Scholars Journal of Physics, Mathematics and Statistics

Abbreviated Key Title: Sch. J. Phys. Math. Stat. ©Scholars Academic and Scientific Publishers (SAS Publishers) (An International Publisher for Academic and Scientific Resources) ISSN 2393-8056 (Print) ISSN 2393-8064 (Online)

On Pseudo Hopfian R-modules

Nada Khalid^{1*}, Adwar H. Salih²

¹Department of Mathematics, University of Tikrit –Iraq ²Department of Mathematics, University of Tikrit –Iraq

*Corresponding author Nada Khalid

Article History *Received: 01.06.2018 Accepted: 10.06.2018 Published: 30.06.2018*

DOI: 10.21276/sjpms.2018.5.3.5

Abstract: In the present paper we introduced and investigate a new definition of pseudo Hopfian R-Module. An R-Module M is said to be pseudo Hopfian when any surjection $f \in End(M)$ with closed kernel, (i.e) any surjective $f \in End(M)$ is split. Several characterizations and fundamental properties concerning of pseudo Hopfian R-Module are obtained, furthermore some interesting examples are discussed. **Keywords:** Hopfian R- module, semi Hopfian R- module, pseudo Hopfian R-Module, closed kernel, extension R-module.

INTRODUCTION

Hopfian groups rings and modules studied by a lot of authors. From [1] That an R-mod. M is assumed Hopfian if any surjective $f \in End(M)$ is a homology. Notice, every Noetherian R- Module is Hopfian. In this paper, we are concerned with pseudo Hopfian R-mod. R-Module M is said to be pseudo Hopfian when any surjective $f \in End(M)$ has a closed kernel, so any surjective $f \in End(M)$ is splits. In this paper, we will study some properties of pseudo Hopfian R-Module and their relationship with other R-Module, Recall from [2] that An R- Module M is named semi Hopfian when any surjective $f \in End(M)$ hold direct summand kernel, i.e. any surjective $f \in End(M)$ is splits, and clearly every Hopfian R-Module is semi Hopfian R-Module.

Recall from [3] that A sub- Module N of M is named closed sub- Module if N with no proper essential extension in M .denoted by $N \subseteq_c M$. i.e If $N \subseteq_c K \subseteq M$ then N = K. It is well-Known every direct summand of an R- mod. M was closed sub- Module but converse is not real in general [4]. This lead to introduce the following concept, namely pseudo Hopfian R-Module.

In the following study we give the main results which we obtained

MAIN RESULTS

Now, we state the new definition of pseudo Hopfian module and examples of this definition.

Definition.2.1. R- Module M is pseudo Hopfian when any surjective $f \in End(M)$ has a closed kernel, so any surjective $f \in End(M)$ is a split.

Example.2.2. Let Z_6 be a Z- Module, $Z_6 = 2Z \oplus 3Z$. Then Z_6 is pseudo Hopfian Z- Module.

Example.2.3. If M is a direct sum of copies of Z_{p^2} , where P is a prime number. Then we suppose that M is a pseudo Hopfian Z – Module. Consider an epimorphism $g: M \to M$ Since $p^2 M = 0$, and f is an Z_{p^2} epimorphism. When M is a free Z_{p^2} – Module g is split.

This make that M is a pseudo Hopfian Z – Module. Whereas not a Hopfian Z – Module.

Remark.2.4. A sub- Module of pseudo Hopfian R-modules need not be pseudo Hopfian R- Module. See the following example:

Example.2.5. Let $M_1 = Z_p$ where p be a prime and M_2 an infinite sum of the copies of Z_{p^2} . So M_1 is simple M_2 is pseudo Hopfian R- Module by example (2.3).

Nada Khalid & Adwar H Salih.; Sch. J. Phys. Math. Stat., 2018; Vol-5; Issue-3 (May-Jun); pp-212-215

When $M = M_1 \oplus M_2$ is not pseudo Hopfian Z – Module. Define: $M \to M$ by $f(a_1 + pZ, a_2 + p^2Z, a_3 + p^2Z, ...) = (a_2 + pZ, a_3 + p^2Z, ...)$. Then g is a Z –epimorphism and Ker $g = Z_p \oplus p Z_{p^2} \oplus 0 \oplus 0$... is not a direct summand and hance is not closed of M since pZ_{p^2} is not a direct summand of Z_{p^2} .

