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Abstract: In the present paper we introduced and investigate a new definition of pseudo 

Hopfian R-Module. An R-Module Ӎ is said to be pseudo Hopfian when any surjection 

         with closed kernel, (i.e) any surjective           is split. Several 

characterizations and fundamental properties concerning of pseudo Hopfian R-Module 

are obtained, furthermore some interesting examples are discussed.   
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INTRODUCTION 

Hopfian groups rings and modules studied by a lot of authors. From [1] That an 

R-mod. Ӎ is assumed Hopfian if any surjective         is a homology. Notice, 

every Noetherian R- Module is Hopfian. In this paper, we are concerned with pseudo 

Hopfian R-mod. R-Module Ӎ is said to be pseudo Hopfian when any surjective 

         has a closed kernel, so any surjective          is splits. In this paper, 

we will study some properties of pseudo Hopfian R-Module and their relationship with 

other R-Module, Recall from [2] that An R- Module Ӎ is named semi Hopfian when 

any surjective          hold direct summand kernel, i.e. any surjective   
        is splits, and clearly every Hopfian R- Module is semi Hopfian R-Module. 

 

Recall from [3] that A sub- Module Ɲ of Ӎ is named closed sub- Module if Ɲ with no proper essential extension 

in Ӎ .denoted by Ɲ      . i.e If          then Ɲ = K . It is well-Known every direct summand of an R- mod. M 

was closed sub- Module but converse is not real in general [4].
 
This lead to introduce the following concept, namely 

pseudo Hopfian R-Module.   
 

In the following study we give the main results which we obtained  

 

MAIN RESULTS  

               Now, we state the new definition of pseudo Hopfian module and examples of this definition. 

 

Definition.2.1. R- Module Ӎ is pseudo Hopfian when any surjective           has a closed kernel, so any 

surjective              is a split. 

 

Example.2.2. Let    be a Z- Module,          .Then    is pseudo Hopfian Z- Module.    

 

Example.2.3. If Ӎ is a direct sum of copies of     , where P is aprime number. Then we suppose that Ӎ is a 

pseudo Hopfian Z – Module. Consider an epimorphism  : Ӎ   Ӎ  Since         , and f is an      epimorphism. 

When Ӎ is a free      – Module  is split. 

 

This make that Ӎ is a pseudo Hopfian Z – Module. Whereas not a Hopfian Z – Module.   

 

Remark.2.4. A sub- Module of pseudo Hopfian R-modules need not be pseudo Hopfian R- Module. See the following 

example:   

 

Example.2.5. Let                                      an infinite sum of the copies of    . So       is 

simple      is pseudo Hopfian R- Module by example (2.3). 
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When                is not pseudo Hopfian Z – Module. Define: Ӎ   Ӎ by                
       

                       
       .Then   is a Z –epimorphism and Ker                  is not a direct 

summand and hance is not closed of Ӎ since      is not a direct summand of    . 

 

Proposition.2.6. every straight summand of a pseudo Hopfian R- Module is pseudo Hopfian R- Module. 

 

Proof:  Suppose Ӎ be a pseudo Hopfian R- Module and K be summand sub- Module of Ӎ and  : K   K be a 

surjection. So, Ӎ =      for Ɲ of Ӎ, and                  is again a surjection. So Ker (       ) =Ker 

        and hence Ker     . So , K is pseudo Hopfian R- Module. 

 

Recall from [5] that Ӎ is a fully stable if for every sub- Module Ɲ of Ӎ,          is then         . 

 

Proposition.2.7. Suppose Ӎ an R- Module such                   M is a stable. So, Ӎ is pseudo Hopfian R- 

Module iff           are pseudo Hopfian R- Module. 

 

Proof: The necessity is by prop.(2.6) . Let           be a surjective. And the restriction of               
(    ,i=1,2), is again surjection. By theory Ker (       ) and Ker (        are closed in           respectively. Then 

                         is closed in Ӎ [3] .It easy to see that                                .Thus       is 

closed in Ӎ. So, Ӎ is pseudo HopfianR- Module  

 

Corollary.2.8. Suppose                      a stable. Then Ӎ is pseudo Hopfian R- Module             
pseudo Hopfian R-module for all    . 

