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Abstract: In this paper, we consider the existence of time periodic solutions of the 

modified Swift-Hohenberg equation. We used the Galerkin method. Firstly, by Leray-

Schauder fixed point theorem, we show the existence of approximate solutions of the 

modified Swift-Hohenberg equation, then we show the convergence of the approximate 

solutions, and we also get the uniqueness of the solution to the modified equation. 
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INTRODUCTION 

  In this paper we concerned the existence and uniqueness of time periodic 

solutions for the modified Swift-Hohenberg equation 
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Rtxtxguubauuuu
t


 
(1.1) 

 xtxutxu ,0),(),( , (1.2) 

Where   is an open connected bounded domain in 
3

R  with smooth boundary  , a 

and b are arbitrary constant, g is an external forcing term. 

 

              The system is the usual Swift-Hohenberg equation if 0b , 0g  in (1.1). 

Refer literature [1], we know the Swift-Hohenberg equation was introduced by Swift J. 

B. and Hohenberg P. C. in 1977 when they studied the convective hydrodynamics and 

viscous film flow. 

 

In 2003, Peletier L. A. and Rottschafer in [8] researched the large time behaviour of solutions of the Swift-

Hohenberg equation. In the same year, Zhou Hua and Tang Jian in [6] proved some properties and structures of solutions 

of the Swift-Hohenberg equation. In 2007, Wang Yanping in [5] proved the time-periodic solution for a generalized 

Swift-Hohenberg model equation; however, the modified Swift-Hohenberg equation does not satisfy its conditions. In 

2009, Polat M. in [9] proved the global attractor for the modified Swift-Hohenberg equation. In 2014, Sun H. P. and Jong 

Y. P. in [8] researched pullback attractor for the non-autonomous modified Swift-Hohenberg equation. In 2017, Wang Z. 

and Du X. in [4] proved the pullback attractors for modified Swift-Hohenberg equation on unbounded domains with non-

autonomous deterministic and stochastic forcing terms. 

 

In present paper, the problems we have considered are as follows. Let the given external forces ),( txg  be 

periodic in t with the period T, and then we try to prove the existence and uniqueness of periodic solutions u of the 

modified Swift-Hohenberg equation with the same period T, 

 ),(),( txuTtxu   (1.3) 

under the critical smallness assumption,i.e., 

)(
0

),(sup





N

L
Tt

txgK is sufficiently small. 

Our main results are Theorem 5.1 and Theorem 5.2. To prove the time periodic solutions of the modified Swift-

Hohenberg equation, we use the well-known Galerkin method which used to prove the existence of time periodic 

solutions and weak solutions for many systems, such as Navier-Stokes equations, Schrodinger -Boussinesq equation and 

quantum equation. So motivated by the ideas in [2,3,11], we can accomplished this paper. 

 

Preliminaries 

To describe our theorems accurately, we introduce some function space and notation. We denote )(
2
L

 
-norm 

by  , )(
p

L -norm by 
p

 . )(
m

H  is the Sobolev space. We define
 


H  as the closure of 



0
C  in )(

2
L . Stokes 
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operator A with domain 


HHHAD  )()()(
1

0

2
. Let X be a Banach space. We denote by );( XTC

k
 the set of X-

valued T-periodic functions on 
1

R  with continuous derivatives up to order k. then let us define the norm 
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
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We denote by )1();(  pXTL
p

 the set of T-periodic X-valued measurable functions g  on 
1

R  such that 

)1()(

1

0
);(

  pdtgg
p

T
p

XXTL
p

, 





X

Tt
XTL

gg
0

);(
sup  

We denote by );(
,

XTW
pk

 the set of functions g which belong to );( XTL
p

 together with their derivatives up to order k , 

and in particular we write );();(
2,

XTWXTH
kk

  when X is a Hilbert space. 

  To prove our theorems, we shall use the following inequality, and we can refer literature [8] to get it. 

 

Lemma 2.1 (Gagliardo-Nirenberg Inequality) Let   be an open, bounded domain of the lipschitz class in 
n

R . Assume 

that  p1 ,  q1 , r1 , 10   , and let 
r

n

q

n
m

p

n
k )1()(   , Then the following inequality hold  

 




1

)()()(
,

)(
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p LWL

k
uucuD . 

 

Approximate solutions 

In this section, we will prove the existence of approximate solution of (1.1)-(1.3). Now let ,...)2,1( kw
k

 be the 

completely orthonormal system in 


H
 
consisting of the eigenfunctions of the Stokes operator A. Denote the form of the 

approximate solution 
n

u
 
of the problem (1.1)-(1.3) 

k

m

k

knn
wtau 





1

)(

 

We consider the system of nonlinear differential equation 

 ),,(),||2(
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kknnnnnnt
wgwuubauuuu   (3.1) 

 ),(),( txuTtxu
nn

  (3.2) 

Let 
n

W   be the subspace of 


H
 
spanned by

n
www ,...,,

2,1
. It is well known that for any ),(

1

nn
WTCv  , there exists a 

unique T-periodic solution ),(
1

nn
WTCu   of the linear equation 

),,||(),2(
322

knnknnnnt
wvvbgwauuuu 

 

So we can see the mapping: nn
uvF :  is continuous and compact in ),(

1

n
WTC  . Thus, we shall prove the 

existence of the solution of (3.1)-(3.2) by applying the Leray-schauder fixed point theorem, and it is only need to show 

the boundedness 

 
Ctu

n

Tt




)(sup
0

 

for all possible solutions of (3.1)-(3.2) replaced by )10()||(
32

 
nn

uub  instead of nonlinear terms 
32

||
nn

uub  . 

