Some Aspects of the Geometry for Conharmonic Curvature Tensor of the Locally Conformal Kahler Manifold

Dr. Ali A Shihab ${ }^{1^{*}}$, Maath Abdullah Mohammed ${ }^{2}$
${ }^{1}$ Lecturer Mathematics college of Education for Women IRAQ SALAHADEEIN-TIKRIT, University of Tikrit, P.O. Box 42, Tikrit, Iraq
${ }^{2}$ Student Master degree, Department of Mathematics, College of Education Pure Sciences, Tikrit University, Iraq

*Corresponding author

Dr. Ali A Shihab

Article History

Received: 24.07.2018
Accepted: 03.08.2018
Published: 30.08.2018

DOI:

10.21276/sjpms.2018.5.4.5

Abstract

In this research, calculated components conharmonic curvature tensor in some aspects Hermitian manifold in particular of the Locally Conformal Kahler manifold. And proved that this tensor possesses the classical symmetry properties of the Riemannian curvature. Also, establish relationships between the components of the tensor in this manifold.

Keywords: Conharmonic curvature tensor, Locally Conformal Kahler Manifold.

INTRODUCTION

Conformal transformations of Riemannian structures are the important object of differential geometry, where this "transformations which keeping the property of smooth harmonic function". It is known, that such transformations have tensor in variant so-called conharmonic curvature tensor, in this paper we investigated the "conharmonic curvature tensor of locally conformal Kahler manifold".

Preliminaries

Let M -"smooth manifold of dimension 2 n ", and let g and \tilde{g} be two Riemannian metrics on smooth manifold M, we say that on M given a conformal transformation metric if there is a smooth function $f \in C^{\infty}(M)$ such that $\tilde{g}=e^{2 f} g$.

Let $\{\mathrm{M}, \mathrm{J}, \mathrm{g}=<,>\}$ be an AH-manifold, if there exists a conformal transformation of the metric g into the metric \tilde{g}, then $\left\{M, J, \tilde{g}=e^{2 f} g\right\}$ will be $A H-$ manifold , In this case we say that on smooth manifold M given conformal transformation of AH-structure, denoted by $\widetilde{\mathrm{M}}_{\mathrm{f}}$.

Definition1.1 [2]

An AH -manifold is called a locally conformal Kahler manifold, if for each point $m \in M$ there exist an open neighborhood U of this point and there exists $f \in C^{\infty}(M)$ such that \widetilde{U}_{f} is Kahler manifold. We will denoted to the locally conformal Kahler manifold by L.C.K.

Definition 1.2 [2]
Let M be an AH-manifold, the form which is given by the relation
$\alpha=\frac{-1}{\mathrm{n}-1} \mathrm{~S} \Omega \circ \mathrm{~J}$ is called a Lie form, where S represents the coderivative. If Ω is $\mathrm{r}-$ form. then its coderivative is ($\mathrm{r}-1$) - form, and its dual is a vector
which is called a Lie vector.

Remark 1.3 [3]

By the Banaru's classification of AH-manifold, the L.C.K- manifold satisfies the following conditions:

$$
\mathrm{B}^{\mathrm{abc}}=0, \mathrm{~B}_{\mathrm{c}}^{\mathrm{ab}}=\alpha^{[\mathrm{a}} \delta_{\mathrm{c}}^{\mathrm{b}]}
$$

Theorem 1.4 [4]

The structure equations of L.C.K- manifold in the adjointG - structure space is given by the following forms:
$1 . \mathrm{d} \omega^{\mathrm{a}}=\omega_{\mathrm{b}}^{\mathrm{a}} \wedge \omega^{\mathrm{b}}+\mathrm{B}_{\mathrm{c}}^{\mathrm{ab}} \omega^{\mathrm{c}} \wedge \omega_{\mathrm{b}}$
2.d $\omega_{\mathrm{a}}=-\omega_{\mathrm{a}}^{\mathrm{b}} \wedge \omega_{\mathrm{b}}+\mathrm{B}_{\mathrm{ab}}^{\mathrm{c}} \omega_{\mathrm{c}} \Lambda \omega^{\mathrm{b}}$
$3 \cdot d \omega_{\mathrm{b}}^{\mathrm{a}}=\omega_{\mathrm{c}}^{\mathrm{a}} \Lambda \omega_{\mathrm{b}}^{\mathrm{c}}+A_{\mathrm{bc}}^{\mathrm{ad}} \omega^{\mathrm{c}} \Lambda \omega_{\mathrm{d}}+\left\{\frac{1}{2} \alpha^{\mathrm{a}[\mathrm{c}} \delta_{\mathrm{b}}^{\mathrm{d}]}+\frac{1}{4} \alpha^{\mathrm{a}} \alpha^{[\mathrm{c}} \delta_{\mathrm{b}}^{\mathrm{d}]}\right\} \omega_{\mathrm{c}} \Lambda \omega_{\mathrm{d}}$

Theorem 1.5 [4]
In the adjointG - structure spaace, the component of Riemannian curvature tensor of L.C.K- manifold are given by the following forms :

1. $\mathrm{R}_{\mathrm{bcd}}^{\mathrm{a}}=\alpha_{\mathrm{a}[\mathrm{c}} \delta_{\mathrm{d}]}^{\mathrm{b}}+\frac{1}{2} \alpha_{\mathrm{a}} \alpha_{[\mathrm{c}} \delta_{\mathrm{d}]}^{\mathrm{b}}$

2. $\mathrm{R}_{\mathrm{b} c \mathrm{~d}}^{\mathrm{a}}=-2 \alpha_{[\mathrm{c}}^{[\mathrm{a}} \delta_{\mathrm{d}]}^{\mathrm{b}]}$
3. $\mathrm{R}_{\mathrm{b} \hat{\mathrm{c}} \hat{\mathrm{d}}}^{\hat{\mathrm{a}}}=2 \alpha_{[\mathrm{a}}^{[\mathrm{c}} \delta_{\mathrm{b}]}^{\mathrm{d}]}$
4. $\mathrm{R}_{\mathrm{bc} \mathfrak{d}}^{\mathrm{a}}=A_{\mathrm{bc}}^{\mathrm{ad}}-\alpha^{[\mathrm{a}} \delta_{\mathrm{c}}^{\mathrm{h}]} \alpha_{[\mathrm{h}} \delta_{\mathrm{b}]}^{\mathrm{d}}$
5. $R_{\hat{b} \hat{c} d}^{\hat{a}}=-A_{a d}^{b c}+\alpha^{[h} \delta_{d}^{b]} \alpha_{[\mathrm{a}} \delta_{\mathrm{h}]}^{\mathrm{c}}$
6. $\mathrm{R}_{\mathrm{b} \hat{\mathrm{c} d}}^{\mathrm{a}}=\mathrm{A}_{\mathrm{bc}}^{\mathrm{ad}}-\alpha^{[\mathrm{a}} \delta_{\mathrm{d}}^{\mathrm{h}]} \alpha_{[\mathrm{b}} \delta_{\mathrm{h}]}^{\mathrm{c}}$
7. $R_{\hat{b} c \hat{d}}^{\hat{\mathrm{a}}}=-\mathrm{A}_{\mathrm{ad}}^{\mathrm{bc}}+\alpha^{[\mathrm{b}} \delta_{\mathrm{c}}^{\mathrm{h}]} \alpha_{[\mathrm{a}} \delta_{\mathrm{h}]}^{\mathrm{d}}$
8. $\mathrm{R}_{\mathrm{b} \hat{\mathrm{c}} \hat{\mathrm{a}}}^{\mathrm{a}}=\alpha^{\mathrm{a}[\mathrm{c}} \delta_{\mathrm{b}}^{\mathrm{d}]}+\frac{1}{2} \alpha^{\mathrm{a}} \alpha^{[\mathrm{c}} \delta_{\mathrm{b}}^{\mathrm{d}]}$
9. $\mathrm{R}_{\hat{\mathrm{b}} \hat{c} \mathrm{~d}}^{\hat{\mathrm{a}}}=-\alpha_{\mathrm{a}[\mathrm{c}} \delta_{\mathrm{d}]}^{\mathrm{b}}-\frac{1}{2} \alpha_{\mathrm{a}} \alpha_{[\mathrm{c}} \delta_{\mathrm{d}]}^{\mathrm{b}}$
10. $\mathrm{R}_{\text {b } \hat{c} d}^{\mathrm{a}}=-\alpha^{[\mathrm{a} \mid \mathrm{cl}} \delta_{\mathrm{d}}^{\mathrm{b}]}+\alpha^{[\mathrm{a}} \delta_{\mathrm{h}}^{\mathrm{b}]} \alpha^{[\mathrm{h}} \delta_{\mathrm{d}}^{\mathrm{c}]}$
11. $\mathrm{R}_{\mathrm{bc} \hat{\mathrm{d}}}^{\hat{\mathrm{a}}}=\alpha_{[\mathrm{a}|\mathrm{c}|} \delta_{\mathrm{b}]}^{\mathrm{d}}-\alpha_{[\mathrm{a}} \delta_{\mathrm{b}]}^{\mathrm{h}} \alpha_{[\mathrm{h}} \delta_{\mathrm{c}]}^{\mathrm{d}}$
12. $\mathrm{R}_{\hat{\mathrm{b}} \mathrm{c} \hat{\mathrm{a}}}^{\mathrm{a}}=-\alpha^{[\mathrm{a}|\mathrm{d}|} \delta_{\mathrm{c}}^{\mathrm{b}]}+\alpha^{[\mathrm{a}} \delta_{\mathrm{h}}^{\mathrm{b}]} \alpha^{[\mathrm{h}} \delta_{\mathrm{c}}^{\mathrm{d}]}$
13. $\mathrm{R}_{\mathrm{b} \hat{\mathrm{c} d}}^{\hat{\mathrm{c}}}=\alpha_{[\mathrm{a}|\mathrm{d}|} \delta_{\mathrm{b}]}^{\mathrm{c}}-\alpha_{[\mathrm{a}} \delta_{\mathrm{b}]}^{\mathrm{h}} \alpha_{[\mathrm{h}} \delta_{\mathrm{d}]}^{\mathrm{c}}$
14. $\mathrm{R}_{\widehat{\mathrm{b}} \hat{\mathrm{c}} \hat{\mathrm{d}}}^{\mathrm{a}}=0$
15. $R_{b c d}^{\hat{a}}=0$

We need the components of Ricci tensor of L.C.K- manifold, so we compute it as the following.

