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Abstract: Let «(-) satisfy the log-Holder continuity condition and 1<a()<n .

Suppose T, is the fractional integral operator with variable kernel associate to

2a()
variable exponent. In this paper, using the properties of weighted Morrey spaces, we
prove that T, ,, is bounded from L”*(@”,0") to ¥ S/P (@) .
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INTRODUCTION

Suppose that S" is the unit sphere in R” , n>2 and do is the normalized
Lebesgue measure on " . A function Q(x,z) defined on R” xR" is said to belong
to L°(R")x L' (S"™"), r >1, if it satisfies the following conditions.
1) Q(x,Az)=Q(x,z), forany 1 >0 and x,zeR";

r
' .
RO (57 Sup(LH )) <o,

(i) @

(iii) for any x e R", Ln,]

z
=—and z#0.
|z|

Assume Qe L* (R")x L'(S""),r>1. We say that Q satisfies the L*-Dini condition if the conditions (i),(ii),(iii)

above hold and I

which p is arotationin R" and "p”

A measurable function ()

GcR" , we write «a_ —1nfa(x) a, =supa(x) .

<o _<a, <n.

5 < oo, where @,(9) is defined by

®,(6)= sup

<R Jof<s

sup |px x|

(_[y—l |Q(x, px")—Qx,x ')|r do(x '))l/r ,

is called a variable exponent if a(-):R" — (0,0) . For a measurable subset

Let P(R") denote the set of functions «() satisfying

xeG

We say that a(-) satisfies the log-Holder continuity condition, if

() -a(y)| < PSIES ¥

¢
log(1/| x=y])’

s lyl=]x].

C
|la(x)—a(y)|< Toget|x])

Set Q(x,z)e L(R")xL'(§"™"), r>1, satistying the L*-Dini condition. The fractional integral operator with
variable kernels associate to variable exponents is defined by

T /)= %f(y)dy ,
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where a(-) is a variable exponent , satisfying the log-H6lder continuity condition and a(-) € P(R") .

Obviously, if a()=a being a constant, and Q=1 , the fractional integral operator with variable kernels
associate to variable exponents is become to the classical fractional integral T, , . In 1974, Muckenhoupt and Wheeden[1]
studied the boundedness of 7, on Lebesgue spaces for 0 <a <. In 2009, Komori and Shirai[2] defined the weighted

Morrey space, which is a generalized weighted Lebesgue space. Then, the boundedness of fractional integral operators
and fractional maximal operators, and their commutators on weighted Morrey spaces were discussed by Wang[3].

In this paper, we discussed the fractional integral operators with variable kernels associate to variable exponents
on weighted Morrey spaces.

PRELIMINARIES
We recall several useful lemmas and definitions.
Lemma 2.1(see [4] and [5]). Let a() satisfy log-Holder condition and a()e€?P . Suppose that

Qel”RHXL (S, r>

" 0’ satisfying the L"-Dini condition. Set 1/¢g =1/p—a(-)/n . Then there exists a positive

constant C , such that forall /€L, (),

7001, <€I1 -
Lemma 2.2(see [6]). Let @€ 4, . Then for any ball B , there exists a constant C >0, such that @ (2B)<Cw (B8) . In
fact, @ (1B) <CA™"w (B) for A >1, where the constant C is independent of B and 4.

Let 1< p<g<o . We say that a weighted function @ is belong to weighted set A(p,q) , if for any ball

B — R", there exists a constant C > 0 independent of B, such that

I/q p'
[ﬁha)(x)quj (ﬁj}gw(x)"dxj <C.

We say a weighted function belong to the inverse Holder inequality R, , if there exist constants s >1 and

C > 0, such that
1/s
1 . 1
(ijw(x) dxj SC[?'Lw(x)dx).

As we all know that if we 4, , then for all s>p, we A .If we A, , then there exists s>1, such that
weRH_.

