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Abstract: In this paper, we consider the existence of time periodic solutions of the
*Corresponding author | modified Swift-Hohenberg equation. We used the Galerkin method. Firstly, by Leray-

Wei Luo Schauder fixed point theorem, we show the existence of approximate solutions of the
modified Swift-Hohenberg equation, then we show the convergence of the approximate
Article History solutions, and we also get the uniqueness of the solution to the modified equation.
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In this paper we concerned the existence and uniqueness of time periodic

DOI: solutions for the modified Swift-Hohenberg equation
10.21276/sjpms.2018.5.4.8 | u, + A’u+2Au+au +b|[Vu|® +u’ = g(x,1), (x,t)e Q xR, (1.1)
" u(x,t) = Au(x,t) =0, xeoQ, (1.2)
E 'I']E Where o is an open connected bounded domain in R® with smooth boundarysq , a
ﬁ and b are arbitrary constant, g is an external forcing term.
%

The system is the usual Swift-Hohenberg equation if b=0, g =0 in (1.1).

E Refer literature [1], we know the Swift-Hohenberg equation was introduced by Swift J.
B. and Hohenberg P. C. in 1977 when they studied the convective hydrodynamics and
viscous film flow.

In 2003, Peletier L. A. and Rottschafer in [8] researched the large time behaviour of solutions of the Swift-
Hohenberg equation. In the same year, Zhou Hua and Tang Jian in [6] proved some properties and structures of solutions
of the Swift-Hohenberg equation. In 2007, Wang Yanping in [5] proved the time-periodic solution for a generalized
Swift-Hohenberg model equation; however, the modified Swift-Hohenberg equation does not satisfy its conditions. In
2009, Polat M. in [9] proved the global attractor for the modified Swift-Hohenberg equation. In 2014, Sun H. P. and Jong
Y. P. in [8] researched pullback attractor for the non-autonomous modified Swift-Hohenberg equation. In 2017, Wang Z.
and Du X. in [4] proved the pullback attractors for modified Swift-Hohenberg equation on unbounded domains with non-
autonomous deterministic and stochastic forcing terms.

In present paper, the problems we have considered are as follows. Let the given external forces g(x,t) be
periodic in t with the period T, and then we try to prove the existence and uniqueness of periodic solutions u of the
modified Swift-Hohenberg equation with the same period T,

u(x,t+T) =u(x,t) (1.3)
under the critical smallness assumption,i.e.,
K = sup "g(x,t)

Our main results are Theorem 5.1 and Theorem 5.2. To prove the time periodic solutions of the modified Swift-
Hohenberg equation, we use the well-known Galerkin method which used to prove the existence of time periodic
solutions and weak solutions for many systems, such as Navier-Stokes equations, Schrodinger -Boussinesq equation and
quantum equation. So motivated by the ideas in [2,3,11], we can accomplished this paper.

) is sufficiently small.

LY (@

Preliminaries
To describe our theorems accurately, we introduce some function space and notation. We denote L?(Q) -norm

3

0

by Jl|. L*(2)-norm by ||||p . H"(Q) is the Sobolev space. We define H_ as the closure of ¢ in L,(Q) . Stokes
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operator A with domain D (A) = H*(Q)~ H (@)~ H_ . Let X be a Banach space. We denote by ¢ “(; x) the set of X-

valued T-periodic functions on R with continuous derivatives up to order k. then let us define the norm

k
bl =20 5 loisco], |
0<t<T i—o

We denote by L°(T;X) (1< p < ») the set of T-periodic X-valued measurable functions g on R* such that

1

lol.. ., = (LT||g||idt)? <qo (LS p<w),

lol.- ., = 50 [ol, <=
We denote by w “** (T x ) the set of functions g which belong to L° (T;x ) together with their derivatives up to orderk ,

and in particular we write H *(T;x)=w “?(T; x) when X is a Hilbert space.
To prove our theorems, we shall use the following inequality, and we can refer literature [8] to get it.