Theorem 1.6 [5]

In the adjoint G -structure space, the component of Ricci of L.C.K- manifold are given by the following forms:

1. $\mathrm{r}_{\mathrm{ab}}=\alpha_{\mathrm{c}[\mathrm{b}} \delta_{\mathrm{c}]}^{\mathrm{a}}+\frac{1}{2} \alpha_{\mathrm{c}} \alpha_{[\mathrm{b}} \delta_{\mathrm{c}]}^{\mathrm{a}}+\alpha_{[\mathrm{c|b|}} \delta_{\mathrm{a}]}^{\mathrm{c}}-\alpha_{[\mathrm{c}} \delta_{\mathrm{a}]}^{\mathrm{h}} \alpha_{[\mathrm{h}} \delta_{\mathrm{b}]}^{\mathrm{c}}$
2. $r_{\hat{a} \mathrm{~b}}=-\alpha^{c[\mathrm{~b}} \delta_{\mathrm{a}}^{\mathrm{c}]}-\frac{1}{2} \alpha^{\mathrm{c}} \alpha^{[\mathrm{b}} \delta_{\mathrm{a}}^{\mathrm{c}]}-\alpha^{[\mathrm{c\mid b}} \delta_{\mathrm{c}}^{\mathrm{a}]}+\alpha^{[\mathrm{c}} \delta_{\mathrm{h}}^{\mathrm{a}]} \alpha^{[\mathrm{h}} \delta_{\mathrm{c}}^{\mathrm{b}]}$
3. $\mathrm{r}_{\mathrm{ab}}=2 \alpha_{[\mathrm{c}}^{[\mathrm{b}} \delta_{\mathrm{a}]}^{\mathrm{c}]}+A_{\mathrm{ab}}^{\mathrm{cc}}-\alpha^{[\mathrm{c}} \delta_{\mathrm{c}}^{\mathrm{h}]} \alpha_{[\mathrm{a}} \delta_{\mathrm{h}]}^{\mathrm{b}}$
4. $\mathrm{râb}=-2 \alpha_{[\mathrm{b}}^{[\mathrm{c}} \delta_{\mathrm{c}]}^{\mathrm{a}]}-A_{\mathrm{cc}}^{\mathrm{ab}}+\alpha^{[\mathrm{a}} \delta_{\mathrm{b}}^{\mathrm{h}]} \alpha_{[\mathrm{c}} \delta_{\mathrm{h}]}^{\mathrm{c}}$

Remark 1.7 [6]

The value of Riemannian metric g is define by the form

1. $\mathrm{g}_{\mathrm{ab}}=\mathrm{g}_{\hat{a} \mathrm{~b}}=0$
2. $g_{\hat{a} b}=\delta_{b}^{a}$
3. $\mathrm{g}_{\mathrm{a} \overline{\mathrm{b}}}=\delta_{\mathrm{a}}^{\mathrm{b}}$

Definition 1.8

Suppose (M, J, g) is a AH-manifol, the conharmonic curvature of the
(L. C. K) difine as tensor $K=\left\{\mathrm{K}_{\mathrm{jkl}}^{\mathrm{i}}\right\}$ of type $(3,1)$ by the form:

$$
\mathrm{K}_{\mathrm{jkl}}^{\mathrm{i}}=\mathrm{R}_{\mathrm{jkl}}^{\mathrm{i}}-\frac{1}{2(\mathrm{n}-1)}\left[\mathrm{r}_{\mathrm{i} 1} \mathrm{~g}_{\mathrm{jk}}+\mathrm{r}_{\mathrm{jk}} \mathrm{~g}_{\mathrm{ill}}-\mathrm{r}_{\mathrm{jl}} \mathrm{~g}_{\mathrm{ik}}-\mathrm{r}_{\mathrm{ik}} \mathrm{~g}_{\mathrm{jl}}\right]
$$

Where R Riemannian curvature tensor is . r is Ricci tensor and g is Riemannian metric.

Theorem1.9

In the adjoint G-structure space, the components of the conharmonic tensor of the L. C. K manifold are given by the following forms:

1) $K_{b c d}^{a}=R_{b c d}^{a}$
2) $K_{\text {bcd }}^{a}=R_{\text {bcd }}^{a}$
3) $K_{b \hat{d} d}^{a}=R_{b \hat{c} d}^{a}$
4) $K_{b c \hat{d}}^{a}=R_{b c \hat{d}}^{a}$
5) $K_{b \hat{c} \hat{d}}^{a}=R_{b \hat{c} \hat{d}}^{a}$
6) $K_{\hat{b} \hat{c} \hat{d} \hat{d}}^{\mathrm{a}}=R_{\hat{b} \hat{c} \hat{d}}^{a}$

Available Online: http://saspjournals.com/sjpms
7) $\mathrm{K}_{\hat{b} c \hat{d}}^{\mathrm{a}}=\mathrm{R}_{\hat{\mathrm{b}} \mathrm{c} \hat{\mathrm{d}}}^{\mathrm{a}}-\frac{1}{(1-\mathrm{n})}\left(\mathrm{r}_{[\mathrm{a}}^{[\mathrm{d}} \delta_{\mathrm{c}]}^{\mathrm{b}]}\right)$
8) $K_{\hat{b} \hat{c} d}^{a}=R_{\hat{b} \hat{c} d}^{a}+\frac{1}{(1-n)}\left(r_{[d}^{[b} \delta_{a]}^{c]}\right)$

And the other are conjugate of them.
Proof:-

1) put, $i=a, j=b, k=c, l=d$,

$$
\begin{aligned}
& K_{b c d}^{a}=R_{b c d}^{a}-\frac{1}{2(n-1)}\left[r_{a d} g_{b c}+r_{b c} g_{a d}-r_{b d} g_{a c}-r_{a c} g_{b d}\right] \\
& K_{b c d}^{a}=R_{b c d}^{a}-\frac{1}{2(n-1)}\left[r_{a d}(0)+r_{b c}(0)-r_{b d}(0)-r_{a c}(0)\right]
\end{aligned}
$$

2) put, $i=a, j=\hat{b}, k=c, l=d$,

$$
\mathrm{K}_{\mathrm{bcd}}^{\mathrm{a}}=\mathrm{R}_{\mathrm{bcd}}^{\mathrm{a}}
$$

$$
\begin{aligned}
& K_{\widehat{b} c d}^{a}=R_{\widehat{b} c d}^{a}-\frac{1}{2(n-1)}\left[r_{a d} g_{\overparen{b} c}+r_{\widehat{b} c} g_{a d}-r_{\widehat{b} d} g_{a c}-r_{a c} g_{\overparen{b} d}\right] \\
& K_{\overparen{b} c d}^{a}=R_{\overparen{b} c d}^{a}-\frac{1}{2(n-1)}\left[r_{a d} g_{\widehat{b} c}+r_{\widehat{b c}}(0)-r_{\widehat{b} d}(0)-r_{a c} g_{\widehat{b} d}\right]
\end{aligned}
$$

If $c \leftrightarrow d$, then
3) put, $i=a, j=b, k=\hat{c}, l=d$

$$
\begin{gathered}
K_{b \hat{c} d}^{a}=R_{b \hat{c} d}^{a}-\frac{1}{2(n-1)}\left[r_{a d} g_{b \hat{c}}+r_{b \hat{c}} g_{a d}-r_{b d} g_{a \hat{c}}-r_{a \hat{c}} g_{b d}\right] \\
K_{b \hat{c} d}^{a}=R_{b \hat{c} \hat{d}}^{a}-\frac{1}{2(n-1)}\left[r_{a d} g_{b \hat{c}}+r_{b \hat{c}}(0)-r_{b d} g_{a \hat{c}}-r_{a \hat{c}}(0)\right] \\
K_{b \hat{c} d}^{a}=R_{b \hat{c} d}^{a}-\frac{1}{2(n-1)}\left[r_{a d} g_{b \hat{c}}-r_{b d} g_{a \hat{c}}\right]
\end{gathered}
$$

If $\mathrm{b} \leftrightarrow \mathrm{a}$ then

$$
\begin{gathered}
K_{b \hat{d} d}^{\mathrm{a}}=R_{b \hat{d} d}^{\mathrm{a}}-\frac{1}{2(\mathrm{n}-1)}\left[r_{a d} g_{b \hat{c}}-r_{a d} g_{b \hat{c}}\right] \\
K_{b \hat{c} d}^{\mathrm{a}}=R_{b \hat{c} d}^{a}
\end{gathered}
$$

4) put, $i=a, j=b, k=c, l=\hat{d}$,

$$
\begin{gathered}
K_{b c \hat{d}}^{a}=R_{b c \hat{d}}^{a}-\frac{1}{2(n-1)}\left[r_{a \widehat{d}} g_{b c}+r_{b c} g_{a \hat{d}}-r_{b \widehat{d}} g_{a c}-r_{a c} g_{b \widehat{d}}\right] \\
K_{b c \hat{d}}^{a}=R_{b c \hat{d}}^{a}-\frac{1}{2(n-1)}\left[r_{a \widehat{d}}(0)+r_{b c} g_{a \hat{d}}-r_{b \widehat{d}}(0)-r_{a c} g_{b \hat{d}}\right] \\
K_{b c \hat{d}}^{a}=R_{b c \hat{d}}^{a}-\frac{1}{2(n-1)}\left[r_{b c} g_{a \widehat{d}}-r_{a c} g_{b \hat{d}}\right]
\end{gathered}
$$

If $\mathrm{a} \leftrightarrow \mathrm{b}$ then
5) put, $\mathrm{i}=\mathrm{a}, \quad \mathrm{j}=\mathrm{b}, \quad \mathrm{k}=\hat{\mathrm{c}}, \quad \mathrm{l}=\hat{\mathrm{d}}$,

$$
K_{b \hat{c} \hat{d}}^{a}=R_{b \hat{c} \hat{d}}^{a}-\frac{1}{2(n-1)}\left[r_{a \hat{d}} g_{b \hat{c}}+r_{b \hat{c}} g_{a \hat{d}}-r_{b \hat{d}} g_{a \hat{c}}-r_{a \hat{c}} g_{b \hat{d}}\right]
$$

If $\mathrm{a} \leftrightarrow \mathrm{b}$ then

$$
K_{b \hat{c} \hat{d}}^{a}=R_{b \hat{c} \hat{d}}^{a}-\frac{1}{2(n-1)}\left[r_{a \hat{d}} g_{b \hat{c}}+r_{b \hat{c}} g_{a \hat{d}}-r_{a \hat{d}} g_{b \hat{c}}-r_{b \hat{c}} g_{a \hat{d}}\right]
$$

6) put, $i=a, j=\hat{b}, \quad k=\hat{c}, \quad l=\hat{d}$,

$$
K_{b \hat{c} \widehat{d}}^{\mathrm{a}}=\mathrm{R}_{\mathrm{b} \hat{c} \widehat{\mathrm{~d}}}^{\mathrm{a}}
$$

$$
\begin{aligned}
& K_{\hat{b} \hat{c} \hat{d}}^{a}=R_{\hat{b} \hat{c} \hat{d}}^{a}-\frac{1}{2(n-1)}\left[r_{a \widehat{d}} g_{\hat{b} \hat{c}}+r_{\hat{b} \hat{c}} g_{a \hat{d}}-r_{\hat{b} \widehat{d}} g_{a \hat{c}}-r_{a \hat{c}} g_{\widehat{b} \hat{d}}\right] \\
& K_{\hat{b} \hat{c} \hat{d}}^{a}=R_{\hat{b} \hat{c} \hat{d}}^{a}-\frac{1}{2(n-1)}\left[r_{a \hat{d}}(0)+r_{\hat{b} \hat{c}} g_{a \hat{d}}-r_{\widehat{b} \widehat{d}} g_{a \hat{c}}-r_{a \hat{c}}(0)\right]
\end{aligned}
$$

$$
\begin{aligned}
& K_{b c \hat{d}}^{\mathrm{a}}=\mathrm{R}_{\mathrm{bc} \mathfrak{d}}^{\mathrm{a}}-\frac{1}{2(\mathrm{n}-1)}\left[\mathrm{r}_{\mathrm{bc}} \mathrm{~g}_{\mathrm{a} \hat{\mathrm{~d}}}-\mathrm{r}_{\mathrm{bc}} \mathrm{~g}_{\mathrm{ad}}\right] \\
& \mathrm{K}_{\mathrm{b} c \hat{d}}^{\mathrm{a}}=\mathrm{R}_{\mathrm{b} c \widehat{d}}^{\mathrm{a}}
\end{aligned}
$$

$$
\begin{aligned}
& K_{\overparen{b} c d}^{a}=R_{\overparen{b} c d}^{a}-\frac{1}{2(n-1)}\left[r_{a d} g_{\overparen{b} c}-r_{a d} g_{\overparen{b} c}\right] \\
& \mathrm{K}_{\overline{\mathrm{b}} \mathrm{~cd}}^{\mathrm{a}}=\mathrm{R}_{\mathrm{B} c \mathrm{~d}}^{\mathrm{a}}
\end{aligned}
$$

$$
K_{\hat{\mathrm{b}} \hat{c} \hat{\mathrm{~d}}}^{\mathrm{a}}=\mathrm{R}_{\hat{\mathrm{b}} \hat{\mathrm{c}} \hat{\mathrm{~d}}}^{\mathrm{a}}-\frac{1}{2(\mathrm{n}-1)}\left[r_{\hat{\mathrm{c}} \hat{\mathrm{c}}} \mathrm{~g}_{\mathrm{a} \hat{\mathrm{~d}}}-r_{\hat{\mathrm{b}} \hat{\mathrm{~d}}} \mathrm{~g}_{\mathrm{a} \hat{c}}\right]
$$