 

Proof: Necessity is by prop.(2.6) . Let f : Ӎ      be a surjection . The restriction of              (    ), is 

again surjection. By theory,                         thus implies that                                   . So, M 

is pseudo f. R- Module. 

       

 We study the relationship between pseudo Hopfian R- Module and (Hopfian , semi Hopfian , semi simple , 

simple , Ascending chain condition) R- Module.              

 

Proposition.2.9. Every Hopfian R- Module is pseudo Hopfian R- Module. 

 

Proof: the proof is obvious thus deleted. 

 

Remark.2.10. The Converse of proposition (2.9) not true in general, as it appears in the following example. 

 

Example.2.11. See example (2.3) 

               Recall from [6] that Ӎ is Dedekind finite if           , for some sub- Module K, K=0. 

Now, we can put some conditions to get the opposite of propos ion.(2.4) is true. 

 

Proposition.2.12. Suppose Ӎ be a Dedekind finite R- Module. If Ӎ is pseudo Hopfian R- Module, so Ӎ is Hopfian R- 

Module.  

 

Proof:  Put           be asurjective ,so Ӎ is pseudo Hopfian R- Module ,   is splits(from def.2.1) then   

          such      ,and since  Ӎ is Dedekind finiteness of           implies     , Hance   is an injection. 

Therefore, Ӎ is Hopfian R- Module. 

 

We can get the following result from proposion. (2.9) and proposion (2.12). 

 

Corollary.2.13. Suppose Ӎ be a Dedekind finite R- Module. So Ӎ is Hopfian R- Module iff Ӎ is pseudo Hopfian R- 

Module. 

 

Proposition:-2.14. Each semi Hopfian R- Module is pseudo Hopfian R- Module. 

 

Proof: the proof is obvious thus deleted. 

 

Remark.2.15. The Converse of proposition (2.14) not true in general, as it appears in the following example.  
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Example.2.16. Let the module Ӎ = ℤ8ℤ2 as a ℤ-module, Let A=((2, 1)) be the sub-module generated by (2,1). A={(2,1) 

, (4,0),(6,1),(0,0)}. 

So, A is closed in Ӎ but not a direct summand.   

 

Recall from [7] that Ӎ is an extension R-module Iff every closed sub- Module of Ӎ is a straight summand of Ӎ. 

 

Now, we can put some conditions to get the opposite of proposition (2.14) is true.  

 

Proposition.2.17. Let Ӎ be an extending R- Module .Then any pseudo Hopfian R- Module is semi Hopfian R-module. 

 

Proof: The proof is obvious thus deleted. 

We can get the following result from proposion (2.14) and proposion (2.17).   

 

Corollary: 2.18. Suppose Ӎ be an extending R- Module. So, Ӎ is pseudo Hopfian R- Module iff Ӎ is semi Hopfian R- 

Module. 

 

Recall from [6] an R- Hopfian Ӎ is called semi simple module if sub- Module Ɲ of Ӎ is a direct summand of Ӎ. 

 

Proposition.2.19. Any semi simple R- Module Ӎ is pseudo Hopfian R- Module. 

Proof: the proof is obvious thus deleted. 

 

Remark.2.20. The Converse of proposition (2.19) not true in general, as it appears in the following example. 

 

Example.2.21. See example (2.16) 

Recall from [6] that an R-mod. Ӎ is named simple Module if Ӎ has no proper sub- Module.
  
 

 

Proposition.2.22. Any simple R- Module Ӎ is pseudo Hopfian R- Module. 

 

Proof: The proof is obvious thus deleted. 

 

Remark.2.23. The Converse of proposition (2.22) not true in general, as it appears in the following example. 

 

Example.2.24. Let    be a Z-module,          .Then    is pseudo Hopfian Z- Module, but not simple Z- Module. 

 

Next, we introduce the relationship between Ascending chain condition and pseudo Hop. R- Module. 

 

Proposition:-2.25. If Ӎ has Ascending chain condition on non–closed sub- Module Then Ӎ is pseudo Hopfian R- 

Module. 