Proposition.2.6. every straight summand of a pseudo Hopfian R- Module is pseudo Hopfian R- Module.

Proof: Suppose M be a pseudo Hopfian R- Module and K be summand sub- Module of M and $g: K \to K$ be a surjection. So, $M = K \oplus N$ for N of M, and $g \oplus I_N : M \to M$ is again a surjection. So Ker $(g \oplus I_N) = \text{Ker}$ $g \subseteq_c M$ and hence Ker $\subseteq_c K$. So, K is pseudo Hopfian R- Module.

Recall from [5] that M is a fully stable if for every sub- Module N of M, $g: \mathbb{N} \to M$ is then $g(\mathbb{N}) \subseteq \mathbb{N}$.

Proposition.2.7. Suppose M an R- Module such $M = M_1 \oplus M_2$, M is a stable. So, M is pseudo Hopfian R-Module iff M₁, M₂ are pseudo Hopfian R- Module.

Proof: The necessity is by prop.(2.6). Let $f: \mathbb{M} \to \mathbb{M}$ be a surjective. And the restriction of $f \in End(\mathbb{M}_i)$ $(i \in I, i=1,2)$, is again surjection. By theory Ker $(f | \mathbb{M}_1)$ and Ker $(f | \mathbb{M}_2)$ are closed in \mathbb{M}_1 , \mathbb{M}_2 respectively. Then $Ker(f | \mathbb{M}_1) \oplus Ker(f | \mathbb{M}_2)$ is closed in $\mathbb{M}_1[3]$. It easy to see that $Kerf = Ker(f | \mathbb{M}_1) \oplus Ker(f | \mathbb{M}_2)$. Thus Ker f is closed in \mathbb{M} . So, \mathbb{M} is pseudo HopfianR-Module

Corollary.2.8. Suppose $M = \bigoplus_{i \in I} M_i$, M is a stable. Then M is pseudo Hopfian R-Module *iff* M_i is pseudo Hopfian R-module for all $\in I$.

Proof: Necessity is by prop.(2.6). Let $f: M \to M$ be a surjection. The restriction of $f \in End(M_i)$ $(i \in I)$, is again surjection. By theory, $Ker(f|M_i) \subseteq_c M_i (i \in I)$ thus implies that $Ker f = \bigoplus_{i \in I} Ker(f|M_i) \subseteq_c M_i$ [3]. So, M is pseudo f. R-Module.

We study the relationship between pseudo Hopfian R- Module and (Hopfian , semi Hopfian , semi simple , simple , Ascending chain condition) R- Module.

Proposition.2.9. Every Hopfian R- Module is pseudo Hopfian R- Module.

Proof: the proof is obvious thus deleted.

Remark.2.10. The Converse of proposition (2.9) not true in general, as it appears in the following example.

Example.2.11. See example (2.3)

Recall from [6] that M is Dedekind finite if $M = M \oplus K$, for some sub-Module K, K=0. Now, we can put some conditions to get the opposite of propos ion.(2.4) is true.

Proposition.2.12. Suppose M be a Dedekind finite R- Module. If M is pseudo Hopfian R- Module, so M is Hopfian R- Module.

Proof: Put $g: M \to M$ be asurjective, so M is pseudo Hopfian R- Module, g is splits(from def.2.1) then $\exists f: M \to M$ such gf = I, and since M is Dedekind finiteness of $End_R(M)$ implies fg = I, Hance g is an injection. Therefore, M is Hopfian R- Module.

We can get the following result from proposion. (2.9) and proposion (2.12).

Corollary.2.13. Suppose M be a Dedekind finite R- Module. So M is Hopfian R- Module iff M is pseudo Hopfian R- Module.

Proposition:-2.14. Each semi Hopfian R- Module is pseudo Hopfian R- Module.

