating imaging findings with histopathological results. Establishing the

Mahfuja Jahan *et al*; Sch J App Med Sci, Jul, 2025; 13(7): 1441-1446 reliability of CECT in lesion characterization will support its role as a non-invasive tool in clinical decision-making and potentially reduce the need for invasive diagnostic procedures.

### **METHODS**

**Study Design and Setting:** This was a hospital-based cross-sectional observational study conducted in the Department of Radiology and Imaging at Bangladesh Medical University (BMU), Dhaka, over a two-year period from April 2022 to March 2024. The study aimed to assess the diagnostic performance of Contrast-Enhanced Computed Tomography (CECT) in differentiating benign from malignant adrenal lesions, using histopathology as the reference standard.

**Study Population and Sampling:** A total of 30 patients were included in the study. Participants were selected using purposive sampling based on clinical suspicion or sonographic evidence of adrenal masses. All patients were referred from various departments (including surgery, endocrinology, and internal medicine) for further evaluation with adrenal CT imaging.

#### Inclusion and Exclusion Criteria Inclusion Criteria:

- Patients of any age and sex with clinically suspected or incidentally discovered adrenal masses on imaging.
- Patients willing to undergo both CECT and histopathological confirmation.
- Informed written consent obtained.

#### **Exclusion Criteria:**

- Pregnant women.
- Patients with known hypersensitivity to iodinated contrast media.
- Patients with bleeding diathesis or systemic sepsis.
- Those who refused biopsy, surgery, or follow-up.

#### **CECT Imaging Protocol**

All patients underwent CECT using a 128-slice Siemens SOMATOM Definition AS multidetector CT scanner. The adrenal protocol consisted of three phases:

**Unenhanced Scan:** Axial sections with 2.5 mm collimation through the adrenal glands.

Contrast-Enhanced Portal Venous Phase: Acquired 60–70 seconds after intravenous administration of 100 mL non-ionic contrast agent at 3 mL/sec using a power injector.

**Delayed Phase:** Additional images taken at 15 minutes post-contrast administration.

Mean attenuation values (in Hounsfield Units) were measured by placing elliptical regions of interest

(ROI) over the adrenal lesions. Absolute and relative percentage washout were calculated using standard formulas:

Absolute Percentage Washout (APW) =  $[(Enhanced HU - Delayed HU) / (Enhanced HU - Unenhanced HU)] \times 100$ 

Relative Percentage Washout (RPW) =  $[(Enhanced HU - Delayed HU) / Enhanced HU] \times 100$ 

An APW >60% or RPW >40% was considered indicative of a benign a denoma.<sup>5</sup>

#### **Histopathological Evaluation**

Tissue samples were obtained via percutaneous biopsy or surgical excision and examined by experienced pathologists blinded to the imaging findings. Histopathological diagnosis was considered the gold standard for determining the benign or malignant nature of the adrenal mass.

#### **Data Collection and Variables**

Data were collected using a structured proforma, including demographic details, clinical findings, CT characteristics (size, density, enhancement Mahfuja Jahan *et al*; Sch J App Med Sci, Jul, 2025; 13(7): 1441-1446 pattern, washout), and histopathological outcomes. Independent variables included age, sex, lesion size, and CECT parameters, while the dependent variable was the final histopathological diagnosis.

#### **Statistical Analysis**

All data were compiled and analyzed using SPSS version 26.0. Descriptive statistics were calculated for demographic and clinical variables. Diagnostic performance of CECT was assessed by calculating sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and overall diagnostic accuracy. Agreement between CECT and histopathology was evaluated using Cohen's kappa coefficient. A pvalue <0.05 was considered statistically significant.

#### **Ethical Consideration**

The study protocol was approved by the Institutional Review Board (IRB) of BMU prior to data collection. All patients or their legal guardians provided informed written consent. Confidentiality was maintained by anonymizing patient data and limiting access to research personnel only.

### **RESULTS**

| Variables          | Number of patients | Percentage (%) |
|--------------------|--------------------|----------------|
| Age group (years)  |                    |                |
| 9-19               | 3                  | 10.0           |
| 20-29              | 5                  | 16.7           |
| 30-39              | 7                  | 23.3           |
| 40-80              | 15                 | 50.0           |
| Mean $\pm$ SD      | 40.9±17.8          |                |
| Sex                |                    |                |
| Male               | 17                 | 56.7           |
| Female             | 13                 | 43.3           |
| Male: Female ratio | 1. 3: 1            |                |

 Table-1: Demographic characteristics of the study patients (n=30)

A total of 30 patients with adrenal masses were included in the study. The mean age was  $40.9\pm17.8$  years (range: 9–80 years). Half of the patients (50.0%) were

aged 40 years or above, and 23.3% were between 30–39 years. There were 17 males (56.7%) and 13 females (43.3%), yielding a male-to-female ratio of 1.3:1.