 

Proof: - Let  : Ӎ   Ӎ is a surjective and Ker  is a non–closed of Ӎ . So                         be 

an ascend chain of non–closed sub-mod. of Ӎ . By theory there will be a number n such as                  . Now 

we claim that     = 0 .Let          such that     ) = 0. Since   is surjective,         for some         . Also, 

    ) =   for some       . By repeating this argument, we have             for some         . Then       
              

                       
         implies that           

             . The result,   = 0. 

So we have opposites. Therefore, Ӎ is pseudo Hopfian R-module. 

 

Remark:-2.26. Every Noetherian R- Module is pseudo Hopfian R- Module. 

 

Proposition:-2.27. Let Ӎ/Ɲ is pseudo Hopfian R- Module for any non–closed sub-module Ɲ of a R- Module Ӎ. 

So Ӎ is pseudo Hopfian R- Module.  

 

Proof: - Assume Ӎ is not pseudo Hopfian R- Module Then it is a surjection endomorphism            such 

that Ker  is not a closed sub- Module of Ӎ. But by assumption Ӎ /Ker    Ӎ is pseudo Hopfian, this opposite. So, Ӎ is 

pseudo Hopfian R- Module. 

 

Lemma:-2.28. For each an R- Module Ӎ, the terms are equivalent. 

 Ӎ is pseudo Hopfian R- Module. 

 Each sub- Module K of Ӎ that satisfies Ӎ/K    Ӎ  , K is a closed sub- Module of Ӎ  
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Proposition:-2.29.  Assume P be a value of R- Module under isomorphism. If a R- Module Ӎ has the value P 

and satisfies Ascending chain condition on closed sub-mod. K as Ӎ/K has the property P. Then Ӎ is pseudo Hop. R- 

Module. 

  

Proof: - Assume Ӎ is not pseudo Hopfian R-module. So there is a non–closed sub-Module   of Ӎ as Ӎ /    

Ӎ .Since Ӎ/  has the value P but is not pseudo Hopfian, there is a non–closed sub- Module      ⁄  of Ӎ /    such that 

Ӎ /          ,    is agian a non–closed of Ӎ. Doing this we get an ascending chain           of non–closed 

sub- Module of Ӎ. But this is a opposite. So, Ӎ is pseudo Hopfian R- Module.  

 

Theorem:-2.30. Let Ӎ be an R – Module and Ӎ [X] be an extending R[X]- Module. When Ӎ [X] is pseudo 

Hopfian R [X] – Module, so M is pseudo Hopfian R – Module 

 

Proof: - Assume f: Ӎ   Ӎ be a serjective endomorphism of Ӎ. so f [ X ] : Ӎ [ X ]   Ӎ [ X ] with 

    (∑      
    ∑          

  is a serjective endomorphism of Ӎ [ X ]. when Ӎ [ X ] is pseudo Hopfian, Ker (   [ X ]) 

= ( Ker   )[ X ]    Ӎ [ X ] , since Ӎ [X]  an extending R[X]-module .Then Ker (   [ X ]) is a total of Ӎ [X] . so we can 

claim Ker        . let Ӎ [ X ] = ( Ker  )[ X ]   K for sub- Module K of Ӎ [ X ] and Ɲ become the sub- Module of M 

that is calculated by the constant polynomials of K . Note that N   0 if Ӎ   Ker . We shall show Ӎ = Ker    N . Let m 

  Ӎ. Then m      [ X ] so m = g ( X ) + k ( X ) since g ( X )  ( Kerf )[ X ], k ( X )  K. when m is a constant in Ӎ [ X ], 

we get m =g (0) + k (0) where g (0)   Ker f and k (0)   Ɲ . Then, take        ⋂  . But               ⋂    .So, 

      is direct summand, and hence is closed sub- Module of Ӎ. Therefore, Ӎ is pseudo Hopfian R- Module.  

 

CONCLUSION 
In this study, we present a new concept of pseudo Hopfian R-Module some properties of pseudo Hopfian R-

Module are obtained, moreover the relationships between pseudo Hopfian R-Module and other R-Module are discussed.  
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