Where C is a constant independent of  . 

Multiplying (3.1) by )( ta
kn  and summing up over k, we see 

 ),,()),||(2(
322

nnnnnnnnt
uguuubauuuu    (3.3)

 

using integration by Parts, we obtain 

 
dxgudxuubuauuuu

dt

d

nnnnnnnn 


 222422

2
224

4

22

 . (3.4)
 

Appling the Gagliardo-Nirenberg inequality with 
2

1
,2,3,1  qmrpnk

 
to the first

 

term on the right hand sida of (3.4), we have 
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1
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ucuuucu  , (3.5) 

by using the Holder inequality, Gagliardo-Nirenberg inequality and Young inequality, we obtain 
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, (3.6) 

Holder inequality, Young inequality and poincare inequality give that 
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

, (3.7) 

so from (3.4)-(3.7), using young inequality, seeing that 4
1

23
3 









, there exists 0M  such that 
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1
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, (3.8) 

from (3.8),  since )(2   , we have 

 
2

2

4

4

22 1

2

1
KMucuu

dt

d

nnn


 ,  (3.9) 

using the periodicity of 
n

u , integrating (3.9) over ],0[ T  we get 
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T
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2
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(


 ,

 (3.10) 

by the first mean value theorems for definite integrals and (3.11), there exists  Tt ,0


such that 

 
2
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4
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2
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1
KMtuctutu

nnn




 ,
 (3.11) 

using poincare inequality
nn

uAuA





 , we have 
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 , (3.12) 

integrating (3.9) again over ]),0[(],[ TtTtt 


, we obtain 
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where C is independent of n and  . So we proved the ),(
1

nn
WTCu   is the approximate solution of (3.1)-(3.2). 

 

Estimates of derivatives of high order 

In this section, we will show the convergence of the approximate solution. 

Since the ,...)2,1( kw
k

 are the eigenfunctions of A, we can write 

 
k

s

kk

s

kkk
wwAwAw   , , (4.1) 

where 
k

  is the eigenvalue of A.  

Lemma 4.1 Let 
n

u  be the solution of (3.1)-(3.2) given above.  Set  

dtgK

T


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2

0
 

we have 
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


 , 

where ),(
0

KKC  denote constants depending on 
0

, KK  and independent of n. 

Proof Considering (3.1) and (4.1), we see 
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using integration by Parts, we obtain 
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Using Young inequality and Gagliardo-Nirenberg inequality, we can get 
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From (4.2)-(4.6), we have 
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using the periodicity of 
n

u , (3.10) and (3.13), integrating (4.7) over ],0[ T  we get 
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integrating (3.10) again over ]),0[(],[ TtTtt 


, using poincare inequality we obtain 
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This completes the proof of Lemma 4.1.  □ 

Lemma 4.2 Let 
n

u  be the solution of (3.1)-(3.2) given above. Set  
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KKKC  denote constants depending on 
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,, KKK  and independent of n. 

Proof From (3.1) again, we see 
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using integration by Parts, Young inequality and Gagliardo-Nirenberg inequality, we obtain 
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using the periodicity of 
n

u , integrating (4.13) over ],0[ T  we get 
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Multiplying (3.1) by )( ta
kn  and summing up over k, we see 
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Taking the derivative with respect to t of (4.15), using integration by Parts, we have 
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Using Young inequality and Gagliardo-Nirenberg inequality, we obtain 
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from (4.16)-(4.19), let   enough small, seeing that 1),(
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KKC , we get 
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using the periodicity of 
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u , (4.10) and (4.14), integrating (4.20) over ],0[ T  we get 
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integrating (4.20) again over ]),0[(],[ TtTtt 
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, using poincare inequality we obtain 
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By differentiating Eq. (3.1) and making the scalar product with 
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u
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 , using integration by Parts, we have 
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applying Young inequality and Gagliardo-Nirenberg inequality, we can get 
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),,(
10

0

2
2

KKKCdtu

T

nt
 ,

 

),,()2(
10

122

KKKCTu
nt




 . 

Moreover, we also can get the following equation from (3.1), 
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This completes the proof of Lemma 4.2.  □ 
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T-Periodic solutions 
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By the above estimate we know that the nonliner terms are well defined. If n , uniformly in t, we have 
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so we get  

guubauuuu
t


322

||2 . 

Thus, the proof of Theorem 5.1 is complete.  □ 

 

Theorem 5.2 The solution of (1.1)-(1.3) given in Theorem 5.1 is unique. 

Proof Let 
1

u  and 
2

u  be two T-periodic solutions of problem (1.1)-(1.3), define 
21

uuu  . Then it follows 

 0)()(2
2

221

2

121

2
 uuuuuuuubauuu

dt

du
, (5.1) 

Taking the inner product of (5.1) with u, using integration by parts, Young inequality, Gagliardo-Nirenberg 

inequality and Lemma 4.1, we have 

2

0

22

),( uKKCuu
dt

d
 . 

Since 1),(
0

KKC , poincare inequality can give that 

222

0

2

)1),(( uLuKKCu
dt

d
  , 

where 0)),(1(
2

0
 KKCL , so it follows 

)exp()0(
22

Ltuu  , for any ),0( t . 

Since u  is T-periodic in t, for any positive integer N, for any 0t ,we have 

)()(
22

NTtutu  . 

Hence,it follows 

)exp()0(
22

LNtuu  , 

which implies 0
2

u . The proof of theorem 5.2 is complete.  □ 
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