Lemma 2.1 (Gagliardo-Nirenberg Inequality) Let o be an open, bounded domain of the lipschitz class in R" . Assume

thatl< p<ow,1<q<w,1<r, 0<@<1,andlet DL a(m71)+(170)1,Thenthefollowing inequality hold
p q r

1-60

K 0
[orul...., < ol bl
L?(Q) w " Q) L' (Q)

Approximate solutions
In this section, we will prove the existence of approximate solution of (1.1)-(1.3). Now let w, (k =1,2,..) be the

completely orthonormal system in H  consisting of the eigenfunctions of the Stokes operator A. Denote the form of the
approximate solution u, of the problem (1.1)-(1.3)

m
Up =D A, (Ow,
k-1

We consider the system of nonlinear differential equation
(u, +A%u, +2Au, +au, +b|Vu, > +ul,w)=(g,w,) (3.1)
U, (X, t+T)=u,(x,t) 3.2)
Let w be the subspace of H  spanned byw, ,w,.., w, . It is well known that for anyv < c’(T,w/), there exists a
unique T-periodic solution u, e c*(T,w ") of the linear equation
(u,, +A2un +2Au, +au ,w,)=(g-b|Vv, I* —v:,wk),
So we can see the mapping: F :v, - u, is continuous and compact in c*(t,w ). Thus, we shall prove the

existence of the solution of (3.1)-(3.2) by applying the Leray-schauder fixed point theorem, and it is only need to show
the boundedness

sup "u a (t)" <C

0<t<T
for all possible solutions of (3.1)-(3.2) replaced by s(b |vu, |* +u’) (0 < 5 <1) instead of nonlinear terms b |vu, |© +u}.
Where C is a constant independent of s .
Multiplying (3.1) by a,, (t) and summing up over k, we see
(U, +A%u, +2Au +au, +5(b|Vu, | +ul)u,)=(g,u,) (3.3)
using integration by Parts, we obtain

dt

v 2fau |+ 20

u u”dx+2-" gu, dx . (3.4)

. u, ::4||Vun||2—2a||un||2—2b5jlﬂ|Vun

Appling the Gagliardo-Nirenberg inequality with k =1,n=3,p=r=m=q=2,0 = % to the first

term on the right hand sida of (3.4), we have

Available Online: http://saspjournals.com/sjpms 276



http://saspjournals.com/sjpms

Wei Luo & Xianyun Du.; Sch. J. Phys. Math. Stat., 2018; Vol-5; Issue-4 (Jul-Aug); pp-275-281

2 1 2 2
0 R PO I T R (35)
by using the Holder inequality, Gagliardo-Nirenberg inequality and Young inequality, we obtain

2|b|5L|Vun

20 2(1-6)

“u,ax < 2pls|vu,

< 2)p|s]au,

un n n

2
4 4

3-20 ! 3220 , (36)

1 2 T
< —fau, [ oo o, [l
4

20
< coffau, [ |

4 4

Holder inequality, Young inequality and poincare inequality give that
2[ ou,0c = folllo. < 27 [+ ol < o, [+ ol (37)

so from (3.4)-(3.7), using young inequality, seeing that 3 < < 4, there exists M > 0 such that

1-6

1 -
d 2 1 2 4 2 sy 8720 1 2
—|lu +—||Aun +26|u,|f <cfu +co|u, [l e +—||g||

2

at ' oo 3.8)

<M + 8(5)||Un||: + :_2"9”2

4

from (3.8), since 26 > £(5) , we have
d 2 1 2 4 1 B
;”un” +;||Aun|| wefu, [l <m * K (3.9)
using the periodicity of u_, integrating (3.9) over [0,T] we get
T 2 4 1 )
J'O (;"AU"” +C||Un||4)dt < MT +;K T, (310)

by the first mean value theorems for definite integrals and (3.11), there existst” [0, T ] such that

1 L P ol 1,
Z"Aun(t ) s;"Aun(t ) +c||un(t )4 <M +;K y (3.11)
using poincare inequality A“un”g ,1«1*/3||Aﬁun|| , we have
un(t‘)zsﬁ Aun(t*)z, (3.12)
Jo. ]

integrating (3.9) again over [t",t+T](t e [0,T]) , We obtain

2

1
+ (—

J, Glaudl"+clu, e

o, o < ||un(t*)

+(t+T -t ) (M +i2K2)

4 (3.13)
<A +2T)YM +LZKZ)=C

A

where C is independent of n and s . So we proved the u, e c*(T,w) is the approximate solution of (3.1)-(3.2).