Proof: the proof is obvious thus deleted.

Remark.2.15. The Converse of proposition (2.14) not true in general, as it appears in the following example.

Nada Khalid & Adwar H Salih.; Sch. J. Phys. Math. Stat., 2018; Vol-5; Issue-3 (May-Jun); pp-212-215

Example.2.16. Let the module $M = \mathbb{Z}_8 \oplus \mathbb{Z}_2$ as a \mathbb{Z} -module, Let A=((2, 1)) be the sub-module generated by (2,1). $A=\{(2,1), (4,0), (6,1), (0,0)\}$.

So, A is closed in M but not a direct summand.

Recall from [7] that M is an extension R-module Iff every closed sub- Module of M is a straight summand of M.

Now, we can put some conditions to get the opposite of proposition (2.14) is true.

Proposition.2.17. Let M be an extending R- Module .Then any pseudo Hopfian R- Module is semi Hopfian R-module.

Proof: The proof is obvious thus deleted. We can get the following result from proposion (2.14) and proposion (2.17).

Corollary: 2.18. Suppose M be an extending R- Module. So, M is pseudo Hopfian R- Module iff M is semi Hopfian R- Module.

Recall from [6] an R- Hopfian M is called semi simple module if sub- Module N of M is a direct summand of M.

Proposition.2.19. Any semi simple R- Module M is pseudo Hopfian R- Module. Proof: the proof is obvious thus deleted.

Remark.2.20. The Converse of proposition (2.19) not true in general, as it appears in the following example.

Example.2.21. See example (2.16) Recall from [6] that an R-mod. M is named simple Module if M has no proper sub- Module.

Proposition.2.22. Any simple R- Module M is pseudo Hopfian R- Module.

Proof: The proof is obvious thus deleted.

Remark.2.23. The Converse of proposition (2.22) not true in general, as it appears in the following example.

Example.2.24. Let Z_6 be a Z-module, $Z_6 = 2Z \oplus 3Z$. Then Z_6 is pseudo Hopfian Z- Module, but not simple Z- Module.

Next, we introduce the relationship between Ascending chain condition and pseudo Hop. R- Module.

Proposition:-2.25. If M has Ascending chain condition on non-closed sub- Module Then M is pseudo Hopfian R-Module.

Proof: - Let $g: \mathbb{M} \to \mathbb{M}$ is a surjective and Kerg is a non-closed of \mathbb{M} . So $Ker g \subseteq Ker g^2 \subseteq Ker g^3 \subseteq \cdots$ be an ascend chain of non-closed sub-mod. of \mathbb{M} . By theory there will be a number n such as $(g^n) = Ker (g^{n+1})$. Now we claim that Kerg = 0. Let $0 \neq x \in \mathbb{M}$, such that g(x) = 0. Since g is surjective, $g(a_1) = x$ for some $a_1 \in \mathbb{M}$. Also, $g(a_2) = a_1$ for some $a_2 \in \mathbb{M}$. By repeating this argument, we have $g(a_n) = a_{n-1}$ for some $a_n \in \mathbb{M}$. Then $g(a_1) =$ $g^2(a_2) = \cdots = g^n(a_n) = x$. hence $g(x) = g^{n+1}(a_n)$ implies that $a_n \in Ker(g^{n+1}) = \ker(g^n)$. The result, x = 0. So we have opposites. Therefore, \mathbb{M} is pseudo Hopfian R-module.

Remark:-2.26. Every Noetherian R- Module is pseudo Hopfian R- Module.

 $\label{eq:proposition:-2.27. Let M/N is pseudo Hopfian R- Module for any non-closed sub-module N of a R- Module M. So M is pseudo Hopfian R- Module.$

Proof: - Assume M is not pseudo Hopfian R- Module Then it is a surjection endomorphism $g: M \to M$ such that Kerg is not a closed sub- Module of M. But by assumption M /Ker $g \cong M$ is pseudo Hopfian, this opposite. So, M is pseudo Hopfian R- Module.

Lemma:-2.28. For each an R- Module M, the terms are equivalent.