Lemma 2.3(see [7]). Let @we RH,, s>1. Then there exists a positive constant C , such that for any measurable subset

EcB,
(s=1)/s
ot f151]"™
w (B) | B|
Definition 2.4(see [2]). Let 1< p<ow, O0<x <1l and @ be a weighted function. Then a weighted Morrey space

L'*(w) is defined by
@)= f € Bu(@):|fl iy <)

I/p
1 P
s = SO [w Gyl /@1 @) dx] :

Definition 2.5(see [2]). Let 1< p<ow, 0<x<1 , u and v be weighted functions. Then a weighted Morrey space

LP*(u,v) is defined by

where || f

L7 (u,v) :={ fell (u): "f"u’-*‘(u.v) < OO} ’

1
v(B)"

I/p
where ||f||Lp_K(u‘v) = ilg)( J.B|f(x)|*” u(x) dxj .
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Lemma 2.6 (see [8] and [9]). Let a(-) € P . If () is log-Holder continuous at origin, then
TxfOL x < C x|, | x| <1.If a() is log-Holder continuous at the infinity, then

Tx[f<Lx "< Cx|*, | x| =1, where (o) = lima(x).
X—0

THE MAIN RESULT
The main result of this paper is as follows.
Theorem 3.1 Set Qe L°(R")x L' (S"") , re(1,) . Let () be a variable exponent satisfying the log-Holder continuity
condition. Suppose '< p<nfa(-), 1/q= l/p—a(-)/n 0<x<p/q and @ € A(p/r',q/r'). Then
||T9,a(~)f < YA sy (1
Proof: Fix aball B=B(x,,r;)cR". Let f = f, +f,, where f = Sy » X2p denoting the characteristic function of
2B.

LM P Ty —

Since Ty, ,, is a linear operator, we write

4 g
et

1y ]
= (13)”” (IB|TQ’C‘<'>f‘ () @ (x)qu)/"+ o (; 7 (IB VALY RO )h
=1 +1,.
Set p,=p/r', q,=¢q/r and L= o" . Since v € A(pl,ql), we can get(see [1])
v =’ € Ay p -
By Lemma 2.1 and Lemma 2.2, we have

L<cC (K/p(j23|f a)(x)"dx)l/p

o' (2B)"
¢ Vi PR W

< C"f”Lp""(a)p,wq) :

To estimate 7, , using the Holder inequality, we obtain

Qx,x— y
|Qa()fz( )| Izs |x( G a()|f |dy
o i
< N |f
S;( J.Z‘“B\sz|Q(x’x_y) dy) % L“‘B\szWdy . (2)

Since xe B, y 2" B\2* B, we see that | x—y|~|x, —y|~2""r,, where x, is the center of B .

Hence,
.
( L“'B\z‘3|Q(x’x_y | dy) |2k 1B|1 3)
By Lemma 2.6, if 2"'r,, <1, then
ol )
y 1 AP
——— <C—————— .
J.z“' B\2*B | x—y |("-a(-))r' Y <C |2k+lB 1-a(0)/n (.[2‘*‘3 f(y) dy) )

If 2"'r, > 1, then

1/r'

) !
J.z"*' B\2 Bmdy - CW(LM B

A

o) dy)l/r'~
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that

Here and below we only prove the case that 2*"'7, <1. The other one is similar and simple. (2), (3) and (4) tell us

)]/r'

g Jeal 0

c1| k+l

| Qa()f‘2 |

By the Holder inequality and the definition of v € A(p,,q,) , we have

I O B M

U
1=/ py+1/g, /r

( [ lro)
(.L“'

\/p |2k+lB|

FO) () dy)

1=y p+g

|2k+l B|

< C”f"L”"" (0 ,0) a)q (2k+] B) v '

< C”f"u’ww " |2k+lB|1 1fr—a( (2k+lB) x/p= 1/q
Thus,
x/p-1/
| Qa()J{Z | C||f|L’K(w‘ o) za) (21{“ ) o :
Therefore, it can be obtained that
» o’ ( B)l/q x/p
ol 1 P ;W

Noting that

4 — )4
o' =v" €4, .,

there exists a constant s >1, such that ®? € RH, . From Lemma 2.3, it can be obtained that

0(B) PR
o (2k+1 < C[|2k+lB|} :

Finally, since s >1 and 0< x < p/q , we see that

(1
<l 3 5

Hence, (1) is proved. The proof of Theorem 1.1 is now completed.

(-Ys)(/q-x/p)
) <l
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