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Conformal transformations of Riemannian structures are the important object
DOI: of differential geometry, where this "transformations which keeping the property of

10.21276/sjpms.2018.5.4.5 | smooth harmonic function". It is known, that such transformations have tensor in variant

so-called conharmonic curvature tensor, in this paper we investigated the "conharmonic

E:H‘qm curvature tensor of locally conformal Kahler manifold".
y Preliminaries
" Let M —"smooth manifold of dimension 2n", and let g and g be two
Riemannian metrics on smooth manifold M, we say that on M given a conformal
E transformation metric if there is a smooth function f € C®(M) such that g = e?g.

Let {M,],g =<,>} be an AH-manifold , if there exists a conformal transformation of the metric g into the
metric g, then {M,],g = e*'g } will be AH —manifold , In this case we say that on smooth manifold M given conformal
transformation of AH-structure, denoted by M.

Definition1.1 [2]

An AH -manifold is called a locally conformal Kahler manifold , if for each point m € M there exist an
open neighborhood U of this point and there exists f € C*(M) such that U, is Kahler manifold . We will denoted to
the locally conformal Kahler manifold by L.C.K.

Definition 1.2 [2]

Let M be an AH-manifold, the form which is given by the relation

a= n%lls Qo] iscalled a Lie form, where S represents the coderivative. If Q is r — form. then its coderivative is
(r — 1) — form, and its dual is a vector

which is called a Lie vector.

Remark 1.3 [3]
By the Banaru’s classification of AH-manifold, the L.C.K- manifold satisfies the following conditions:

Babc = 0  Bab = a[asg]

Theorem 1.4 [4]
The structure equations of L.C.K- manifold in the adjointG — structure space is given by the following forms:
1.dw? = W Aw® + B Awy,
2.dw, = —wiAwy, + B w AwP
3.dwd = w2 Aw + AW Awg + {%aa[%g] + %aaa[C(Sg]}u)C/\wd
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Theorem 1.5 [4]
In the adjointG —structure spaace, the component of Riemannian curvature tensor of L.C.K- manifold are
given by the following forms :

1. Rjq= aa[CSH] + %aaa[CSH]

2. R;Cd = —aa[CSE] - %aaa[CSg]

3. Ri,= —Za{isg}

4. Rig = 2al;5;]

5. R? 4 =AM — a8, 88

6. R;cd = —A% + o8} o, 85,

7. Rjeq = AR — O‘[a5g]0‘[b5ﬁ]

8. Rl =-—-A0S+ a[bSE]a[a(Sﬂ]

9. R"gcd = aa[‘:&g] + %aaa“&g]

10. RE,y = —tac85) — 20u0c 85,

11. R:, = —allls] + ol28) ol
12. R} g = Qajei8) — adh)oyn e
13. R 5 = —ald§) + al2s)alh s
14. Z,ed = Q[ 85; — XSy,
15. RBea =0

16. R34 =0

We need the components of Ricci tensor of L.C.K- manifold, so we compute it as the following.

Theorem 1.6 [5]
In the adjoint G —structure space, the component of Ricci of L.C.K- manifold are given by the following forms:

1. Iygp = ac[b6§] + %aca[béi?] + (X[C|b|6§] - 0([682]0([},6%]

2.1r,5 = —a° bSC] 1qC [bSC] _ 0([c|b|8i‘] + 0([65;]0([}1851
= h] b

3. Iap = csa] + ab - C8c O‘[aah]

4.rap = —2a [C Sa] AR + ol28) o 85,

Remark 1.7 [6]

The value of Riemannian metric g is define by the form
1.8ab =825 = 0

2.8ap = 8

3.8.5 = 83

Definition 1.8

Suppose (M, ], g) is a AH-manifol, the conharmonic curvature of the
(L.C.K) difine as tensor K = {Kjy Jof type (3,1) by the form:

. . 1
K = Rja — 20—1) [rigjk + Tjk8in — Tji8ik — Tik&iil
Where R Riemannian curvature tensor is . r is Ricci tensor and g is Riemannian metric.
Theorem1.9
In the adjoint G-structure space, the components of the conharmonic tensor of the L. C. K manifold are given by

the following forms:

