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Abstract: Let ( )  satisfy the log-Hölder continuity condition and 1 ( ) n   .
Suppose , ( )T   is the fractional integral operator with variable kernel associate to
variable exponent. In this paper, using the properties of weighted Morrey spaces, we
prove that )(,  T is bounded from ),(, qppL  to )(, qpqpL  .
Keywords: fractional integral operator; variable exponent; variable kernel; weighted
Morrey space.

INTRODUCTION
Suppose that 1nS is the unit sphere in n , 2n and d is the normalized

Lebesgue measure on 1nS . A function ),( zx defined on n n  is said to belong
to 1( ) ( ), 1n r nL L S r   , if it satisfies the following conditions.
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Assume 1( ) ( ), 1n r nL L S r    . We say that  satisfies the Lr-Dini condition if the conditions (i),(ii),(iii)

above hold and ,)(1
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A measurable function ( )  is called a variable exponent if ( ) : (0, )n    . For a measurable subset
nG   , we write inf ( ), sup ( )

x G x G
x x     

  . Let ( )nP denote the set of functions )( satisfying

n  1 .

We say that )( satisfies the log-Hölder continuity condition, if
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log( | |)
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e x

  


, | | | |y x .

Set 1( , ) ( ) ( ), 1n r nx z L L S r     , satisfying the Lr-Dini condition. The fractional integral operator with
variable kernels associate to variable exponents is defined by

, ( ) ( )

( , )( ) ( )
| |n n

x x yT f x f y dy
x y    
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where )( is a variable exponent , satisfying the log-Hölder continuity condition and ( ) ( )n   P .

Obviously, if ( )   being a constant, and 1  , the fractional integral operator with variable kernels
associate to variable exponents is become to the classical fractional integral ,T . In 1974, Muckenhoupt and Wheeden[1]
studied the boundedness of ,T on Lebesgue spaces for n 0 . In 2009, Komori and Shirai[2] defined the weighted
Morrey space, which is a generalized weighted Lebesgue space. Then, the boundedness of fractional integral operators
and fractional maximal operators, and their commutators on weighted Morrey spaces were discussed by Wang[3].

In this paper, we discussed the fractional integral operators with variable kernels associate to variable exponents
on weighted Morrey spaces.

PRELIMINARIES
We recall several useful lemmas and definitions.

Lemma 2.1(see [4] and [5]). Let ( )  satisfy log-Hölder condition and ( )  P . Suppose that

1( ) ( ),
( )

n r n nL L S r
n 

   
 

 , satisfying the Lr-Dini condition. Set 1 1 ( )q p n   . Then there exists a positive

constant C , such that for all ( )pf L  ,

, ( ) pq LL
T f C f   .

Lemma 2.2(see [6]). Let pA . Then for any ball B , there exists a constant 0C , such that (2 ) ( )B C B  . In

fact, ( ) ( )npB C B    for 1 , where the constant C is independent of B and  .

Let 1 p q    . We say that a weighted function  is belong to weighted set ),( qpA , if for any ball
nB   , there exists a constant 0C  independent of B , such that

1 1 '
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We say a weighted function belong to the inverse Hölder inequality rRH , if there exist constants 1s  and
0C  , such that

1
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As we all know that if pA , then for all s p , sA . If pA , then there exists 1s  , such that

sRH .
Lemma 2.3(see [7]). Let sRH , 1s . Then there exists a positive constant C , such that for any measurable subset
E B ,
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Definition 2.4(see [2]). Let 1 p   , 10   and  be a weighted function. Then a weighted Morrey space

)(, pL is defined by
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Definition 2.5(see [2]). Let  p1 , 10   , u and v be weighted functions. Then a weighted Morrey space

),(, vuLp  is defined by

 ,
,

( , )
( , ) : ( ) : p

p p
loc L u v

L u v f L u f 
     ,

where ,

1

( , )

1: sup ( ) ( )
( )

p
n

p
p

L u v BB
f f x u x dx

v B 


 
  

 



.

http://saspjournals.com/sjpms


Zhang Zhiming & Zhao Kai.; Sch. J. Phys. Math. Stat., 2018; Vol-5; Issue-3 (May-Jun); pp-203-207

Available Online: http://saspjournals.com/sjpms 205

Lemma 2.6 (see [8] and [9]). Let ( )  P . If )( is log-Hölder continuous at origin, then
1 (0) ( ) (0)| | | | | |xC x x C x     , | | 1x  . If )( is log-Hölder continuous at the infinity, then
1 ( ) ( ) ( )| | | | | |xC x x C x      , | | 1x  , where ( ) lim ( )

x
x 


  .

THE MAIN RESULT
The main result of this paper is as follows.

Theorem 3.1 Set 1( ) ( )n r nL L S   , ),1( r . Let ( )  be a variable exponent satisfying the log-Hölder continuity

condition. Suppose  'r p n    ,   npq  11 , qp 0 and  ','' rqrpAr  . Then

),()()(, ,/, qppqpqq LL
fCfT

   . (1)

Proof: Fix a ball  0 ,
n

BB B x r   . Let 21 fff  , where
B

ff
21  , B2 denoting the characteristic function of

B2 .
Since )(,  T is a linear operator, we write
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Set '/1 rpp  , '/1 rqq  and 'r  . Since  11,qpA , we can get(see [1])
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By Lemma 2.1 and Lemma 2.2, we have
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To estimate 2I , using the Hölder inequality, we obtain
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Since Bx , BBy kk 2\2 1 , we see that 1
0| | ~ | | ~ 2k Bx y x y r  , where 0x is the center of B .

Hence,

      11

1 11

2 \2
, 2n r nk k

r rr k
L L SB B

x x y dy C B 




    
. (3)

By Lemma 2.6, if 12 1k
Br

  , then

 
      1 1

1 ''
1 ''

( ) ' 1 02 \2 21

1
| | 2

k k k

rr
rr

n r nB B Bk

f y
dy C f y dy

x y B
    

 
  
  
  . (4)

If 12 1k
Br

  , then

 
    1 1

1/ ''
1 ''

1 ( )( ) '2 \2 21

1
| | 2

k k k

rr
rr

nn rB B Bk

f y
dy C f y dy

x y B
    

 
  
  
  .

http://saspjournals.com/sjpms


Zhang Zhiming & Zhao Kai.; Sch. J. Phys. Math. Stat., 2018; Vol-5; Issue-3 (May-Jun); pp-203-207

Available Online: http://saspjournals.com/sjpms 206

Here and below we only prove the case that 12 1k
Br

  . The other one is similar and simple. (2), (3) and (4) tell us
that
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By the Hölder inequality and the definition of ),( 11 qpA , we have
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Therefore, it can be obtained that
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Noting that
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there exists a constant 1s , such that s
q RH . From Lemma 2.3, it can be obtained that
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Finally, since 1s and qp 0 , we see that
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Hence, (1) is proved. The proof of Theorem 1.1 is now completed.
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