Estimates of derivatives of high order
In this section, we will show the convergence of the approximate solution.
Since the w, (k =1,2,..) are the eigenfunctions of A, we can write

oW, 4.1)

where 4, is the eigenvalue of A.
Lemma 4.1 Let u, be the solution of (3.1)-(3.2) given above. Set

T 2
<= [ ol

we have

1

Jau, ] < 2T ek K, ,
where ¢ (k,K,) denote constants depending on K, kK, and independent of n.
Proof Considering (3.1) and (4.1), we see

2 2 3 2 2
(u, +A%u, +2Au +au +b|Vu |  +u_ ,A%u )=(9,A"Uu,),
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using integration by Parts, we obtain

:—t”Aun ? + 2||A2un||z

= 74J' AunAzundx - 2a||Au"||2 - ZbJ |Vun|2A2u"dx - ZJ u:Azundx + ZI gAzundx
Q Q Q Q

Using Young inequality and Gagliardo-Nirenberg inequality, we can get

2

‘J‘QAunAzundx < "Aun"”Azun"S %"Aun”2 + % AzuI1
2
‘%WMummgwwmy%%%wwm+%y%z

2

2
Au,

< oflau, [+ el |+ =

2 2 10 1
Sc"Aun" +c||u"|| + —
10

2
3,2
U u A"u dx
Q

3
= .

‘LgAzu"dx

2
Alu,

Ammgﬂhm+ipmn
2 10

2
2
A'u,

g < S« L
<Jalllu,| < ol +
From (4.2)-(4.6), we have

2 2 6 10 2
<l [+ el |+ el [+ sfof

2
Alu,

[+

using the periodicity of u_, (3.10) and (3.13), integrating (4.7) over [0,T] we get

T

I

2
Azun” dt < C(K,K,),

so there existst” e [0, T ] such that

2 1?7 1
APu(t )|| < =C(K,K,),
T

integrating (3.10) again over [t",t+T](t  [0,T 1) , using poincare inequality we obtain

[

+2)C(K,K,)

2
+

2
Azun" dt

||Aun(t)||2g||Aun(t*) +C(K,K,)

1

<A
This completes the proof of Lemma 4.1. o
Lemma 4.2 Let u_ be the solution of (3.1)-(3.2) given above. Set

T 2
<= [ oo

we have

1

o @ <1 v 2)c K K, K,

"Aum ||2 <

[

T 2
L ool dt <c(k . k,.K,),

+2)C(K,K,,K,),

2
Azum" dt < C(K,K,,K,),

where ¢ (K, K,,K,) denote constants depending on K, K, K, and independent of n.
Proof From (3.1) again, we see
(u,, +A2un +2Au, +au +b|Vu, I* +u:,um) =(g,u, )

using integration by Parts, Young inequality and Gagliardo-Nirenberg inequality, we obtain
2 d 2 2 6 10 2
oo+ 2w, [ < elfau [ el [+ ol + 5o
from (3.13) and (4.10), we know

"Um"2 +:_t"Au"”2 <C(K,K,),

(4.2)

(4.3)

(4.4)

(4.5)

(4.6)

4.7

(4.8)

(4.9)

(4.10)

(4.11)

(4.12)

(4.13)
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using the periodicity of u_, integrating (4.13) over [0,T] we get
JOT o] s cox k)T,

Multiplying (3.1) by a,, (t) and summing up over k, we see
(u,, +A2un +2Au, +au +b|Vu, I* +u:,u") =(g,u,),

Taking the derivative with respect to t of (4.15), using integration by Parts, we have

d_"u"l"2 + 2||Au”l||2 = 4||Vu"l||2 - Za”um"2 74bJ- |VU"||VUM|Ude - GI ur?um 'unt + ZJ. gtum !
dt Q Q o

Using Young inequality and Gagliardo-Nirenberg inequality, we obtain

2 2 2
alvual = clsvalllonlls ellswn] el

] [,

vu,,

u,dx < c||Vun||4||Vum

oY

2 2 2
s efvunll s elve e
)

2 2 2
s e+ elau [l

2 2 2

+

2
+

2
< cfu )