1)KPca = Rbea

2)Kbcd = R;cd
3)Kbcd - Rbcd
AKpea = Ry
5)Kbcd Ri‘)cd
6)Kbcd Ril)cd
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[d
7) Kbcd REibcd (1 n)( [a C)
8)Kfeq = Rfeq + (r [d ])
And the other are conjugate of them .
Proof:-

Dputi=a,j=b, k=c,l=4d,
Kpca = Rbea — 20-1) [Tad8bc + I'be8ad — Mbd8ac — Tac8bdl
1
Kpca = Rbea — 2m=1) [raq(0) + rpc(0) — rpa(0) — rac(0)]
a —_ a
N bcd — ™Mbed
2)puti=a,j=bk=c,l=4d,
1
K?)cd = R?ch 2(n — 1) [radgﬁc + I'pc8ad — Ipa8ac — racgﬁd]

Kgcd = R?)cd 2(n—1) [radgﬁc + FBC(O) - rBd(O) - racgﬁd]

If c o d, then
Kla;(:d = RZljlot:d 2(n—1) [rangc - radgﬁc]
K?)cd = R?)cd
H)puti=a , j=b, k=¢ 1=d
1
bea = Rbea — 20=1) [Fad8be + Ibe8ad — bd8a¢ — Tae8bdl

Kpea = Rbea — 20=1) [Faa8be + Tbe(0) — rpa8ae — rae(0)]
Kiea = Rpea — 20=1 [Faa8be — I'ba8acl
If b e a then
Kpea = Rbea — 20=1 [Fad8be — Tad8bel

R Kfea = Rbea
YHYputi=a,j=b, k=c, 1=4d,

1

chd = R%cd 2(n — 1) [raagbc + I'he8ad — ThaBac — racgba]
1

chd = R?)cd 2(n—1) [raa(o) + I'pe8ad — rba(o) - racgba]

Kla)cd = Ri)cd 2(n—1) [rbcgaa - racgba]

If a < b then
Kla)cd = Ri)cd 2(n—1) [rbcgaa - rbcgaa]
K?)cd = R?)cd

S)puti=a , j=b, k=¢ 1=4

bed  2(n—1) [raa8be + Ibe8ad — balae — raeBbal
If ae b then

K?)cd R?)cd (n -1 [raagbé + I've8aq — Taa8be — rb?:gaa]

- . Ki)cd = R%éa
6)putti=a, j=b, k=¢ 1=4d,
1
Kbea = Rbea ~ 5 — 1y ["aa8be + I5eBaa ~ 5aac ~ TacBpal
K%éa = R%Ea - ( 1) [rad(o) + I'5e8ad — ThaBae rae(0)]
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1
K%ea = R%ea - 2(n — D [5e8ad — 'paBacl

If d o ¢ then
a — a 1
KSea = Rbea ~ 505 = 1 ["bcBad ~ TbeBadl
. ~ bea = Rbea
Nput,i=a, j=b, k=c, l=4d,
1
K%ca = R%ca - 2(n — 1) [raagﬁc + I'5c8aa — Tpa8ac — racgﬁa]

K%ca = R%ca - 2(n—1) [raa8bc T Ibc8aa — 5a(0) — rac(0)]

Kicd = Rabcd 2(n—1) [raa8bc + Ibc8aal

K:q=Riq— 20D 1) ———[r382 + r28]
Kfea = Rbea — e
8)puti=a, j=b, k=¢ l=d,
Kfea = Rpea — ﬁ [Fad8pe * I'peBad — paBac — lac8pal
Kgea = Rpea — ﬁ [raa(0) + rpe(0) — rpq8ac — rac8pal
K24 = Rieq + ﬁ [—r585 — rsdg]
K., =R,

bcd ( 1) ( [[gsa])

Proposition 1.10

The conharmonic curvature of (L. C. K) manifold satisfies all the properties the algebraic:
1) K(Xl' XZ’ X3’ X4) = _K(XZ’ X1; X3; X4)

2) K(X1X2'X3,X4) = _K(X1,X2;X4;X3)

3) K(Xl' XZ! X3' X4—) + K(XZ' X3, Xll X4—) + K(XSI X]J Xz, X4) = 0

4) K(Xll XZ! X3' X4—) = K(X3l X4,, Xll XZ)

Where X; € X(M),i = 1,2,3,4

Prove: we shall prove just (1)