If $\hat{d} \leftrightarrow \hat{c}$ then

$$
\begin{aligned}
& K_{\hat{b} \widehat{c} \widehat{d}}^{a}=R_{\hat{b} \widehat{c} \widehat{d}}^{a}-\frac{1}{2(n-1)}\left[r_{\hat{b} \hat{c}} g_{a \hat{d}}-r_{\hat{b} \hat{c}} g_{a \hat{d}}\right] \\
& \mathrm{K}_{\hat{\mathrm{b}} \hat{c} \hat{d}}^{\mathrm{a}}=\mathrm{R}_{\hat{\mathrm{b}} \hat{c} \hat{d}}^{\mathrm{a}}
\end{aligned}
$$

7) put, $\mathrm{i}=\mathrm{a}, \quad \mathrm{j}=\hat{\mathrm{b}}, \quad \mathrm{k}=\mathrm{c}, \quad \mathrm{l}=\mathrm{d}$,

$$
\begin{aligned}
& K_{\bar{b} c \hat{d}}^{a}=R_{\hat{b} c \hat{d}}^{a}-\frac{1}{2(n-1)}\left[r_{a \widehat{d}} g_{\overparen{b} c}+r_{\widehat{b} c} g_{a \widehat{d}}-r_{\widehat{b} \hat{d}} g_{a c}-r_{a c} g_{\overparen{b} \widehat{d}}\right]
\end{aligned}
$$

$$
\begin{aligned}
& K_{\hat{b} c \widehat{d}}^{a}=R_{\hat{b} c \hat{d}}^{a}-\frac{1}{2(n-1)}\left[r_{a \hat{d}} g_{\widehat{b} c}+r_{\hat{b} c} g_{a \hat{d}}\right] \\
& \mathrm{K}_{\hat{\mathrm{b}} c \hat{\mathrm{~d}}}^{\mathrm{a}}=\mathrm{R}_{\hat{\mathrm{b}} c \hat{\mathrm{~d}}}^{\mathrm{a}}-\frac{1}{2(\mathrm{n}-1)}\left[\mathrm{r}_{\mathrm{a}}^{\mathrm{d}} \delta_{\mathrm{c}}^{\mathrm{b}}+\mathrm{r}_{\mathrm{c}}^{\mathrm{b}} \delta_{\mathrm{a}}^{\mathrm{d}}\right] \\
& \mathrm{K}_{\hat{b} c \widehat{d}}^{\mathrm{a}}=\mathrm{R}_{\widehat{\mathrm{b}} \mathrm{c} \widehat{\mathrm{a}}}^{\mathrm{a}}-\frac{1}{(\mathrm{n}-1)}\left(\mathrm{r}_{[\mathrm{a}}^{[\mathrm{d}} \delta_{\mathrm{c}]}^{\mathrm{b}]}\right)
\end{aligned}
$$

8) put, $\mathrm{i}=\mathrm{a}, \mathrm{j}=\hat{\mathrm{b}}, \quad \mathrm{k}=\hat{\mathrm{c}}, \mathrm{l}=\mathrm{d}$,

$$
\begin{aligned}
& K_{\hat{b} \hat{c} d}^{a}=R_{\hat{b} \hat{c} d}^{a}-\frac{1}{2(n-1)}\left[r_{a d} g_{\hat{b} \hat{c}}+r_{\hat{b} \hat{c}} g_{a d}-r_{\hat{b d}} g_{a \hat{c}}-r_{a \hat{c}} g_{\hat{b} d}\right] \\
& K_{\hat{\mathrm{b}} \hat{c} \mathrm{~d}}^{\mathrm{a}}=\mathrm{R}_{\hat{\mathrm{C}} \hat{\mathrm{c}} \mathrm{~d}}^{\mathrm{a}}-\frac{1}{2(\mathrm{n}-1)}\left[\mathrm{r}_{\mathrm{ad}}(0)+\mathrm{r}_{\hat{\mathrm{b}} \hat{c}}(0)-\mathrm{r}_{\widehat{b} d} \mathrm{~g}_{\mathrm{a} \hat{c}}-r_{\mathrm{a} \hat{c}} \mathrm{~g}_{\widehat{b} d}\right] \\
& \mathrm{K}_{\hat{\mathrm{b}} \hat{\mathrm{c}} \mathrm{~d}}^{\mathrm{a}}=\mathrm{R}_{\hat{\mathrm{b}} \hat{\mathrm{c}}}^{\mathrm{a}}+\frac{1}{2(\mathrm{n}-1)}\left[-\mathrm{r}_{\mathrm{d}}^{\mathrm{b}} \delta_{\mathrm{a}}^{\mathrm{c}}-\mathrm{r}_{\mathrm{a}}^{\mathrm{c}} \delta_{d}^{\mathrm{b}}\right] \\
& K_{\text {б̂d }}^{\mathrm{a}}=\mathrm{R}_{\text {Б̂cd }}^{\mathrm{a}}+\frac{1}{(\mathrm{n}-1)}\left(\mathrm{r}_{[\mathrm{d}}^{[\mathrm{b}} \delta_{\mathrm{a}]}^{\mathrm{c}]}\right)
\end{aligned}
$$

Proposition 1.10

The conharmonic curvature of (L. C. K) manifold satisfies all the properties the algebraic:

1) $K\left(X_{1}, X_{2}, X_{3}, X_{4}\right)=-K\left(X_{2}, X_{1}, X_{3}, X_{4}\right)$
2) $K\left(X_{1} X_{2}, X_{3}, X_{4}\right)=-K\left(X_{1}, X_{2}, X_{4}, X_{3}\right)$
3) $K\left(X_{1}, X_{2}, X_{3}, X_{4}\right)+K\left(X_{2}, X_{3}, X_{1}, X_{4}\right)+K\left(X_{3}, X_{1}, X_{2}, X_{4}\right)=0$
4) $K\left(X_{1}, X_{2}, X_{3}, X_{4}\right)=K\left(X_{3}, X_{4}, X_{1}, X_{2}\right)$

Where $X_{i} \in X(M), i=1,2,3,4$
Prove: we shall prove just (1)

1) $K\left(X_{1}, X_{2}, X_{3}, X_{4}\right)=R\left(X_{1}, X_{2}, X_{3}, X_{4}\right)-\frac{1}{2(n-1)}\left\{g\left(X_{1}, X_{3}\right) r\left(X_{2}, X_{4}\right)+g\left(X_{2}, X_{4}\right) r\left(X_{1}, X_{3}\right)-g\left(X_{1}, X_{4}\right) r\left(X_{2}, X_{3}\right)-\right.$ $\left.\mathrm{g}\left(\mathrm{X}_{2}, \mathrm{X}_{3}\right) \mathrm{r}\left(\mathrm{X}_{1}, \mathrm{X}_{4}\right)\right\}$

$$
\begin{gathered}
=-\mathrm{R}\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3}, \mathrm{X}_{4}\right)+\frac{1}{2(\mathrm{n}-1)}\left\{\mathrm{g}\left(\mathrm{X}_{1}, \mathrm{X}_{3}\right) \mathrm{r}\left(\mathrm{X}_{2}, \mathrm{X}_{4}\right)+\mathrm{g}\left(\mathrm{X}_{2}, \mathrm{X}_{4}\right) \mathrm{r}\left(\mathrm{X}_{1}, \mathrm{X}_{3}\right)-\mathrm{g}\left(\mathrm{X}_{1}, \mathrm{X}_{4}\right) \mathrm{r}\left(\mathrm{X}_{2}, \mathrm{X}_{3}\right)-\mathrm{g}\left(\mathrm{X}_{2}, \mathrm{X}_{3}\right) \mathrm{r}\left(\mathrm{X}_{1}, \mathrm{X}_{4}\right)\right\} \\
=-\mathrm{K}\left(\mathrm{X}_{2}, \mathrm{X}_{1}, \mathrm{X}_{3}, \mathrm{X}_{4}\right)
\end{gathered}
$$

Properties are similarly proved:
2) $K\left(X_{1}, X_{2}, X_{3}, X_{4}\right)=-K\left(X_{1}, X_{2}, X_{4}, X_{3}\right)$
3) $K\left(X_{1}, X_{2}, X_{3}, X_{4}\right)+K\left(X_{2}, X_{1}, X_{3}, X_{4}\right)+K\left(X_{3}, X_{1}, X_{2}, X_{4}\right)=0$
4) $K\left(X_{1}, X_{2}, X_{3}, X_{4}\right)=-K\left(X_{3}, X_{4}, X_{1}, X_{2}\right)$

$$
X_{i} \in X(M), i=1,2,3,4
$$

,(1),(2),(3) and (4) is called an algebra curvature tensor of (L. C. K) manifolds
The conharmonic curvature of (L. C. K) manifolds looks like

$$
\mathrm{K}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right) \mathrm{X}_{3}=\mathrm{R}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right) \mathrm{X}_{3}-\frac{1}{2(\mathrm{n}-1)}\left\{<\mathrm{X}_{2}, \mathrm{X}_{3}>\mathrm{X}_{1} \mathrm{r}+<\mathrm{X}_{1}, \mathrm{X}_{3}>\mathrm{X}_{2} \mathrm{r}-<\mathrm{X}_{2}, \mathrm{X}_{3}>Q \mathrm{X}_{1}-<\mathrm{X}_{1}, \mathrm{X}_{3}>Q \mathrm{X}_{2}\right\}
$$

Where $\mathrm{Q}=\mathrm{r}$
By definition of a spectrum tensor

$$
\begin{gathered}
\mathrm{K}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right) \mathrm{X}_{3}=\mathrm{K}_{0}<\mathrm{X}_{1}, \mathrm{X}_{2}>\mathrm{X}_{3}+\mathrm{K}_{1}<\mathrm{X}_{1}, \mathrm{X}_{2}>\mathrm{X}_{3}+\mathrm{K}_{2}<\mathrm{X}_{1}, \mathrm{X}_{2}>\mathrm{X}_{3}+\mathrm{K}_{3}<\mathrm{X}_{1}, \mathrm{X}_{2}>\mathrm{X}_{3}+\mathrm{K}_{4}<\mathrm{X}_{1}, \mathrm{X}_{2} \\
>\mathrm{X}_{3}+\mathrm{K}_{5}<\mathrm{X}_{1}, \mathrm{X}_{2}>\mathrm{X}_{3}+\mathrm{K}_{6}<\mathrm{X}_{1}, \mathrm{X}_{2}>\mathrm{X}_{3}+\mathrm{K}_{7}<\mathrm{X}_{1}, \mathrm{X}_{2}>\mathrm{X}_{3}
\end{gathered}
$$

Tensor $\mathrm{K}_{0}<\mathrm{X}_{1}, \mathrm{X}_{2}>\mathrm{X}_{3}$ nonzero - the component have only components
Of the form:

Tensor $K_{0}<X_{1}, X_{2}>X_{3}-$ components $\left\{K_{0 \text { bcd }}^{a}, K_{0}^{\hat{a}} \hat{b} \hat{c} \hat{d}\right\}=\left\{K_{b c d}^{a}, K_{\hat{b} \hat{c} \hat{d}}^{\hat{a}}\right\}$
Tensor $\mathrm{K}_{1}<\mathrm{X}_{1}, \mathrm{X}_{2}>\mathrm{X}_{3}-$ components $\left\{\mathrm{K}_{1 \text { bc } \hat{d}}^{\mathrm{a}}, \mathrm{K}_{1}^{\hat{\mathrm{a}} \hat{\mathrm{c}} \hat{\mathrm{c}}}\right\}=\left\{\mathrm{K}_{\mathrm{bc} \hat{\mathrm{d}}}^{\mathrm{a}}, \mathrm{K}_{\hat{\mathrm{b}} \hat{\mathrm{c}} \mathrm{d}}^{\hat{\mathrm{a}}}\right\}$
Tensor $K_{2}<X_{1}, X_{2}>X_{3}-$ components $\left\{K_{2}^{a}\right.$ b $\left.\hat{d} d, K_{2}^{\hat{a}} \mathfrak{b c} \hat{d}\right\}=\left\{K_{b \hat{c} d}^{a}, K_{\hat{b} c \hat{d}}^{\hat{a}}\right\}$