Table-2: Distribution of Benign & Malignant lesions by CECT diagnosis (n=30)

| <b>CECT diagnosis</b> | Frequency | Percentage (%) |
|-----------------------|-----------|----------------|
| Benign                | 24        | 80.0           |
| Malignant             | 6         | 20.0           |
| Total                 | 30        | 100.0          |

On CECT, 24 patients (80.0%) were diagnosed with benign adrenal lesions, while 6 (20.0%) were diagnosed as malignant.

#### Table-3: Distribution of benign & malignant adrenal lesions by histopathological diagnosis (n=30)

| Histopathological diagnosis | Frequency | Percentage (%) |
|-----------------------------|-----------|----------------|
| Benign                      | 23        | 76.7           |
| Malignant                   | 7         | 23.3           |
| Total                       | 30        | 100.0          |

1443

The most common diagnosis on CECT was adrenal adenoma (15 patients, 50.0%), followed by

adrenal hyperplasia (13.3%), adrenocortical carcinoma (10.0%), and adrenal metastases (6.7%).

| <b>Table-4: Distribution</b> | of Adrenal Lesions h | у СЕСТ ( | diagnosis (n=30) |
|------------------------------|----------------------|----------|------------------|
|                              |                      |          |                  |

| CECT diagnosis           | Frequency | Percentage (%) |
|--------------------------|-----------|----------------|
| Adrenal Adenoma          | 15        | 50.0           |
| Adrenal Myelolipoma      | 2         | 6.7            |
| Adrenal Metastases       | 2         | 6.7            |
| Adrenocortical carcinoma | 3         | 10.0           |
| Neuroblastoma            | 1         | 3.3            |
| Hyperplasia              | 4         | 13.3           |
| Histoplasmosis           | 2         | 6.7            |
| Adrenal tuberculosis     | 1         | 3.3            |
| Total                    | 30        | 100.0          |

The most common diagnosis on CECT was adrenal adenoma (15 patients, 50.0%), followed by

adrenal hyperplasia (13.3%), adrenocortical carcinoma (10.0%), and adrenal metastases (6.7%).

| Histopathological diagnosis | Frequency | Percentage (%) |
|-----------------------------|-----------|----------------|
| Adrenal Adenoma             | 14        | 46.7           |
| Adrenocortical carcinoma    | 4         | 13.3           |
| Myelolipoma                 | 1         | 3.3            |
| Metastases                  | 2         | 6.7            |
| Neuroblastoma               | 1         | 2.9            |
| Adrenal Hyperplasia         | 5         | 16.7           |
| Histoplasmosis              | 2         | 6.7            |
| Adrenal tuberculosis        | 1         | 3.3            |
| Total                       | 30        | 100.0          |

### Table-5: Distribution of Adrenal Lesions by histopathological diagnosis (n=30)

Histopathological evaluation revealed adrenal adenoma in 14 patients (46.7%), adrenocortical

carcinoma in 4 (13.3%), adrenal hyperplasia in 5 (16.7%), and metastatic lesions in 2 (6.7%).

#### Table-6: Correlation between adrenal tumor size and Histopathology finding in the diagnosis of Malignant and Benign adrenal tumors (n=30)

| Size of lesion (cm) | Histopathol        | p-value          |       |
|---------------------|--------------------|------------------|-------|
|                     | Malignant<br>(n=7) | Benign<br>(n=23) |       |
| < 4 cm              | 1(14.3%)           | 18(7803%)        |       |
| $\geq$ 4 cm         | 6(85.7%)           | 5(21.7%)         |       |
| Total               | 7(100.0%)          | 23(100.0%)       |       |
| Mean±SD             | $8.05 \pm 5.06$    | 3.90±2.14        | 0.003 |

p-value obtained by Unpaired t-test, p<0.05 considered as a level of significance

Lesions measuring  $\geq 4$  cm were significantly more likely to be malignant. Among malignant lesions (n=7), 6 (85.7%) were  $\geq 4$  cm, while only 1 (14.3%) was <4 cm. Conversely, 18 benign lesions (78.3%) were <4 cm. The mean size of malignant lesions was  $8.05 \pm 5.06$  cm, significantly larger than that of benign lesions (3.90  $\pm 2.14$  cm), with a statistically significant difference (p = 0.003).