1) K(Xl' XZ! X3! X4-) = R(Xll X21 X31 X4)
g(XZ!XS)r(XDX‘l-)} 1
= —R(Xy, X3, X3,X4) + 57— 20— 1) {8(X1, X3)r(Xy, Xy) + g(Xa, X )r(Xy, X3) — (X1, Xo)r(Xz, X3) — g(X2, X3)r(Xy, Xu)}

= _K(XZ' Xl' X3' X4)
Properties are similarly proved:
2) K(XI’ XZ! X31 X4—) = _K(Xll XZ; X4; X3)
3) K(Xll XZ: X3’X4) + K(XZ’X1’X3I X4) + K(X3l X1’X2’X4—) = 0
4) K(Xp X5, X3,X4) = _K(X3,X4,X1,X2)

2(n D ——{g(X1, X3)r(Xy, X)) + 8(X5, X )r(Xy, X3) — 8(Xy, Xr(X, X3) —

X; €X(M),i = 1,2,3,4
,(1),(2),(3) and (4) is called an algebra curvature tensor of (L. C. K) manifolds
The conharmonic curvature of (L. C. K) manifolds looks like

K(Xl, Xz)X3 = R(Xl, Xz)X3 - {< Xz, X3 > X1r+< Xl' X3 > er_< Xz, X3 > QX1_< Xll X3 > QXZ}

WhereQ =r
By definition of a spectrum tensor
KXy, X)X5 = Ko < X, X, > X3 + Ky < Xp, X, > X3 + Ky <X, X, > X5+ Ky <X, X, > X5 + K, <X, X,
>X; +Ks < X1, X, > X3 +Kg < X, X, > X3 +K; < X, X, > X5
Tensor K, < X;,X, > X3 nonzero — the component have only components
Of the form:

1
2(n—1)
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Tensor Ko < X1,X, > X3 — components{K3 1,.q, Kg } = {Kcq Kéea}

Tensor K; < Xy,X; > X3 — components{K? | 5, ? sea) = Kb a0 %éd}

Tensor K, < X;,X, > X3 — components{K3 g, KA seas = (Kbeas bca}

Tensor K; < Xy, X, > X35 — components{K3 bcd, be d} = {Kbcd, aea}

Tensor K, < X;,X, > X5 — components{K4 vea K3 Be d} = {K%a %Cd}

Tensor Ks < X;,X, > X3 — components{K3 K5 ped) = (K5 q ed)

Tensor K¢ < X4, X, > X5 — components{K6 Bed’ bcd} = {Kbcd, ica}

Tensor K, < X;,X, > X3 — components{K?, ;.5 K;‘ bed) = (Kieq Keal

Tensors Kg = Ko < X1, X; > X3, Ky = K; <X,X; > X;5,..,K;, =K, <X, X, > Xs.
The basic invariants conharmonic(L. C. K) manifold will be named.

DJ)w n»w n»

5 bed’

Definition 1.11
L.C.K- manifold for which K; = 0 is LCK- manifold of class K;,i = 0,1, ... ,7,
The manifold of class K|, characterlzed by a condition K§ .4 =0, or
bca =0, [K(gc, €q)€p]?€a = 0,As o- a projector on Df/‘_l, that
o o {K(oX;,0X;)0X; = 0.
ie(id — vV=1){KX - vV=-1)X, Y = V=1)Y)(z - V-1J2)} = 0
Removing the brackets can be received:
K(X1,X2)X3 — K(X3,]X;)]X3 — K(X1, X2)]X3 — K( X3, JX2)X5 — JK(Xy, X2)JX5 — JK(Xy, JX2)X3 — JK(Xy, X2)X3
+JK(Xy, JX2))X3
— V=1{K(X1, X;)]X5 + K(Xy, JX;)X5 + KX, X2)X5 — K X1, JXp)]X5} = JK(Xy, X2)X3
_ — JK(Xy, 1X2)]X5 — JK(X1, X2)]X3 + JK(X1,JX2)X3} = 0.
ie,