Tensor $K_{4}<X_{1}, X_{2}>X_{3}-$ components $\left\{\mathrm{K}_{4 \text { b̂̂̂d }}^{\mathrm{a}}, \mathrm{K}_{3 \mathrm{~b} c d}^{\hat{\mathrm{a}}}\right\}=\left\{\mathrm{K}_{\text {bêd }}^{\mathrm{a}}, \mathrm{K}_{\hat{\mathrm{b}} \mathrm{cd}}^{\hat{\mathrm{a}}}\right\}$
Tensor $K_{5}<X_{1}, X_{2}>X_{3}-$ components $\left\{\mathrm{K}_{5}^{\mathrm{a}}\right.$ bcâd, $\left.\mathrm{K}_{5}^{\mathrm{a}}{ }_{\mathrm{b} \hat{c} d}\right\}=\left\{\mathrm{K}_{\hat{\mathrm{b}} c \hat{\mathrm{~d}}}^{\mathrm{a}}, \mathrm{K}_{\mathrm{b} \hat{\mathrm{c}} \mathrm{d}}^{\hat{a}}\right\}$
Tensor $K_{6}<X_{1}, X_{2}>X_{3}-$ components $\left\{\mathrm{K}_{6}^{\mathrm{a}} \hat{\mathrm{b}} \mathrm{c} \mathrm{d}^{\prime}, \mathrm{K}_{6}^{\hat{a}}\right.$ bcâd $\}=\left\{\mathrm{K}_{\hat{\mathrm{b}} \hat{\mathrm{c}} \mathrm{d}}^{\mathrm{a}}, \mathrm{K}_{\text {bcâ}}^{\hat{a}}\right\}$
Tensor $\mathrm{K}_{7}<\mathrm{X}_{1}, \mathrm{X}_{2}>\mathrm{X}_{3}-\operatorname{components}\left\{\mathrm{K}_{7}^{\mathrm{a}}{ }_{\mathrm{b} \hat{c} \hat{\mathrm{~d}}}, \mathrm{~K}_{7}^{\hat{\mathrm{a}}} \mathrm{bcd}\right\}=\left\{\mathrm{K}_{\hat{\mathrm{b}} \hat{\mathrm{c}}{ }^{\prime}}^{\mathrm{a}}, \mathrm{K}_{\mathrm{bcd}}^{\mathrm{a}}\right\}$
Tensors $\mathrm{K}_{0}=\mathrm{K}_{0}<\mathrm{X}_{1}, \mathrm{X}_{2}>\mathrm{X}_{3}, \mathrm{~K}_{1}=\mathrm{K}_{1}<\mathrm{X}_{1}, \mathrm{X}_{2}>\mathrm{X}_{3}, \ldots, \mathrm{~K}_{7}=\mathrm{K}_{7}<\mathrm{X}_{1}, \mathrm{X}_{2}>\mathrm{X}_{3}$.
The basic invariants conharmonic(L. C. K) manifold will be named.

Definition 1.11

L.C.K- manifold for which $K_{i}=0$ is LCK- manifold of class $K_{i}, i=0,1, \ldots, 7$,

The manifold of class K_{0} characterized by a condition $\mathrm{K}_{0}^{\mathrm{a}}$ bcd $=0$, or
$\mathrm{K}_{\mathrm{bcd}}^{\mathrm{a}}=0,\left[\mathrm{~K}\left(\varepsilon_{\mathrm{c}}, \varepsilon_{\mathrm{d}}\right) \varepsilon_{\mathrm{b}}\right]^{\mathrm{a}} \varepsilon_{\mathrm{a}}=0$, As σ - a projector on $\mathrm{D}_{\mathrm{J}}^{\sqrt{-1}}$, that

$$
\sigma \circ\left\{\mathrm{K}\left(\sigma \mathrm{X}_{1}, \sigma \mathrm{X}_{2}\right) \sigma \mathrm{X}_{3}=0\right.
$$

$\mathrm{i}, \mathrm{e}(\mathrm{id}-\sqrt{-1} \mathrm{j})\{\mathrm{K}(\mathrm{X}-\sqrt{-1} \mathrm{~J} \mathrm{X}, \mathrm{Y}-\sqrt{-1} \mathrm{~J} \mathrm{Y})(\mathrm{Z}-\sqrt{-1} \mathrm{JZ})\}=0$
Removing the brackets can be received:

$$
\begin{array}{rl}
K\left(X_{1}, X_{2}\right) X_{3}-K & K \\
\left(X_{1}, J X_{2}\right) J X_{3}-K\left(J X_{1}, X_{2}\right) J X_{3}-K\left(J X_{1}, J X_{2}\right) X_{3}-J K\left(X_{1}, X_{2}\right) J X_{3}-J K\left(X_{1}, J X_{2}\right) X_{3}-J K\left(J X_{1}, X_{2}\right) X_{3} \\
& +J K\left(J X_{1}, J X_{2}\right) J X_{3} \\
& -\sqrt{-1}\left\{K\left(X_{1}, X_{2}\right) J X_{3}+K\left(X_{1}, J X_{2}\right) X_{3}+K\left(J X_{1}, X_{2}\right) X_{3}-K\left(J X_{1}, J X_{2}\right) J X_{3}\right\}-J K\left(X_{1}, X_{2}\right) X_{3} \\
& \left.-J K\left(X_{1}, J X_{2}\right) J X_{3}-J K\left(J X_{1}, X_{2}\right) J X_{3}+J K\left(J X_{1}, J X_{2}\right) X_{3}\right\}=0 .
\end{array}
$$

i,e,

1) $K\left(X_{1}, X_{2}\right) X_{3}-K\left(X_{1}, J X_{2}\right) J X_{3}-K\left(J X_{1}, X_{2}\right) J X_{3}-K\left(J X_{1}, J X_{2}\right) X_{3}-\quad J K\left(X_{1}, X_{2}\right) J X_{3}-J K\left(X_{1}, J X_{2}\right) X_{3}-$ $\mathrm{JK}\left(\mathrm{JX}_{1}, \mathrm{X}_{2}\right) \mathrm{X}_{3}+\mathrm{JK}\left(\mathrm{JX}_{1}, \mathrm{JX}_{2}\right) \mathrm{JX} \mathrm{X}_{3}=0$.

Thus LCK- manifold of class K_{0} characterized by identity
2) $K\left(X_{1}, X_{2}\right) X_{3}+K\left(X_{1}, J X_{2}\right) J X_{3}-K\left(J X_{1}, X_{2}\right) J X_{3}+K\left(J X_{1}, J X_{2}\right) X_{3}+\quad J K\left(X_{1}, X_{2}\right) J X_{3}-J K\left(X_{1}, J X_{2}\right) X_{3}-$
$\mathrm{JK}\left(\mathrm{JX} \mathrm{X}_{1}, \mathrm{X}_{2}\right) \mathrm{X}_{3}-\mathrm{JK}\left(\mathrm{JX} \mathrm{X}_{1}, \mathrm{JX} 2\right) \mathrm{JX} \mathrm{X}_{3}=0$,

$$
\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3} \in \mathrm{X}(\mathrm{M}) .
$$

These equalities are equivalent; the second equality turns out from the first
Replacement X_{3} on JX_{3}.
$K\left(X_{1}, X_{2}\right) X_{3}-K\left(X_{1}, J X_{2}\right) J X_{3}-K\left(J X_{1}, X_{2}\right) J X_{3}-K\left(J X_{1}, J X_{2}\right) X_{3}-\quad J K\left(X_{1}, X_{2}\right) J X_{3}-J K\left(X_{1}, J X_{2}\right) X_{3}-J K\left(J X_{1}, X_{2}\right) X_{3}$

$$
+\mathrm{JK}\left(\mathrm{JX} \mathrm{X}_{1}, \mathrm{JX}_{2}\right) \mathrm{JX} \mathrm{X}_{3}=0
$$

$$
X_{1}, X_{2}, X_{3} \in X(M) .
$$

Similarly considering L.C.K- manifold of classes $K_{1}-K_{7}$ can be receved the following theorem.

Theorem 1.12

1) L.C.K- manifold of class K_{0} characterized by identity
$K\left(X_{1}, X_{2}\right) X_{3}-K\left(X_{1}, J X_{2}\right) J X_{3}-K\left(J X_{1}, X_{2}\right) J X_{3}-K\left(J X_{1}, J X_{2}\right) X_{3}-\quad J K\left(X_{1}, X_{2}\right) J X_{3}-J K\left(X_{1}, J X_{2}\right) X_{3}-J K\left(J X_{1}, X_{2}\right) X_{3}$ $+\mathrm{JK}\left(\mathrm{JX} \mathrm{X}_{1}, \mathrm{JX}_{2}\right) \mathrm{JX} \mathrm{X}_{3}=0$,

$$
\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3} \in \mathrm{X}(\mathrm{M}) .
$$

2) L.C.K- manifold of class K_{1} characterized by identity
$K\left(X_{1}, X_{2}\right) X_{3}+K\left(X_{1}, J X_{2}\right) J X_{3}-K\left(J X_{1}, X_{2}\right) J X_{3}+K\left(J X_{1}, J X_{2}\right) X_{3}+J K\left(X_{1}, X_{2}\right) J X_{3}-J K\left(X_{1}, J X_{2}\right) X_{3}-J K\left(J X_{1}, X_{2}\right) X_{3}$ $-\mathrm{JK}\left(\mathrm{JX}_{1}, \mathrm{JX} \mathrm{X}_{2}\right) \mathrm{JX} \mathrm{X}_{3}=0$.

$$
\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3} \in \mathrm{X}(\mathrm{M}) .
$$

3) L. C. K - manifold of class K_{2} characterized by identity

$$
\begin{gathered}
\mathrm{K}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right) \mathrm{X}_{3}-\mathrm{K}\left(\mathrm{X}_{1}, \mathrm{JX}_{2}\right) \mathrm{JX} \mathrm{X}_{3}+\mathrm{K}\left(\mathrm{JX} \mathrm{X}_{1}, \mathrm{X}_{2}\right) \mathrm{JX} \mathrm{X}_{3}+\mathrm{K}\left(\mathrm{~J} \mathrm{X}_{1}, \mathrm{JX}_{2}\right) \mathrm{X}_{3}- \\
+\mathrm{JK}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right) \mathrm{JX} \mathrm{X}_{3}-\mathrm{JK}\left(\mathrm{X}_{1}, \mathrm{JX} \mathrm{X}_{2}\right) \mathrm{X}_{3} \\
\left.+\mathrm{JX} \mathrm{X}_{1}, \mathrm{X}_{2}\right) \mathrm{X}_{3}-\mathrm{JK}\left(\mathrm{JX}_{1}, \mathrm{JX} 2\right) \mathrm{JX} \mathrm{X}_{3}=0 . \\
\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3} \in \mathrm{X}(\mathrm{M}) .
\end{gathered}
$$

4) L. C. $\mathrm{K}-$ manifold of class K_{3} characterized by identity

$$
\begin{aligned}
& K\left(X_{1}, X_{2}\right) X_{3}+K\left(X_{1}, J X_{2}\right) J X_{3}+K\left(J X_{1}, X_{2}\right) J X_{3}-K\left(J X_{1}, J X_{2}\right) X_{3}-J K\left(X_{1}, X_{2}\right) J X_{3}+J K\left(X_{1}, J X_{2}\right) X_{3} \\
& +\mathrm{JK}\left(\mathrm{JX}_{1}, \mathrm{X}_{2}\right) \mathrm{X}_{3}+\mathrm{JK}\left(\mathrm{JX}_{1}, \mathrm{JX}_{2}\right) \mathrm{JX} \mathrm{X}_{3}=0 . \\
& \mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3} \in \mathrm{X}(\mathrm{M}) .
\end{aligned}
$$