#### Table-7: Relation of CECT and histopathological findings in diagnosis of Benign and Malignant adrenal lesion

|                 | Histopathological findings |            |       | Kappa value |
|-----------------|----------------------------|------------|-------|-------------|
|                 | Malignant                  | Benign     | Total |             |
|                 | (n=7)                      | (n=23)     |       |             |
| CECT(Benign)    | 1(14.3%)                   | 23(100.0%) | 24    |             |
| CECT(Malignant) | 6(85.7%)                   | 0(0.00%)   | 6     | 0.902       |
| Total           | 7(100.0%)                  | 23(100.0%) |       |             |

The cross-tabulation between CECT and histopathology showed that all 6 cases labeled malignant on CECT were confirmed malignant on histopathology (true positives), and all 23 benign histological cases were correctly identified by CECT (true negatives). One malignant lesion was misclassified as benign (false Mahfuja Jahan *et al*; Sch J App Med Sci, Jul, 2025; 13(7): 1441-1446 negative), and no false positives were recorded. Kappa value 0.902 obtained by Cohen's kappa test signifies 'Very Good Agreement' level of association between CECT and Histopathological diagnosis of benign and malignant adrenal lesion

| 0 | 2                         | 1               | 8      | 0          | 0 |
|---|---------------------------|-----------------|--------|------------|---|
|   | adren                     | al lesion (n=30 |        |            | _ |
|   |                           | Values (%)      | 95% C  | I          |   |
|   | Sensitivity               | 85.71%          | 42.13% | to 99.64%  |   |
|   | Specificity               | 100.00%         | 85.18% | to 100.00% |   |
|   | Positive Predictive Value | 100.00%         | 54.07% | to 100.00% |   |

Table-8: Diagnostic validity test between CECT and histopathological findings in the diagnosis of malignant

|                    | Positive Predictive value   | 100.00% |    |
|--------------------|-----------------------------|---------|----|
|                    | Negative Predictive Value   | 95.83%  |    |
|                    | Accuracy                    | 96.67%  |    |
| CECT demonstrat    | ed high diagnostic accuracy | patteri | 'n |
| ing malignant adre | detect                      |         |    |

CECT demonstrated high diagnostic accuracy in detecting malignant adrenal lesions, with a sensitivity of 85.71%, specificity of 100%, PPV of 100%, NPV of 95.83%, and overall accuracy of 96.67%.

## DISCUSSION

This cross-sectional observational study was conducted in the Department of Radiology and Imaging at Bangladesh Medical University (BMU), Dhaka, with the aim of evaluating the diagnostic accuracy of contrastenhanced computed tomography (CECT) in differentiating benign from malignant adrenal lesions, using histopathological findings as the reference standard. The findings confirm that CECT is a highly accurate, non-invasive imaging modality, demonstrating strong diagnostic performance with a sensitivity of 85.71%, specificity of 100.00%, positive predictive value (PPV) of 100.00%, negative predictive value (NPV) of 95.83%, and an overall accuracy of 96.67%. These outcomes align with the earlier findings by Korobkin et al., [4], who established the utility of unenhanced CT attenuation values for differentiating adrenal adenomas from non-adenomas, and were further supported by Caoili et al., [5], who validated the role of combined unenhanced and delayed-enhanced CT in characterizing adrenal masses. Subsequent studies, such as those by Park et al., [9] and Albano et al., [6], reinforced the diagnostic value of dynamic washout criteria in improving the accuracy of adrenal lesion evaluation. The present study adds to this evidence base by demonstrating that, when standardized imaging protocols are applied, CECT can reliably distinguish benign from malignant adrenal tumors in a South Asian tertiary care setting.

In the current study, the majority of patients were above 40 years of age, with a mean age of  $40.9 \pm 17.8$  years. A male predominance was observed (male-to-female ratio 1.3:1), similar to previous reports by Kunjuraman and Chacko [10] and Mohamed *et al.*,[11], who also reported wide age ranges and slightly higher male incidence. This reflects the typical epidemiologic

pattern of adrenal masses, which are increasingly detected incidentally in middle-aged and older adults.

54.07% to 100.00% 78.93% to 99.30% 82.78% to 99.92%

Clinical presentations were also in line with known functional characteristics of adrenal tumors. Hypertension was the most frequent symptom (43.3%), followed by features suggestive of cortisol excess (23.3%). These findings are supported by Dunnick *et al.*,[12], who described cortisol-producing adrenocortical carcinomas as a common cause of Cushingoid features in adrenal malignancies.

In this study, adrenal adenoma was the most common lesion diagnosed both radiologically (50%) and histologically (46.7%), followed by adrenal hyperplasia and adrenocortical carcinoma. The radiologicalhistopathological concordance was excellent, as indicated by a Cohen's kappa value of 0.902, suggesting very good agreement. No false-positive cases were recorded, and only one malignant lesion was missed by CECT, reflecting its high specificity and reliability.