1) K(X1, X;)X5 — K(X4,JX;)]X5 — KXy, X2)]X5 — K( X1, JX2)X5 — JK(Xy, X,)]X5 — JK(Xy, JX2)X5 —
JK(X1, X2)X5 + JK(Xy, JX2)]X5 = 0.
Thus LCK- manifold of class K, characterized by identity
2K(Xy, X5)X; + K(Xy, JX2)IX5 — KXy, X,)]X5 + K( Xy, JX,)X; + JK(Xy, X,)]X5 — JK(Xy, JX2)X5 —
JK(X,, X;)X3 — JK(Xy, JX;)]X; = 0,
X1, X5, X5 € X(M).
These equalities are equivalent; the second equality turns out from the first
Replacement X;on JX;.
K(Xy, X2)Xs — K(Xy, JX2)JX3 — KXy, X2)JX;5 — K(J Xy, JX,)X; — JK(X1, X2)JX;5 — JK (X1, JX2)X;5 — JK(X1, X2)X5
+JK(X4,]X;)]X3 = 0.
X1, X5, X5 € X(M).
Similarly considering L.C.K- manifold of classes K; — K can be receved the following theorem.

Theorem 1.12
1) L.C.K-manifold of class K, characterized by identity
K(X1, X5)X5 — K(X1,JX;)]Xs — K(X1, X2)JXs — KO X0, JXo)X5 = JK(Xy, X5)JX5 — JK(X3, JX2)X5 — JK(X1, X5)X5
+JK(X1,JX5)]X3 = 0,
Xy, X5, X3 € X(M).
2) L.C.K- manifold of class K, characterized by identity
K(X1,X2)Xs + K(X1,JX;)]Xs — KOX1, X2)JXs + KO X, JX2)Xs + JK(Xy, X)X — JK(Xy, JX,)X;5 — JK(Xy, X5)Xs
— JK(X1,JX2)JX;5 = 0.
Xy, X5, X3 € X(M).
3) L.C.K— manifold of class K, characterized by identity
K(X1,X2)Xs — K(X1,JX;)]X5 + K(X1, X2)JXs + K( Xy, JX)X5 = JK(Xy, X5)]X5 — JK(X1,JX5)X5
+ JK(X1, X2)X5 — JK(Xy, JX,)JX;5 = 0.
Xy, X5, X5 € X(M).
4) L.C.K— manifold of class K5 characterized by identity
K(X1,X2)X3 + K(X1,JX;)]X5 + K(X1, X2)JXs — K( Xy, JX)X5 = JK(Xy, X5)]Xs5 + JK(X1,JX5) X5
+JK(Xy, X2)X3 + JK(X,, JX2)]X5 = 0.
Xy, X5, X3 € X(M).
5) L.C.K- manifold of class K, characterized by identity
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K(Xq, X2)X5 + K(Xy, JX2)]X5 + KXy, X2)JX5 — K Xy, JX2)X5 + JK(Xy, X2)]X5 — JK(Xy, JX2)X5 — JK(Xy, X3)X3
—JK(Xy, JX2)]X3 = 0.
X1, X5, X3 € X(M).
6) L.C.K- manifold of class K5 characterized by identity
K(X1, X2)X3 — K(Xq, JX2)JX5 + K(JX1, X2)JX5 + K( X4, JX2)X5 + JK(Xq, X2)JX5 + JK(Xq, JX2) X3 — JK(Xy, X3) X5
+ JK(X1,]X2)]X3 = 0.
X1, X5, X3 € X(M).
7) L.C.K— manifold of class K, characterized by identity
K(Xy, X2)X5 + KXy, JX2)JX3 — K(Xy, X2)JX5 + K(J X1, JX2)X5 + JK(Xy, X2)JX3 — JK(Xy, JX2)X3
+ JK(Xy, X2)X5 + JK(JX4, JX5)]X;3 = 0.
X1, X5, X5 € X(M).
8) L.C.K— manifold of class K, characterized by identity
K(Xy, X2)X5 — KXy, JX2)JX3 — K(Xy, X2)]X5 — K(J X1, JX2)X5 + JK(Xy, X2)JX3 + JK(Xy, JX2)X3
+ JK(X1, X2)X;5 — JK(Xy, JX3)]X;5 = 0.
X1, X5, X5 € X(M).