5) L.C.K- manifold of class K_{4} characterized by identity

$$
\begin{gathered}
\mathrm{K}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right) \mathrm{X}_{3}+\mathrm{K}\left(\mathrm{X}_{1}, \mathrm{JX}_{2}\right) \mathrm{JX} \mathrm{X}_{3}+\mathrm{K}\left(\mathrm{JX}, \mathrm{X}_{2}\right) \mathrm{JX} \mathrm{X}_{3}-\mathrm{K}\left(\mathrm{~J} \mathrm{X}_{1}, \mathrm{JX} \mathrm{X}_{2}\right) \mathrm{X}_{3}+\mathrm{JK}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right) \mathrm{JX} \mathrm{X}_{3}-\mathrm{JK}\left(\mathrm{X}_{1}, \mathrm{JX} \mathrm{X}_{2}\right) \mathrm{X}_{3}-\mathrm{JK}\left(\mathrm{JX}, \mathrm{X}_{2}\right) \mathrm{X}_{3} \\
-\mathrm{JK}\left(\mathrm{JX} \mathrm{X}_{1}, \mathrm{JX} \mathrm{X}_{2}\right) \mathrm{JX} \mathrm{X}_{3}=0 .
\end{gathered}
$$

$X_{1}, X_{2}, X_{3} \in X(M)$.
6) L.C.K- manifold of class K_{5} characterized by identity
$K\left(X_{1}, X_{2}\right) X_{3}-K\left(X_{1}, J X_{2}\right) J X_{3}+K\left(J X_{1}, X_{2}\right) J X_{3}+K\left(J X_{1}, J X_{2}\right) X_{3}+J K\left(X_{1}, X_{2}\right) J X_{3}+J K\left(X_{1}, J X_{2}\right) X_{3}-J K\left(J X_{1}, X_{2}\right) X_{3}$ $+\mathrm{JK}\left(\mathrm{JX} \mathrm{X}_{1}, \mathrm{JX} \mathrm{X}_{2}\right) \mathrm{JX} 3=0$.

$$
X_{1}, X_{2}, X_{3} \in X(M) .
$$

7) L.C. K - manifold of class K_{6} characterized by identity

$$
\begin{gathered}
\mathrm{K}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right) \mathrm{X}_{3}+\mathrm{K}\left(\mathrm{X}_{1}, \mathrm{JX}_{2}\right) \mathrm{JX} \mathrm{X}_{3}-\mathrm{K}\left(\mathrm{JX}, \mathrm{X}_{2}\right) \mathrm{JX} \mathrm{X}_{3}+\mathrm{K}\left(\mathrm{~J} \mathrm{X}_{1}, \mathrm{JX} \mathrm{X}_{2}\right) \mathrm{X}_{3}+\mathrm{JK}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right) \mathrm{JX} \mathrm{X}_{3}-\mathrm{JK}\left(\mathrm{X}_{1}, \mathrm{JX} \mathrm{X}_{2}\right) \mathrm{X}_{3} \\
+\mathrm{JK}\left(J \mathrm{X}_{1}, \mathrm{X}_{2}\right) \mathrm{X}_{3}+\mathrm{JK}\left(\mathrm{JX} \mathrm{X}_{1}, \mathrm{JX} \mathrm{X}_{2}\right) \mathrm{JX}=0 . \\
\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3} \in \mathrm{X}(\mathrm{M}) .
\end{gathered}
$$

8) L. C. K - manifold of class K_{7} characterized by identity

$$
\begin{gathered}
\mathrm{K}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right) \mathrm{X}_{3}-\mathrm{K}\left(\mathrm{X}_{1}, \mathrm{JX}_{2}\right) \mathrm{JX} \mathrm{X}_{3}-\mathrm{K}\left(\mathrm{JX} X_{1}, \mathrm{X}_{2}\right) \mathrm{JX} \mathrm{X}_{3}-\mathrm{K}\left(\mathrm{~J} \mathrm{X}_{1}, \mathrm{JX} \mathrm{X}_{2}\right) \mathrm{X}_{3}+\mathrm{JK}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right) \mathrm{JX} \mathrm{X}_{3}+\mathrm{JK}\left(\mathrm{X}_{1}, \mathrm{JX} \mathrm{X}_{2}\right) \mathrm{X}_{3} \\
+\mathrm{JK}\left(\mathrm{JX} X_{1}, \mathrm{X}_{2}\right) \mathrm{X}_{3}-\mathrm{JK}\left(\mathrm{JX} \mathrm{X}_{1}, \mathrm{JX} \mathrm{X}_{2}\right) \mathrm{JX}=0 . \\
\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3} \in \mathrm{X}(\mathrm{M}) .
\end{gathered}
$$

Theorem 1.13

The following inclusion relation has been found:
i) $K_{0}=K_{3}$, ii) $K_{1}=K_{2}$, iii) $K_{4}=K_{7}$, iiii) $K_{5}=K_{6}$

Prove: - We shall prove (i)
$\mathrm{K}_{0}=\mathrm{K}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right) \mathrm{X}_{3}-\mathrm{K}\left(\mathrm{X}_{1}, \mathrm{JX}_{2}\right) \mathrm{JX} \mathrm{X}_{3}-\mathrm{K}\left(\mathrm{JX}_{1}, \mathrm{X}_{2}\right) \mathrm{JX} \mathrm{X}_{3}-\mathrm{K}\left(\mathrm{J} \mathrm{X}_{1}, \mathrm{JX}_{2}\right) \mathrm{X}_{3}-\quad \mathrm{JK}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right) \mathrm{JX} \mathrm{X}_{3}-\mathrm{JK}\left(\mathrm{X}_{1}, \mathrm{JX} \mathrm{X}_{2}\right) \mathrm{X}_{3}-$
$\mathrm{JK}\left(\mathrm{JX}_{1}, \mathrm{X}_{2}\right) \mathrm{X}_{3}+\mathrm{JK}\left(\mathrm{JX}_{1}, \mathrm{JX}_{2}\right) \mathrm{JX}$

$$
\begin{align*}
& \mathrm{K}_{0}=\mathrm{K}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right) \mathrm{X}_{3}-\mathrm{K}\left(\mathrm{X}_{1},-\sqrt{-1} \mathrm{~J} \mathrm{X}_{2}\right)(-\sqrt{-1}) \mathrm{J} \mathrm{X}_{3}-\mathrm{K}\left(-\sqrt{-1} \mathrm{~J} \mathrm{X}_{1}, \mathrm{X}_{2}\right)(-\sqrt{-1}) \mathrm{J} \mathrm{X}_{3}-\mathrm{K}\left(-\sqrt{-1} \mathrm{~J} \mathrm{X}_{1},-\sqrt{-1} \mathrm{~J} \mathrm{X}_{2}\right) \mathrm{X}_{3} \\
& -(-\sqrt{-1}) \mathrm{JK}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right)(-\sqrt{-1}) \mathrm{J} \mathrm{X}_{3}-(-\sqrt{-1}) \mathrm{JK}\left(\mathrm{X}_{1},-\sqrt{-1} \mathrm{~J} \mathrm{X}_{2}\right) \mathrm{X}_{3}-(-\sqrt{-1}) \mathrm{JK}\left(-\sqrt{-1} \mathrm{~J} \mathrm{X}_{1}, \mathrm{X}_{2}\right) \mathrm{X}_{3} \\
& +(-\sqrt{-1}) J K\left(-\sqrt{-1} J X_{1},-\sqrt{-1} J X_{2}\right)(-\sqrt{-1}) J X_{3} \\
& \mathrm{~K}_{0}=\mathrm{K}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right) \mathrm{X}_{3}+\mathrm{K}\left(\mathrm{X}_{1}, \mathrm{JX} \mathrm{X}_{2}\right) \mathrm{JX} \mathrm{X}_{3}+\mathrm{K}\left(\mathrm{JX} \mathrm{X}_{1}, \mathrm{X}_{2}\right) \mathrm{JX} \mathrm{X}_{3}-\mathrm{K}\left(\mathrm{~J} \mathrm{X}_{1}, \mathrm{JX} \mathrm{X}_{2}\right) \mathrm{X}_{3}-\mathrm{JK}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right) \mathrm{JX} \mathrm{X}_{3}+\mathrm{JK}\left(\mathrm{X}_{1}, \mathrm{JX} \mathrm{X}_{2}\right) \mathrm{X}_{3}+ \\
& \mathrm{JK}\left(\mathrm{JX} \mathrm{X}_{1}, \mathrm{X}_{2}\right) \mathrm{X}_{3}+\mathrm{JK}\left(\mathrm{JX} \mathrm{X}_{1}, \mathrm{JX}_{2}\right) \mathrm{JX} \mathrm{X}_{3} \tag{2}\\
& \text { From (1) and (2) we get }
\end{align*}
$$

$$
\begin{equation*}
\mathrm{K}_{0}=\mathrm{K}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right) \mathrm{X}_{3}-\mathrm{K}\left(\mathrm{~J} \mathrm{X}_{1}, \mathrm{JX} X_{2}\right) \mathrm{X}_{3}-\mathrm{JK}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right) \mathrm{JX} X_{3}+\mathrm{JK}\left(J \mathrm{JX}_{1}, \mathrm{JX} 2\right) \mathrm{JX} X_{3} \tag{3}
\end{equation*}
$$

$\mathrm{K}_{3}=\mathrm{K}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right) \mathrm{X}_{3}+\mathrm{K}\left(\mathrm{X}_{1}, \mathrm{JX}_{2}\right) \mathrm{JX} \mathrm{X}_{3}+\mathrm{K}\left(\mathrm{JX}, \mathrm{X}_{2}\right) \mathrm{JX} \mathrm{X}_{3}-\mathrm{K}\left(\mathrm{J} \mathrm{X}_{1}, \mathrm{JX}_{2}\right) \mathrm{X}_{3}-\mathrm{JK}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right) \mathrm{JX} \mathrm{X}_{3}+\mathrm{JK}\left(\mathrm{X}_{1}, \mathrm{JX} \mathrm{X}_{2}\right) \mathrm{X}_{3}+$
$\mathrm{JK}\left(\mathrm{JX}_{1}, \mathrm{X}_{2}\right) \mathrm{X}_{3}+\mathrm{JK}\left(\mathrm{JX}_{1}, \mathrm{JX} 2\right) \mathrm{JX} \mathrm{X}_{3}$

$$
\begin{align*}
\mathrm{K}_{3}=\mathrm{K}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right) \mathrm{X}_{3} & +\mathrm{K}\left(\mathrm{X}_{1},-\sqrt{-1} J \mathrm{X}_{2}\right)(-\sqrt{-1}) \mathrm{J} \mathrm{X}_{3}+\mathrm{K}\left(-\sqrt{-1} J \mathrm{X}_{1}, \mathrm{X}_{2}\right)(-\sqrt{-1}) \mathrm{J} \mathrm{X}_{3}-\mathrm{K}\left(-\sqrt{-1} J \mathrm{X}_{1},-\sqrt{-1} J \mathrm{X}_{2}\right) \mathrm{X}_{3} \tag{4}\\
& -(-\sqrt{-1}) \mathrm{JK}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right)(-\sqrt{-1}) \mathrm{J} X_{3}+(-\sqrt{-1}) \mathrm{JK}\left(\mathrm{X}_{1},-\sqrt{-1} J \mathrm{X}_{2}\right) \mathrm{X}_{3}+(-\sqrt{-1}) \mathrm{JK}\left(-\sqrt{-1} J \mathrm{X}_{1}, \mathrm{X}_{2}\right) \mathrm{X}_{3} \\
& +(-\sqrt{-1}) \mathrm{JK}\left(-\sqrt{-1} J \mathrm{X}_{1},-\sqrt{-1} J X_{2}\right)(-\sqrt{-1}) \mathrm{J} X_{3}
\end{align*}
$$