A key finding in this study was the strong correlation between tumor size and malignancy. Among malignant lesions, 85.7% were  $\geq$ 4 cm, while 78.3% of benign lesions were <4 cm. The mean size of malignant tumors  $(8.05 \pm 5.06 \text{ cm})$  was significantly larger than that of benign tumors  $(3.90 \pm 2.14 \text{ cm})$ , with a statistically significant difference (p = 0.003). This supports the established size thresholds reported by Mayo-Smith et al.,[1], Park et al.,[9], and Blake et al.,[13], which suggest that adrenal lesions larger than 4-6 cm warrant greater suspicion of malignancy. Although detailed washout analysis (absolute and relative percentage washout) was not presented separately, the CT protocol in this study followed standard adrenal imaging criteria. Prior literature confirms that absolute percentage washout <60% and relative percentage washout <40% are highly suggestive of malignancy. [8] Overall, the findings reaffirm the diagnostic value of CECT in evaluating adrenal lesions. The combination of lesion size, enhancement pattern, and contrast washout offers comprehensive behavior а non-invasive

Mahfuja Jahan et al; Sch J App Med Sci, Jul, 2025; 13(7): 1441-1446

assessment strategy. However, the presence of one falsenegative case in this series underscores the need for caution in small or atypical tumors, where imaging findings may overlap.

## CONCLUSION

Contrast-enhanced CT is a highly accurate and non-invasive modality for differentiating benign from malignant adrenal lesions, demonstrating strong agreement with histopathological findings. Lesion size, particularly  $\geq 4$  cm, significantly correlates with malignancy. Given its high specificity and diagnostic accuracy, CECT remains a valuable first-line tool in the evaluation of adrenal masses, aiding in clinical decisionmaking and reducing unnecessary interventions.

### REFERENCES

- Mayo-Smith WW, Song JH, Boland GL, Francis IR, Israel GM, Mazzaglia PJ, *et al.*, Management of incidental adrenal masses: a white paper of the ACR Incidental Findings Committee. *J Am Coll Radiol*. 2017;14(8):1038–44.
- 2. Song JH, Grand DJ, Beland MD, Chang KJ, Machan JT, Mayo-Smith WW. Morphologic features of 211 adrenal masses at initial contrast-enhanced CT: can we differentiate benign from malignant lesions using imaging features alone? *AJR Am J Roentgenol*. 2013;201(6):1248–53.
- Ng CS, Wei W, Altinmakas E, Li X, Ghosh P, Perrier NA, *et al.*,Differentiation of malignant and benign adrenal lesions with delayed CT: multivariate analysis and predictive models. *AJR Am J Roentgenol*. 2018;210(4):W156–63.
- 4. Korobkin M, Brodeur FJ, Yutzy GG, Francis IR, Quint LE, Dunnick NR, *et al.*,Differentiation of adrenal adenomas from nonadenomas using CT

attenuation values. *AJR Am J Roentgenol*. 1996;166(3):531–6.

- Caoili EM, Korobkin M, Francis IR, Cohan RH, Platt JF, Dunnick NR, *et al.*, Adrenal masses: characterization with combined unenhanced and delayed enhanced CT. *Radiology*. 2002;222(3):629– 33.
- Albano D, Agnello F, Midiri F, Pecoraro G, Bruno A, Alongi P, *et al.*, Imaging features of adrenal masses. *Insights Imaging*. 2019;10(1):1.
- Viëtor CL, Creemers SG, van Kemenade FJ, van Ginhoven TM, Hofland LJ, Feelders RA. How to differentiate benign from malignant adrenocortical tumors. *Cancers (Basel)*. 2021;13(17):4383.
- Johnson PT, Horton KM, Fishman EK. Adrenal mass imaging with multidetector CT: pathologic conditions, pearls, and pitfalls. *Radiographics*. 2009;29(5):1333–51.
- Park HS, Kim MJ, Kim JH, Lim JS, Kim KW. Differentiation of adrenal adenoma and nonadenoma in unenhanced CT: new optimal threshold value and the usefulness of size criteria for differentiation. *Korean J Radiol*. 2007;8(4):328–35.
- Kunjuraman UK, Chacko SA. Imaging of adrenal tumors using CT: comparison of benign and malignant lesions. J Med Sci Clin Res. 2017;5(4):20271–6.
- Mohamed RE, Abodewan KAeW, Amin MA. Diagnostic value of delayed washout rate of contrast-enhanced multi-detector computed tomography in adrenal incidentalomas. *Alexandria J Med.* 2013;50(4):345–58.
- Dunnick NR, Korobkin M, Francis I. Adrenal radiology: distinguishing benign from malignant adrenal masses. *AJR Am J Roentgenol*. 1996;167(4):861–7.
- 13. Blake MA, Cronin CG, Boland GW. Adrenal imaging. *AJR Am J Roentgenol*. 2010;194(6):1450.