Theorem 1.13

The following inclusion relation has been found:

i) Ko = Ky i) Ky =K, ,iii) K, = K, ,iiii) Ks = Kg

Prove: - We shall prove (i)

Ko = K(X1, X2)X5 — K(X1,]X2)]X3 — K(X1, X2)JX35 — K( X1, JX2)X5 —  JK(Xy, X2)]X5 — JK(X,JX2)X3 —

JK(X1, X2)X5 + JK(Xy, JX2)]X3 (1)

Ko = K(X1,X2)X3 — K(Xq, —V=1JX; ) (—V=1)JX5 — K(—V=1JXy, X;)(—V—=1)JX5 — K(=V=1] Xy, —V~-1JX;)X;
— (—V=1)JK(Xy, X2) (—V-1)JX5 — (—V=1)IK(Xy, —V=1JX;)X5 — (—V=1)JK(—V=1]Xy, X, )X3
+(—V=DJK(—V=1JXy, —V=1JX; ) (—V=1)JX;

Ko = K(X1, X2)X5 + K(X1,]X2)]X35 + K(X1, X2)JX3 — KU X1, JX2)X5 = JK(Xy, X2)IX5 + JK(Xy, JX2)X5 +

JK(X1, X2)Xs + JK(Xy, JX2)1X3 )

From (1) and (2) we get
Ko = K(Xy, X2)X3 — K(J X4, JX2)X3 — JK(Xy, X2)]Xs + JK(X, JX5)]X3 (3)

K3 = K(X1,X2)X3 + K(X1,JX2)]X5 + K(X1, X2)JX3 — K( X1, JX2)X3 —  JK(Xy, X2)IX5 + JK(Xy, JX2)X5 +

JK(X1,X2)X3 + JK(X1,]X;)]X3 4)

K3 = KXy, X5)X;5 + K(Xy, —V=1JX; ) (=V=1)JX; + K(—=V=1JXy, X, ) (=V=1)JX;5 — K(=V=1] X;, —V=1JX;)X5

— (—V=D) JK(X1, Xp) (—V=D)JX;3 + (—V=DJK(Xy, —V=1]X;)X5 + (—V=DJK(=V=1JX;, X; ) X5
+ (—V=DJK(—V=1JXy, —V-1JX, ) (—V=-D)JX;

K; =

K(Xy, X2)X3 — K(Xy, JX2)JX3 — K(JXy, X2)]X5 — K(J X1, JX2)X5 — JK(X1, X2)JX3 — JK(Xy, JX2) X5 — JK(JXy, X2)X5 +

JK(Xy,]X2)]X3 ®)

From (4) and (5) we get

K3 = K(X1,X2)X3 — K(J X1, ]X2)X5 — JK(Xy, X2)]X5 + JK(Xy, ]X2)]Xs3 (6)

From (3) and (6) we get K, = K3

Now we shall prove (ii)
K, =
K(Xy, X5)X5 + K(Xy, JX2)]X3 — KXy, X3)]X5 + K(J X4, JX2)X;5 + JK(Xy, X2)JX3 — JK(Xy, JX2) X5 — JK(Xy, X5)X5 —
JK(Xy, JX2)]X3 (7
Ky = K(Xy, X2)X3 + K(Xy, —V=1JX; ) (—V=D)JX5 — K(=V=1]X1, X;) (=V=D)JX3 + K(—V=1] X;, —V-1JX;)X;
+ (—V=DIKXy, X2) (—V=1)JX;3 — (—V=D)JK(X;, —V=1JX;)X5 — (—V=D)JK(—V=1JX;,X;)X;
— (—V=DIK(—V=1JXy, —V=1JX; ) (—V-D)JX;
K, =
K(Xy, X5)X5 — K(Xy, JX2)JX5 + KXy, X5)]X5 + K(J X4, JX2)X5 + JK(Xy, X)JX;5 + JK(Xy, JX2) X5 + JK(Xy, X5)X5 —
JK(JX1,JX2)]X3 8