$\mathrm{K}_{3}=$
$\mathrm{K}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right) \mathrm{X}_{3}-\mathrm{K}\left(\mathrm{X}_{1}, \mathrm{JX} \mathrm{X}_{2}\right) \mathrm{JX} \mathrm{X}_{3}-\mathrm{K}\left(\mathrm{JX} \mathrm{X}_{1}, \mathrm{X}_{2}\right) \mathrm{J} \mathrm{X}_{3}-\mathrm{K}\left(\mathrm{J} \mathrm{X}_{1}, \mathrm{JX} \mathrm{X}_{2}\right) \mathrm{X}_{3}-\mathrm{JK}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right) \mathrm{JX} \mathrm{X}_{3}-\mathrm{JK}\left(\mathrm{X}_{1}, \mathrm{JX} \mathrm{X}_{2}\right) \mathrm{X}_{3}-\mathrm{JK}\left(\mathrm{JX}, \mathrm{X}_{2}\right) \mathrm{X}_{3}+$ $\mathrm{JK}\left(\mathrm{JX}_{1}, \mathrm{JX} \mathrm{X}_{2}\right) \mathrm{JX} \mathrm{X}_{3}$
From (4) and (5) we get
$\mathrm{K}_{3}=\mathrm{K}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right) \mathrm{X}_{3}-\mathrm{K}\left(\mathrm{J} \mathrm{X}_{1}, \mathrm{JX} \mathrm{X}_{2}\right) \mathrm{X}_{3}-\mathrm{JK}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right) \mathrm{JX} \mathrm{X}_{3}+\mathrm{JK}\left(\mathrm{JX} \mathrm{X}_{1}, \mathrm{JX}_{2}\right) \mathrm{JX} \mathrm{X}_{3}$
From (3) and (6) we get $K_{0}=K_{3}$
Now we shall prove (ii)
$\mathrm{K}_{1}=$
$K\left(X_{1}, X_{2}\right) X_{3}+K\left(X_{1}, J X_{2}\right) J X_{3}-K\left(J X_{1}, X_{2}\right) J X_{3}+K\left(J X_{1}, J X_{2}\right) X_{3}+J K\left(X_{1}, X_{2}\right) J X_{3}-J K\left(X_{1}, J X_{2}\right) X_{3}-J K\left(J X_{1}, X_{2}\right) X_{3}-$ $\mathrm{JK}\left(\mathrm{JX}_{1}, \mathrm{JX} \mathrm{X}_{2}\right) \mathrm{JX} \mathrm{X}_{3}$
$\mathrm{K}_{1}=\mathrm{K}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right) \mathrm{X}_{3}+\mathrm{K}\left(\mathrm{X}_{1},-\sqrt{-1} \mathrm{~J} \mathrm{X}_{2}\right)(-\sqrt{-1}) \mathrm{J} \mathrm{X}_{3}-\mathrm{K}\left(-\sqrt{-1} \mathrm{~J}_{1}, \mathrm{X}_{2}\right)(-\sqrt{-1}) \mathrm{J} \mathrm{X}_{3}+\mathrm{K}\left(-\sqrt{-1} \mathrm{~J} \mathrm{X}_{1},-\sqrt{-1} \mathrm{~J} \mathrm{X}_{2}\right) \mathrm{X}_{3}$ $+(-\sqrt{-1}) J K\left(X_{1}, X_{2}\right)(-\sqrt{-1}) J X_{3}-(-\sqrt{-1}) J K\left(X_{1},-\sqrt{-1} J X_{2}\right) X_{3}-(-\sqrt{-1}) J K\left(-\sqrt{-1} J X_{1}, X_{2}\right) X_{3}$ $-(-\sqrt{-1}) J K\left(-\sqrt{-1} J X_{1},-\sqrt{-1} J X_{2}\right)(-\sqrt{-1}) J X_{3}$
$\mathrm{K}_{1}=$
$K\left(X_{1}, X_{2}\right) X_{3}-K\left(X_{1}, J X_{2}\right) J X_{3}+K\left(J X_{1}, X_{2}\right) J X_{3}+K\left(J X_{1}, J X_{2}\right) X_{3}+J K\left(X_{1}, X_{2}\right) J X_{3}+J K\left(X_{1}, J X_{2}\right) X_{3}+J K\left(J X_{1}, X_{2}\right) X_{3}-$
$\mathrm{JK}\left(\mathrm{JX} \mathrm{X}_{1}, \mathrm{JX} \mathrm{X}_{2}\right) \mathrm{JX} 3$
From (7) and (8) we get

$$
\begin{equation*}
\mathrm{K}_{1}=\mathrm{K}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right) \mathrm{X}_{3}+\mathrm{K}\left(\mathrm{~J} \mathrm{X}_{1}, \mathrm{JX} \mathrm{X}_{2}\right) \mathrm{X}_{3}-\mathrm{JK}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right) \mathrm{JX} X_{3}-\mathrm{JK}\left(\mathrm{JX} X_{1}, J X_{2}\right) \mathrm{JX} X_{3} \tag{9}
\end{equation*}
$$

$\mathrm{K}_{2}=\mathrm{K}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right) \mathrm{X}_{3}-\mathrm{K}\left(\mathrm{X}_{1}, \mathrm{JX} \mathrm{X}_{2}\right) \mathrm{J} \mathrm{X}_{3}+\mathrm{K}\left(\mathrm{JX}, \mathrm{X}_{2}\right) \mathrm{JX} \mathrm{X}_{3}+\mathrm{K}\left(\mathrm{J} \mathrm{X}_{1}, \mathrm{JX}_{2}\right) \mathrm{X}_{3}-\mathrm{JK}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right) \mathrm{JX} \mathrm{X}_{3}-\mathrm{JK}\left(\mathrm{X}_{1}, \mathrm{JX} X_{2}\right) \mathrm{X}_{3}+$ $\mathrm{JK}\left(\mathrm{JX} \mathrm{X}_{1}, \mathrm{X}_{2}\right) \mathrm{X}_{3}-\mathrm{JK}\left(\mathrm{JX} \mathrm{X}_{1}, \mathrm{JX} \mathrm{X}_{2}\right) \mathrm{JX} \mathrm{X}_{3}$
$K_{2}=K\left(X_{1}, X_{2}\right) X_{3}-K\left(X_{1},-\sqrt{-1} J X_{2}\right)(-\sqrt{-1}) J X_{3}+K\left(-\sqrt{-1} J X_{1},-\sqrt{-1} X_{2}\right)(-\sqrt{-1}) J X_{3}$

$$
\begin{align*}
& +K\left(-\sqrt{-1} J X_{1},-\sqrt{-1} J X_{2}\right) X_{3}-(-\sqrt{-1}) J K\left(X_{1}, X_{2}\right)(-\sqrt{-1}) J X_{3}-(-\sqrt{-1}) J K\left(X_{1},-\sqrt{-1} J X_{2}\right) X_{3} \tag{10}\\
& +(-\sqrt{-1}) J K\left(-\sqrt{-1} J X_{1}, X_{2}\right) X_{3}-(-\sqrt{-1}) J K\left(-\sqrt{-1} J X_{1},-\sqrt{-1} J X_{2}\right)(-\sqrt{-1}) J X_{3} \tag{11}
\end{align*}
$$

$\mathrm{K}_{2}=\mathrm{K}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right) \mathrm{X}_{3}+\mathrm{K}\left(\mathrm{X}_{1}, \mathrm{JX} 2\right) \mathrm{JX} \mathrm{X}_{3}-\mathrm{K}\left(\mathrm{JX} \mathrm{X}_{1}, \mathrm{X}_{2}\right) \mathrm{JX} \mathrm{X}_{3}+\mathrm{K}\left(\mathrm{J} \mathrm{X}_{1}, \mathrm{JX}_{2}\right) \mathrm{X}_{3}-\mathrm{JK}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right) \mathrm{JX} \mathrm{X}_{3}+\mathrm{JK}\left(\mathrm{X}_{1}, J \mathrm{X}_{2}\right) \mathrm{X}_{3}-$ $\mathrm{JK}\left(\mathrm{JX}_{1}, \mathrm{X}_{2}\right) \mathrm{X}_{3}-\mathrm{JK}\left(\mathrm{JX}_{1}, \mathrm{JX}_{2}\right) \mathrm{JX} \mathrm{X}_{3}$
From (10) and (11) we get

$$
\begin{equation*}
\mathrm{K}_{2}=\mathrm{K}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right) \mathrm{X}_{3}+\mathrm{K}\left(\mathrm{~J} \mathrm{X}_{1}, \mathrm{~J} \mathrm{X}_{2}\right) \mathrm{X}_{3}-\mathrm{JK}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right) \mathrm{J} \mathrm{X}_{3}-\mathrm{JK}\left(\mathrm{JX} \mathrm{X}_{1}, \mathrm{JX}_{2}\right) \mathrm{JX} \mathrm{X}_{3} \tag{12}
\end{equation*}
$$

From (9) and (12) we get $K_{1}=K_{2}$
Now we shall prove (iii)
$\mathrm{K}_{4}=\mathrm{K}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right) \mathrm{X}_{3}+\mathrm{K}\left(\mathrm{X}_{1}, \mathrm{JX}_{2}\right) \mathrm{JX} \mathrm{X}_{3}+\mathrm{K}\left(\mathrm{JX}, \mathrm{X}_{2}\right) \mathrm{JX} \mathrm{X}_{3}-\mathrm{K}\left(\mathrm{J} \mathrm{X}_{1}, \mathrm{JX} \mathrm{X}_{2}\right) \mathrm{X}_{3}+\mathrm{JK}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right) \mathrm{JX} \mathrm{X}_{3}-\mathrm{JK}\left(\mathrm{X}_{1}, \mathrm{JX} \mathrm{X}_{2}\right) \mathrm{X}_{3}-$ $\mathrm{JK}\left(\mathrm{JX} \mathrm{X}_{1}, \mathrm{X}_{2}\right) \mathrm{X}_{3}-\mathrm{JK}\left(\mathrm{JX} \mathrm{X}_{1}, \mathrm{JX}_{2}\right) \mathrm{JX} \mathrm{X}_{3}$

$$
\begin{align*}
\mathrm{K}_{4}=\mathrm{K}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right) \mathrm{X}_{3} & +\mathrm{K}\left(\mathrm{X}_{1},-\sqrt{-1} \mathrm{~J} \mathrm{X}_{2}\right)(-\sqrt{-1}) \mathrm{J} \mathrm{X}_{3}+\mathrm{K}\left(-\sqrt{-1} J \mathrm{X}_{1}, \mathrm{X}_{2}\right)(-\sqrt{-1}) \mathrm{J} \mathrm{X}_{3}-\mathrm{K}\left(-\sqrt{-1} \mathrm{~J} \mathrm{X}_{1},-\sqrt{-1} J \mathrm{X}_{2}\right) \mathrm{X}_{3} \tag{13}\\
& +(-\sqrt{-1}) \mathrm{JK}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right)(-\sqrt{-1}) \mathrm{JX} X_{3}-(-\sqrt{-1}) \mathrm{JK}\left(\mathrm{X}_{1},-\sqrt{-1} J \mathrm{X}_{2}\right) \mathrm{X}_{3}-(-\sqrt{-1}) \mathrm{JK}\left(-\sqrt{-1} J \mathrm{X}_{1}, \mathrm{X}_{2}\right) \mathrm{X}_{3} \\
& -(-\sqrt{-1}) \mathrm{JK}\left(-\sqrt{-1} J \mathrm{X}_{1},-\sqrt{-1} J \mathrm{X}_{2}\right)(-\sqrt{-1}) \mathrm{JX}
\end{align*}
$$

$\mathrm{K}_{4}=$
$\mathrm{K}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right) \mathrm{X}_{3}-\mathrm{K}\left(\mathrm{X}_{1}, \mathrm{JX} \mathrm{X}_{2}\right) \mathrm{JX} \mathrm{X}_{3}-\mathrm{K}\left(\mathrm{JX} \mathrm{X}_{1}, \mathrm{X}_{2}\right) \mathrm{JX} \mathrm{X}_{3}-\mathrm{K}\left(\mathrm{J} \mathrm{X}_{1}, \mathrm{JX}_{2}\right) \mathrm{X}_{3}+\mathrm{JK}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right) \mathrm{JX} \mathrm{X}_{3}+\mathrm{JK}\left(\mathrm{X}_{1}, \mathrm{JX} \mathrm{X}_{2}\right) \mathrm{X}_{3}+\mathrm{JK}\left(\mathrm{JX} \mathrm{X}_{1}, \mathrm{X}_{2}\right) \mathrm{X}_{3}-$ $\mathrm{JK}\left(\mathrm{JX} \mathrm{X}_{1}, \mathrm{JX} \mathrm{X}_{2}\right) \mathrm{JX} \mathrm{X}_{3}$ (14)