- M is pseudo Hopfian R- Module.
- Each sub- Module K of M that satisfies $M/K \cong M$, K is a closed sub- Module of M

Nada Khalid & Adwar H Salih.; Sch. J. Phys. Math. Stat., 2018; Vol-5; Issue-3 (May-Jun); pp-212-215

Proposition:-2.29. Assume P be a value of R- Module under isomorphism. If a R- Module M has the value P and satisfies Ascending chain condition on closed sub-mod. K as M/K has the property P. Then M is pseudo Hop. R-Module.

Proof: - Assume M is not pseudo Hopfian R-module. So there is a non-closed sub-Module K_1 of M as M $/K_1 \cong$ M. Since M/ K_1 has the value P but is not pseudo Hopfian, there is a non-closed sub- Module K_2/K_1 of M $/K_1$ such that M $/K_2 \cong$ M $/K_1$, K_2 is agian a non-closed of M. Doing this we get an ascending chain $0 \subseteq K_1 \subseteq K_2 \subseteq \cdots$ of non-closed sub- Module of M. But this is a opposite. So, M is pseudo Hopfian R- Module.

Theorem:-2.30. Let M be an R – Module and M [X] be an extending R[X]- Module. When M [X] is pseudo Hopfian R [X] – Module, so M is pseudo Hopfian R – Module

Proof: - Assume $f: M \to M$ be a serjective endomorphism of M. so $f [X] : M [X] \to M [X]$ with $f[X](\sum M_i X^i) = \sum f(M_i) X^i$ is a serjective endomorphism of M [X]. when M [X] is pseudo Hopfian, Ker $(f [X]) = (\text{Ker } f)[X] \subseteq_c M [X]$, since M [X] an extending R[X]-module. Then Ker (f [X]) is a total of M [X]. so we can claim Ker $f \subseteq_c M$. Let M [X] = $(\text{Ker } f)[X] \oplus K$ for sub- Module K of M [X] and N become the sub- Module of M that is calculated by the constant polynomials of K. Note that N $\neq 0$ if M $\neq \text{Ker} f$. We shall show M = Ker $f \oplus N$. Let m $\in M$. Then m $\in M [X]$ so m = g (X) + k (X) since g $(X) \in (\text{Ker } f)[X]$, $k (X) \in K$. when m is a constant in M [X], we get m =g (0) + k (0) where g $(0) \in \text{Ker } f$ and $k (0) \in N$. Then, take $\in Ker f \cap N$. But $n \in (Ker f)[X] \cap K = 0$. So, *Ker f* is direct summand, and hence is closed sub- Module of M. Therefore, M is pseudo Hopfian R- Module.

CONCLUSION

In this study, we present a new concept of pseudo Hopfian R-Module some properties of pseudo Hopfian R-Module are obtained, moreover the relationships between pseudo Hopfian R-Module and other R-Module are discussed.

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to the referees for their valuable suggestions and comments which improved the paper and I am thankful Dr. Alaa Mahmood Al-Jumaili (University of Anbar) for help.

REFERENCES

- 1. Varadarajan K. Hopfian and co-Hopfian objects. Publicacions Matematiques. 1992 Jan 1:293-317.
- 2. Aydogdu, Ozcan P, Cigdem A. Semi co-Hopfian and Semi Hopfian Module. East-West J. Math. 2008; 1(10):55-70.
- 3. Goodearl K. Ring theory: Nonsingular rings and modules. CRC Press; 1976 Mar 1.
- 4. Al-Hazmi HS. A study of CS and CS-∑ rings and modules (Doctoral dissertation, Ph. D. Thesis, University of Ohio).
- 5. Abass M, Rajashekar CB. Characterization of Heat Injury in Grapes Using 1H Nuclear Magnetic Resonance Methods: Changes in Transverse Relaxation Times. Plant physiology. 1991 Jul 1;96(3):957-61.
- 6. Kasch F. Modules and rings. Academic Press. 1982.
- 7. Dung NV, Huynh DV, Smith PF, Wisbauer R. Extending Modules, Pitman Research Notes in Mathematics Series, 313. Longmon, New York. 1994.