From (7) and (8) we get
Ky = K(X1, X2)X3 + K( X1,]X2)X3 — JK(X1,X;)]X3 = JK(X3, JX2)]X5  (9)
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K, = K(Xq, X2)X5 — K(Xq, JXp)JX;5 + K(JXq, X2)JX5 + K( Xq, JX5)X3 = JK(Xq, X2)JX5 — JK(Xy, JX2)X5 +
JK(JXy, X2)X3 — JK(X1, JX2)]X;5 (10)
Ky = KXy, X2)X5 — K(Xq, —V=1JX;) (—=V=1)]X; + K(—V=1JX;, —V—=1X, ) (—V-1)]X;5
+ K(—V=1J Xy, —V=1JX;)X5 — (—V=1) JK(Xy, X, ) (—V=1)JX5 — (—V=DJK(Xy, —V—-1]X;)X;5
+ (—V=DJK(—V=1JX1,X,)X5 — (—V=D)JK(—V=1JX;, —V=1]X; ) (—V—1)]X3
K, = KXy, X2)X5 + K(Xy,JX2)JX5 — K(Xq, X5)JX5 + KJ X4, JX2)X3 = JK(Xq, X2)]X5 + JK(Xy, JX)X;3 —
JK(JXy, X2)X3 — JK(X1, JX2)]X;5 (11)
From (10) and (11) we get
K, = K(Xy, X2)X5 + K( Xq, JX5)X3 — JK(Xq, X2)JX5 — JK(X1, JX2)JXs  (12)
From (9) and (12) we get K; =K,

Now we shall prove (iii)
K, = K(Xy, X2)X5 + K(X1,JX2)JX3 + KXy, X2)]X5 — K( X1, JX2)X5 + JK(Xq, X2)]X3 — JK(Xy, JX2)X5 —
JK(X1,X2)X35 — JK(X1,JX2)]Xs3 (13)
Ky = KXy, X2)X3 + K(Xq, —V=1JX,) (—V=1)]X;5 + K(—V=1JX;, X, ) (—V=D)JX5 — K(—V=1] Xy, —V~-1JX;)X;
+ (—V=DJKXy, X) (—V=D)JX3 — (—V=DJK(Xy, —V=1JX;)X5 — (—V-DJK(—V—=1JXy, X;)X3
— (—V=DJK(—V=1JX;, —V=1JX; ) (—V-1)JX;

K, =
K(X;, X2)X3 — K(X1,1X2)]X3 — K(X1, X2)]X3 — K( X1, JX2)X3 + JK(Xq, X3)]X3 + JK(X1,JX2)X5 + JK(X1, X2)X3 —
JKUX1,JX2)]X3 (14

From (13) and (14) we get
K, = K(X1,X2)X35 — K(J X1, JX2)X5 + JK(Xy, X2)JX3 — JK(JXy, JX2)]X;  (15)
K; = KXy, X2)X5 — K(X1,JX2)JX5 — K(X1, X2)JX3 — K( X1, JX2)X5 +  JK(Xq, X2)]X5 + JK(Xy, JX2)X3 +
JK(X1, X2)X5 — JK(X4, JX2)IX5 (16)
K, = KXy, Xz)X3 — K(Xq, —V=1JX,) (—V=1)]X5 — K(—V=1JX;, X, ) (—V=D)JX5 — K(—V=1] Xy, —V—-1JX;)X;
+ (—V=D)JKXy, Xo) (—V=D)JX;3 + (—V=DJK(Xy, —V—1JX;,)X5 + (—V-1)JK(—V—=1]X;, X;)X3
— (—V=DIK(—V=1JX;, —V=1JX, ) (—V-1)]X;
K; = K(X1, X2)X5 + K(X1,JX2))JX;5 + K(X1, X2)JX35 — K( X1, JX2)X5 + JK(Xy, X2)]X5 — JK(Xy, JX2)X3 —
JK(JX1, X2)X3 — JK(X4, JX2)IX5 17)
From (16) and (17) we get
K; = K(X1, X3)X5 — K(J X1, JX2)X3 + JK(Xq, X2)]X5 — JK(Xy, JX3)]X3 (18)
From (15) and (18) we get K, =K,
Now we shall prove (iiii)
Ks =
K(Xy, X2)X3 — K(X1, JX2)JX3 + K(JXy, X2)]X5 + K(J X1, JX2)X5 + JK(X1, X2)JX3 + JK(Xy, JX2) X5 — JK(Xy, X5)X5 +
JK(JX1, JX2)]X3 (19)
Ks = KXy, X5)X3 — K(Xy, —V=1JX; ) (=V=1)JX; + K(=V=1JXy, X, ) (=V=1)JX; + K(=V=1] X;, —V=1JX; ) X5
+ (—V=DJKXy, X)) (—V=D)JX;3 + (—V=DJK(Xy, —V=1JX;)X5 — (—V=D)JK(=V=1JXy,X;)X;
+ (—V=1K(—V=1JXy, —V=1JX, ) (—V=1)JX;