From (13) and (14) we get

$$
\begin{equation*}
\mathrm{K}_{4}=K\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right) \mathrm{X}_{3}-\mathrm{K}\left(\mathrm{~J} \mathrm{X}_{1}, \mathrm{~J} \mathrm{X}_{2}\right) \mathrm{X}_{3}+\mathrm{JK}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right) \mathrm{JX} \mathrm{X}_{3}-\mathrm{JK}\left(\mathrm{JX} \mathrm{X}_{1}, \mathrm{JX} \mathrm{X}_{2}\right) \mathrm{JX} \mathrm{X}_{3} \tag{15}
\end{equation*}
$$

$\mathrm{K}_{7}=\mathrm{K}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right) \mathrm{X}_{3}-\mathrm{K}\left(\mathrm{X}_{1}, \mathrm{JX}_{2}\right) \mathrm{JX} \mathrm{X}_{3}-\mathrm{K}\left(\mathrm{JX}, \mathrm{X}_{2}\right) \mathrm{JX} \mathrm{X}_{3}-\mathrm{K}\left(\mathrm{J} \mathrm{X}_{1}, \mathrm{JX} \mathrm{X}_{2}\right) \mathrm{X}_{3}+\mathrm{JK}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right) \mathrm{JX} \mathrm{X}_{3}+\mathrm{JK}\left(\mathrm{X}_{1}, \mathrm{JX} \mathrm{X}_{2}\right) \mathrm{X}_{3}+$ $\mathrm{JK}\left(\mathrm{JX} \mathrm{X}_{1}, \mathrm{X}_{2}\right) \mathrm{X}_{3}-\mathrm{JK}\left(\mathrm{JX}_{1}, \mathrm{JX} \mathrm{X}_{2}\right) \mathrm{JX} \mathrm{X}_{3}$

$$
\begin{align*}
\mathrm{K}_{7}=\mathrm{K}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right) \mathrm{X}_{3} & -K\left(\mathrm{X}_{1},-\sqrt{-1} J X_{2}\right)(-\sqrt{-1}) J X_{3}-K\left(-\sqrt{-1} J X_{1}, X_{2}\right)(-\sqrt{-1}) J X_{3}-K\left(-\sqrt{-1} J X_{1},-\sqrt{-1} J X_{2}\right) X_{3} \tag{16}\\
& +(-\sqrt{-1}) J K\left(X_{1}, X_{2}\right)(-\sqrt{-1}) J X_{3}+(-\sqrt{-1}) J K\left(X_{1},-\sqrt{-1} J X_{2}\right) X_{3}+(-\sqrt{-1}) J K\left(-\sqrt{-1} J X_{1}, X_{2}\right) X_{3} \\
& -(-\sqrt{-1}) J K\left(-\sqrt{-1} J X_{1},-\sqrt{-1} J X_{2}\right)(-\sqrt{-1}) J X_{3}
\end{align*}
$$

$\mathrm{K}_{7}=\mathrm{K}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right) \mathrm{X}_{3}+\mathrm{K}\left(\mathrm{X}_{1}, \mathrm{JX} \mathrm{X}_{2}\right) \mathrm{JX} \mathrm{X}_{3}+\mathrm{K}\left(\mathrm{JX} \mathrm{X}_{1}, \mathrm{X}_{2}\right) \mathrm{JX} \mathrm{X}_{3}-\mathrm{K}\left(\mathrm{J} \mathrm{X}_{1}, \mathrm{JX} \mathrm{X}_{2}\right) \mathrm{X}_{3}+\mathrm{JK}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right) \mathrm{JX} \mathrm{X}_{3}-\mathrm{JK}\left(\mathrm{X}_{1}, \mathrm{JX} \mathrm{X}_{2}\right) \mathrm{X}_{3}-$ $\mathrm{JK}\left(\mathrm{JX} \mathrm{X}_{1}, \mathrm{X}_{2}\right) \mathrm{X}_{3}-\mathrm{JK}\left(\mathrm{JX}_{1}, \mathrm{JX} \mathrm{X}_{2}\right) \mathrm{JX} \mathrm{X}_{3}$
From (16) and (17) we get

$$
\begin{equation*}
\mathrm{K}_{7}=\mathrm{K}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right) \mathrm{X}_{3}-\mathrm{K}\left(\mathrm{~J} \mathrm{X}_{1}, \mathrm{JX} \mathrm{X}_{2}\right) \mathrm{X}_{3}+\mathrm{JK}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right) \mathrm{JX} X_{3}-\mathrm{JK}\left(\mathrm{JX} \mathrm{X}_{1}, \mathrm{JX} \mathrm{X}_{2}\right) \mathrm{JX} \mathrm{X}_{3} \tag{17}
\end{equation*}
$$

From (15) and (18) we get $K_{4}=K_{7}$
Now we shall prove (iiii)
$\mathrm{K}_{5}=$
$K\left(X_{1}, X_{2}\right) X_{3}-K\left(X_{1}, J X_{2}\right) J X_{3}+K\left(J X_{1}, X_{2}\right) J X_{3}+K\left(J X_{1}, J X_{2}\right) X_{3}+J K\left(X_{1}, X_{2}\right) J X_{3}+J K\left(X_{1}, J X_{2}\right) X_{3}-J K\left(J X_{1}, X_{2}\right) X_{3}+$ $\mathrm{JK}\left(\mathrm{JX}_{1}, \mathrm{JX}_{2}\right) \mathrm{JX} \mathrm{X}_{3}$
$\mathrm{K}_{5}=\mathrm{K}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right) \mathrm{X}_{3}-\mathrm{K}\left(\mathrm{X}_{1},-\sqrt{-1} \mathrm{~J} \mathrm{X}_{2}\right)(-\sqrt{-1}) \mathrm{J} \mathrm{X}_{3}+\mathrm{K}\left(-\sqrt{-1} J \mathrm{X}_{1}, \mathrm{X}_{2}\right)(-\sqrt{-1}) \mathrm{J} \mathrm{X}_{3}+\mathrm{K}\left(-\sqrt{-1} \mathrm{~J} \mathrm{X}_{1},-\sqrt{-1} J \mathrm{X}_{2}\right) \mathrm{X}_{3}$ $+(-\sqrt{-1}) \mathrm{JK}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right)(-\sqrt{-1}) \mathrm{J} \mathrm{X}_{3}+(-\sqrt{-1}) \mathrm{JK}\left(\mathrm{X}_{1},-\sqrt{-1} \mathrm{~J} \mathrm{X}_{2}\right) \mathrm{X}_{3}-(-\sqrt{-1}) \mathrm{JK}\left(-\sqrt{-1} \mathrm{~J} \mathrm{X}_{1}, \mathrm{X}_{2}\right) \mathrm{X}_{3}$ $+(-\sqrt{-1}) \mathrm{K}\left(-\sqrt{-1} J \mathrm{X}_{1},-\sqrt{-1} J \mathrm{X}_{2}\right)(-\sqrt{-1}) \mathrm{JX}_{3}$
$K_{5}=$
$\mathrm{K}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right) \mathrm{X}_{3}+\mathrm{K}\left(\mathrm{X}_{1}, \mathrm{JX}_{2}\right) \mathrm{JX} \mathrm{X}_{3}-\mathrm{K}\left(\mathrm{JX}, \mathrm{X}_{2}\right) \mathrm{JX} \mathrm{X}_{3}+\mathrm{K}\left(\mathrm{J} \mathrm{X}_{1}, \mathrm{JX} \mathrm{X}_{2}\right) \mathrm{X}_{3}+\mathrm{JK}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right) \mathrm{JX} \mathrm{X}_{3}-\mathrm{JK}\left(\mathrm{X}_{1}, \mathrm{JX} \mathrm{X}_{2}\right) \mathrm{X}_{3}+\mathrm{JK}\left(\mathrm{JX} 1, \mathrm{X}_{2}\right) \mathrm{X}_{3}+$ $\mathrm{JK}\left(\mathrm{JX} \mathrm{X}_{1}, \mathrm{JX} \mathrm{X}_{2}\right) \mathrm{JX} 3$
From (19) and (20) we get

$$
\begin{equation*}
\mathrm{K}_{5}=\mathrm{K}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right) \mathrm{X}_{3}+\mathrm{K}\left(\mathrm{~J} \mathrm{X}_{1}, \mathrm{JX} \mathrm{X}_{2}\right) \mathrm{X}_{3}+\mathrm{JK}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right) \mathrm{JX} X_{3}+\mathrm{JK}\left(\mathrm{JX}_{1}, \mathrm{JX}_{2}\right) \mathrm{JX} X_{3} \tag{20}
\end{equation*}
$$

$\mathrm{K}_{6}=\mathrm{K}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right) \mathrm{X}_{3}+\mathrm{K}\left(\mathrm{X}_{1}, \mathrm{JX}_{2}\right) \mathrm{JX} \mathrm{X}_{3}-\mathrm{K}\left(\mathrm{JX}, \mathrm{X}_{2}\right) \mathrm{JX} \mathrm{X}_{3}+\mathrm{K}\left(\mathrm{J} \mathrm{X}_{1}, \mathrm{JX} 2\right) \mathrm{X}_{3}+\mathrm{JK}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right) \mathrm{JX} \mathrm{X}_{3}-\mathrm{JK}\left(\mathrm{X}_{1}, \mathrm{JX} 2\right) \mathrm{X}_{3}+$ $\mathrm{JK}\left(\mathrm{JX} \mathrm{X}_{1}, \mathrm{X}_{2}\right) \mathrm{X}_{3}+\mathrm{JK}\left(\mathrm{JX} \mathrm{X}_{1}, \mathrm{JX} \mathrm{X}_{2}\right) \mathrm{JX} \mathrm{X}_{3}$
$K_{6}=K\left(X_{1}, X_{2}\right) X_{3}+K\left(X_{1},-\sqrt{-1} J X_{2}\right)(-\sqrt{-1}) J X_{3}-K\left(-\sqrt{-1} J X_{1}, X_{2}\right)(-\sqrt{-1}) J X_{3}+K\left(-\sqrt{-1} J X_{1},-\sqrt{-1} J X_{2}\right) X_{3}$

$$
\begin{align*}
& +(-\sqrt{-1}) \mathrm{JK}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right)(-\sqrt{-1}) \mathrm{J} \mathrm{X}_{3}-(-\sqrt{-1}) \mathrm{JK}\left(\mathrm{X}_{1},-\sqrt{-1} J \mathrm{X}_{2}\right) \mathrm{X}_{3}+(-\sqrt{-1}) \mathrm{JK}\left(-\sqrt{-1} \mathrm{JX}_{1}, \mathrm{X}_{2}\right) \mathrm{X}_{3} \tag{22}\\
& +(-\sqrt{-1}) \mathrm{JK}\left(-\sqrt{-1} J \mathrm{X}_{1},-\sqrt{-1} J \mathrm{X}_{2}\right)(-\sqrt{-1}) \mathrm{J} \mathrm{X}_{3} \tag{23}
\end{align*}
$$