N u

nt u

nt

sc(”Aun Z)("Aum

2
G‘J‘ Up U Uy, u,
Q

4 4

< c (kKo (au "+ o
from (4.16)-(4.19), let - enough small, seeing that ¢ (K ,K ;) <1, we get

d 2 2 2 2 2 2
ol o= o+ elfau, oo+ ello. [
using the periodicity of u_, (4.10) and (4.14), integrating (4.20) over [0,T] we get
_[T||Aum||2dt <C(K, K, K,),
so there existst” e [0,T ] such that
||Aum(t‘)||2 < iC(K,KO,Kl) ,
T
integrating (4.20) again over [t",t+T](t e [0,T]) , using poincare inequality we obtain
[ Isu[Fa

+2)C(K,K,,K,)

2
+

Ju. ] < ||u ()

+C(K,K,,K,)

1

<A

By differentiating Eq. (3.1) and making the scalar product with a®u_ , using integration by Parts, we have

2
+ 2

2
Au

imAw(

= —4j Au  A%udx - 2a||Aum||2 - 4bj |Vun||Vum|A2umdx - GI ulu A’u dx + ZJ‘ g, A%u  dx ’
Q Q Q Q

applying Young inequality and Gagliardo-Nirenberg inequality, we can get

2

imA%ﬁqumm

Applying Lemma 4.1 and (4.21), use the similar way, we obtain

[

"Aum ||2 <A

2
Azum" dt < C (K, K, K,),

1

+2)C(K, K, K,).
Moreover, we also can get the following equation from (3.1),

2
(U, +A"u  +2Au  +au,

t t

2 2 2 2 2
s e fau, [+ o, [ D ava]+ ofo -

2
+2b|Vu, [[Vu, [+3u u  ,u_)=(9,.u.,),

(4.14)

(4.15)

(4.16)

4.17)

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)

(4.24)

using integration by Parts,Young inequality, Gagliardo-Nirenberg inequality and the periodicity of u , we can get

T 2
JO o] dt < c (ko Ky K,

This completes the proof of Lemma 4.2. o
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T-Periodic solutions
Theorem 5.1 Let g e L”(T,H *(Q))(T > 0) .then there exists a constantc, = c,(N) > 0 , if

K = sup ||g
0<t<T

e < Co
the problem (1.1)-(1.3) has a T-periodic solution u , it satisfies
Ue H(T;H_)AH(T;D(A)) A L"(T;D(A)) .

Proof In section 4, we get the u, and u, estimate in H *(Q), use of compactness theorem, we know there exists a

nt

subsequence u, lending to u in such a way

u, > u weakly"in L”(0,T;D(A)) ,

u, - u stronglyin L"(0,T:D(A2)),

u, — u,_weakly”in L (0,7;D(A)) ,

nt

1
u, — u, stronglyin L"(0,T:D(A2)) .
By the above estimate we know that the nonliner terms are well defined. If n — < uniformly in t, we have
GIvu, P =b|Vu )+ @ui-u®) > b(Vu, -Vu)(Vu, +Vu)+ (u, —u)(u’+u,u+u’)—> 0.
Consequently ,we see that
(u, +A’U+2AuU+au +b | Vu |2 +u3,wk) =(g,w,),

S0 we get

u‘+A2u+2Au+au +b|Vu|2+u3=g.

Thus, the proof of Theorem 5.1 is complete. O

Theorem 5.2 The solution of (1.1)-(1.3) given in Theorem 5.1 is unique.

Proof Let u, and u, be two T-periodic solutions of problem (1.1)-(1.3), define u = u, —u, . Then it follows
du

—+ AU+ 2AU+au +bVU(Vu, +Vu,)+u(u’ +uu, +us)=0, (5.1)
dt

Taking the inner product of (5.1) with u, using integration by parts, Young inequality, Gagliardo-Nirenberg
inequality and Lemma 4.1, we have

Sl ool < ol
Sincec (K, K ) <1, poincare inequality can give that
o < etk -2l - -t

where L = (1-C(K,K,) 4% >0, s0 it follows
lull* < ] 0y exp( ~Lt) , for anyt e (0,40 ) .
Since u is T-periodic in t, for any positive integer N, for any t > 0 ,we have
Julf o = ol e wr
Hence, it follows
Joll" < o 0y xpc 1oy

which implies ||u ||z = 0 . The proof of theorem 5.2 is complete. O
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