Ks =
K(X1,X2)X5 + K(Xy, JX2)]X5 — K(X4, X2)]X5 + K( Xy, JX2)X5 + JK(X1, X2)JX5 = JK(Xy,]X2)X;5 + JK(JXy, X2)X;5 +
JKUXy, JX;)]X5 (20)

From (19) and (20) we get
Ks = K(X1,X2)X3 + K(J X1, JX2)X5 + JK(Xy, X2)JX5 + JK(X, JX2)]Xs  (21)
Kg = K(X1, X2)X5 + K(X1,JX2)JX3 — K(X1, X2)JX5 + K( X1, JX2)X3 + JK(Xy, X2)JX3 — JK(Xy, JX2)X5 +
JK(X1,X2)X3 + JK(X1,]X;)]Xs5 (22)
Ko = K(X1,X2)X3 + K(Xy, —V=1JX,) (—V=1)JX5 — K(—V=1JX;, X ) (—V=D)JX5 + K(—V=1] Xy, —V—-1JX, )X;
+ (—V=1) JKXy, X)) (—V=D)JX;3 — (—V=D)JK(Xy, —V=1JX;,)X5 + (—V=DJK(—V=1JX;, X;)X;
+ (—V=DJK(—V=1JXy, —V-1JX,) (—V-1D)JX;
Ke = K(Xy, X2)X3 — KXy, JX2)]X5 + K(Xy, X2)JX5 + K( Xy, JX2)X3 + JK(Xy, X2)JX3 + JK(Xq, JX2)X3 —
JK(JX1, X2)X3 + JK(X1,JX2)]X3 (23)
From (22) and (23) we get
Ke = K(X1,X2)X5 + K(J X1, JX2)X5 + JK(Xq, X2)JX3 + JK(X, JX2)JX3  (24)
From (21) and (24) we get Ks = K
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Definition 1.14
The manifold (M, ], g)refers to as manifold of class:
DK, if < KX, X)X, X, > =< K(Xq, X,)]X3,]X, >
2) KLif < K(Xy,Xp)X3, Xy > =< K(JX,,]X,)X3, X, > +< K(X1, X,)]X3, Xy > +< K(X4, X5)X3,]X, >
3) Kyif < K(Xy,X3)X3, Xy > =< K(X;,]X,)]X3,]Xs >
Theorem 1.15
Let S = (J,g =<,>) is L, C,K;then the following statement are equivalent:
1) S —structure of class K.

2)K, =0.
3) On space of the adjointG —structure identities K. = 0 are fair .
Prove

Let S —structure of class K5. Obviously it is equivalent to identity
K(e,, ep)ec + JK(Jea Jep)]ec = 0; €, €, €. € X(M), By definition of a spectrum tensor
K(Ea' Eb)sc = KO (Sa' Eb)sc + Kl (Ea' Eb)sc + KZ (Sa' Sb)sc + K3 (Ea' Eb)sc + K4(€a' sb)sc + KS (Ea' Eb)sc + Ké(sa' Eb)Ec
+ K7 (€4, &)€c ; €a) EpEc € X(M)
]K(Isa' Isb)lsc = IKO(]Ea' Isb)lsc + ]Kl(lsa' ]Eb)lsc + ]KZ(]Sa']Eb)]Ec + ]K3(]Ea' ]sb)lsc + ]Kzl-(lsaﬁlsb)lsc
+JKs (Jea, Jep)Jee +JKe (Jea, Jen)Jec + K7 (Jea, Jep)ec
= K0 (Sa' 8b)“:C - Kl (sav z’:b)sc - Kz (Sa: Sb)sc + K3 (Sax 8b)sc - K4(£a: Sb)sc + KS (sa' Sb)sc
+ KG (sa' sb)sc - K7(€a: Sb)z’:C
The identity K(e,, &,)e. + JK(Je,, Jep)]e. = 0 is equivalent to that
K7 (€2 ep)ec + Ky (€a, €p)€c + Ks(€a, €p)€c + Ko (€a 8p)ec = 0
And this identity is equivalent to K, = 0
By virtue of materiality tensor K and its properties (1.10;4) received relation which are equivalent to relations K%ea =0;
i.e. identity K, (g,, &,)e. = 0.
The opposite, according to K(e,, €p)e. + JK(Je,, Jep)]Je. = 0, obviously.
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