$\mathrm{K}_{6}=\mathrm{K}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right) \mathrm{X}_{3}-\mathrm{K}\left(\mathrm{X}_{1}, \mathrm{JX} \mathrm{X}_{2}\right) \mathrm{JX} \mathrm{X}_{3}+\mathrm{K}\left(\mathrm{JX}_{1}, \mathrm{X}_{2}\right) \mathrm{JX} \mathrm{X}_{3}+\mathrm{K}\left(\mathrm{J} \mathrm{X}_{1}, \mathrm{JX} \mathrm{X}_{2}\right) \mathrm{X}_{3}+\mathrm{JK}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right) \mathrm{JX} \mathrm{X}_{3}+\mathrm{JK}\left(\mathrm{X}_{1}, \mathrm{JX} \mathrm{X}_{2}\right) \mathrm{X}_{3}-$
$\mathrm{JK}\left(\mathrm{JX} \mathrm{X}_{1}, \mathrm{X}_{2}\right) \mathrm{X}_{3}+\mathrm{JK}\left(\mathrm{JX} \mathrm{X}_{1}, \mathrm{JX}_{2}\right) \mathrm{J} \mathrm{X}_{3}$
From (22) and (23) we get

$$
\begin{equation*}
\mathrm{K}_{6}=\mathrm{K}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right) \mathrm{X}_{3}+\mathrm{K}\left(\mathrm{~J} \mathrm{X}_{1}, \mathrm{~J} \mathrm{X}_{2}\right) \mathrm{X}_{3}+\mathrm{JK}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right) \mathrm{J} \mathrm{X}_{3}+\mathrm{JK}\left(\mathrm{JX}_{1}, \mathrm{JX}_{2}\right) \mathrm{JX} \mathrm{X}_{3} \tag{24}
\end{equation*}
$$

From (21) and (24) we get $K_{5}=K_{6}$

Definition 1.14

The manifold ($\mathrm{M}, \mathrm{J}, \mathrm{g}$)refers to as manifold of class:

1) $\overline{\mathrm{K}}_{1}$ if $<K\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right) \mathrm{X}_{3}, \mathrm{X}_{4}>=<K\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right) \mathrm{JX} \mathrm{X}_{3}, \mathrm{JX}_{4}>$
2) $\overline{\mathrm{K}}_{2}$ if $<K\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right) \mathrm{X}_{3}, \mathrm{X}_{4}>=<K\left(\mathrm{JX}_{1}, \mathrm{JX}_{2}\right) \mathrm{X}_{3}, \mathrm{X}_{4}>+<K\left(\mathrm{JX}_{1}, \mathrm{X}_{2}\right) J \mathrm{X}_{3}, \mathrm{X}_{4}>+<K\left(\mathrm{JX}_{1}, \mathrm{X}_{2}\right) \mathrm{X}_{3}, \mathrm{JX} 4$
3) $\overline{\mathrm{K}}_{1}$ if $<K\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right) \mathrm{X}_{3}, \mathrm{X}_{4}>=<K\left(\mathrm{JX}_{1}, \mathrm{JX}_{2}\right) J \mathrm{X}_{3}, \mathrm{JX}_{4}>$

Theorem 1.15

Let $S=(\mathrm{J}, \mathrm{g}=<,>)$ is $\mathrm{L}, \mathrm{C}, \mathrm{K}$,then the following statement are equivalent:

1) S-structure of class \bar{K}_{3}.
2) $K_{7}=0$.
3) On space of the adjointG -structure identities $K_{\widehat{b} \hat{c} \widehat{d}}^{\mathrm{a}}=0$ are fair.

Prove
Let S-structure of class $\overline{\mathrm{K}}_{3}$. Obviously it is equivalent to identity
$\mathrm{K}\left(\varepsilon_{\mathrm{a}}, \varepsilon_{\mathrm{b}}\right) \varepsilon_{\mathrm{c}}+\mathrm{JK}\left(\mathrm{J} \varepsilon_{\mathrm{a}}, \mathrm{J} \varepsilon_{\mathrm{b}}\right) \mathrm{J} \varepsilon_{\mathrm{c}}=0 ; \varepsilon_{\mathrm{a}}, \varepsilon_{\mathrm{b}}, \varepsilon_{\mathrm{c}} \in \mathrm{X}(\mathrm{M})$, By definition of a spectrum tensor

$$
\begin{aligned}
& K\left(\varepsilon_{\mathrm{a}}, \varepsilon_{\mathrm{b}}\right) \varepsilon_{\mathrm{c}}=\mathrm{K}_{0}\left(\varepsilon_{\mathrm{a}}, \varepsilon_{\mathrm{b}}\right) \varepsilon_{\mathrm{c}}+\mathrm{K}_{1}\left(\varepsilon_{\mathrm{a}}, \varepsilon_{\mathrm{b}}\right) \varepsilon_{\mathrm{c}}+\mathrm{K}_{2}\left(\varepsilon_{\mathrm{a}}, \varepsilon_{\mathrm{b}}\right) \varepsilon_{\mathrm{c}}+\mathrm{K}_{3}\left(\varepsilon_{\mathrm{a}}, \varepsilon_{\mathrm{b}}\right) \varepsilon_{\mathrm{c}}+\mathrm{K}_{4}\left(\varepsilon_{\mathrm{a}}, \varepsilon_{\mathrm{b}}\right) \varepsilon_{\mathrm{c}}+\mathrm{K}_{5}\left(\varepsilon_{\mathrm{a}}, \varepsilon_{\mathrm{b}}\right) \varepsilon_{\mathrm{c}}+\mathrm{K}_{6}\left(\varepsilon_{\mathrm{a}}, \varepsilon_{\mathrm{b}}\right) \varepsilon_{\mathrm{c}} \\
& +\mathrm{K}_{7}\left(\varepsilon_{\mathrm{a}}, \varepsilon_{\mathrm{b}}\right) \varepsilon_{\mathrm{c}} ; \varepsilon_{\mathrm{a}}, \varepsilon_{\mathrm{b}} \varepsilon_{\mathrm{c}} \in \mathrm{X}(\mathrm{M}) \\
& \mathrm{JK}\left(\mathrm{~J} \varepsilon_{\mathrm{a}}, \mathrm{~J} \varepsilon_{\mathrm{b}}\right) J \varepsilon_{\mathrm{c}}=\mathrm{JK} \mathrm{~K}_{0}\left(\mathrm{~J} \varepsilon_{\mathrm{a}}, \mathrm{~J} \varepsilon_{\mathrm{b}}\right) J \varepsilon_{\mathrm{c}}+\mathrm{JK}\left(\mathrm{~J} \varepsilon_{\mathrm{a}}, \mathrm{~J} \varepsilon_{\mathrm{b}}\right) \mathrm{J} \varepsilon_{\mathrm{c}}+\mathrm{JK} \mathrm{~K}_{2}\left(\mathrm{~J} \varepsilon_{\mathrm{a}}, \mathrm{~J} \varepsilon_{\mathrm{b}}\right) \mathrm{J} \varepsilon_{\mathrm{c}}+\mathrm{JK} \mathrm{~K}_{3}\left(\mathrm{~J} \varepsilon_{\mathrm{a}}, \mathrm{~J} \varepsilon_{\mathrm{b}}\right) \mathrm{J} \varepsilon_{\mathrm{c}}+\mathrm{JK} \mathrm{~K}_{4}\left(\mathrm{~J} \varepsilon_{\mathrm{a}}, \mathrm{~J} \varepsilon_{\mathrm{b}}\right) \mathrm{J} \varepsilon_{\mathrm{c}} \\
& +\mathrm{JK} \mathrm{~K}_{5}\left(\mathrm{~J} \varepsilon_{\mathrm{a}}, \mathrm{~J} \varepsilon_{\mathrm{b}}\right) \mathrm{J} \varepsilon_{\mathrm{c}}+\mathrm{JK} \mathrm{~K}_{6}\left(\mathrm{~J} \varepsilon_{\mathrm{a}}, \mathrm{~J} \varepsilon_{\mathrm{b}}\right) \mathrm{J} \varepsilon_{\mathrm{c}}+\mathrm{JK} 7\left(\mathrm{~J} \varepsilon_{\mathrm{a}}, \mathrm{~J} \varepsilon_{\mathrm{b}}\right) \mathrm{J} \varepsilon_{\mathrm{c}} \\
& =\mathrm{K}_{0}\left(\varepsilon_{\mathrm{a}}, \varepsilon_{\mathrm{b}}\right) \varepsilon_{\mathrm{c}}-\mathrm{K}_{1}\left(\varepsilon_{\mathrm{a}}, \varepsilon_{\mathrm{b}}\right) \varepsilon_{\mathrm{c}}-\mathrm{K}_{2}\left(\varepsilon_{\mathrm{a}}, \varepsilon_{\mathrm{b}}\right) \varepsilon_{\mathrm{c}}+\mathrm{K}_{3}\left(\varepsilon_{\mathrm{a}}, \varepsilon_{\mathrm{b}}\right) \varepsilon_{\mathrm{c}}-\mathrm{K}_{4}\left(\varepsilon_{\mathrm{a}}, \varepsilon_{\mathrm{b}}\right) \varepsilon_{\mathrm{c}}+\mathrm{K}_{5}\left(\varepsilon_{\mathrm{a}}, \varepsilon_{\mathrm{b}}\right) \varepsilon_{\mathrm{c}} \\
& +K_{6}\left(\varepsilon_{\mathrm{a}}, \varepsilon_{\mathrm{b}}\right) \varepsilon_{\mathrm{c}}-\mathrm{K}_{7}\left(\varepsilon_{\mathrm{a}}, \varepsilon_{\mathrm{b}}\right) \varepsilon_{\mathrm{c}}
\end{aligned}
$$

The identity $\mathrm{K}\left(\varepsilon_{\mathrm{a}}, \varepsilon_{\mathrm{b}}\right) \varepsilon_{\mathrm{c}}+\mathrm{JK}\left(\mathrm{J} \varepsilon_{\mathrm{a}}, \mathrm{J} \varepsilon_{\mathrm{b}}\right) \mathrm{J} \varepsilon_{\mathrm{c}}=0$ is equivalent to that

$$
\mathrm{K}_{7}\left(\varepsilon_{\mathrm{a}}, \varepsilon_{\mathrm{b}}\right) \varepsilon_{\mathrm{c}}+\mathrm{K}_{4}\left(\varepsilon_{\mathrm{a}}, \varepsilon_{\mathrm{b}}\right) \varepsilon_{\mathrm{c}}+\mathrm{K}_{5}\left(\varepsilon_{\mathrm{a}}, \varepsilon_{\mathrm{b}}\right) \varepsilon_{\mathrm{c}}+\mathrm{K}_{6}\left(\varepsilon_{\mathrm{a}}, \varepsilon_{\mathrm{b}}\right) \varepsilon_{\mathrm{c}}=0
$$

And this identity is equivalent to $\mathrm{K}_{7}=0$
By virtue of materiality tensor K and its properties $(1.10 ; 4)$ received relation which are equivalent to relations $K_{\hat{b} \hat{c} \widehat{d}}^{\mathrm{a}}=0$;
i.e. identity $\mathrm{K}_{7}\left(\varepsilon_{\mathrm{a}}, \varepsilon_{\mathrm{b}}\right) \varepsilon_{\mathrm{c}}=0$.

The opposite, according to $\mathrm{K}\left(\varepsilon_{\mathrm{a}}, \varepsilon_{\mathrm{b}}\right) \varepsilon_{\mathrm{c}}+\mathrm{JK}\left(\mathrm{J} \varepsilon_{\mathrm{a}}, \mathrm{J} \varepsilon_{\mathrm{b}}\right) \mathrm{J} \varepsilon_{\mathrm{c}}=0$, obviously.

REFERENCES

1. Rachevski P.K. "Riemmanian geometry and tensor analysis" M. Nauka.1964.
2. Gray A, Hervella LM. The sixteen classes of almost Hermitian manifolds and their linear invariants. Annali di Matematica pura ed applicata. 1980 Dec 1;123(1):35-58.
3. Banaru M. A new characterization of the Gray Hervella classes of almost Hermitian manifold. In8th International conference on differential geometry and its applications 2001 Aug 27 (pp. 27-31).
4. Rakees HA. "Locally conformal Kahler manifold of class" 3 R M. Sc.thesis. University of Basrah, College of Science. 2004.
5. Mohammed NJ. "On some Classes of Almost Hermitian Manifold" University of Basrah, College of Science. 2009.
6. Kirichenko VF. K-spaces of constant type. Siberian Mathematical Journal. 1976 Mar 1;17(2):220-5.
