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Abstract: The vertex arboricity of graph, denoted by  va G , is the minimum number 

of forest required to partition the vertex set, which is an improper edge coloring. In this 

paper, we mainly studied vertex arboricity on planar graphs and we have proved if there 

is without 5 -cycles intersecting with 6 - cycles, then   2va G  . 
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INTRODUCTION 

In this paper, we consider finite, simple, and undirected planar graph. For a real 

number x , x    is the most integer not more than x . Let G  be a graph. We use 

 G ,  G ,  V G ,  E G  and  F G , to denote  the maximum degree , the 

minimum degree, the vertex set, the edge set and the face set of G , respectively. Let

 v V G , then the degree  d v  of v  denotes the number of edges associated with 

the face, and for the degree  d f  of the face of the graph, it denotes the number of 

edges surrounded by the boundary of the face. 

 

 

Chinese Library Classification: O157.5 

MR（2000S）subject Classification: 05C15 

 

The forest k -coloring of a graph is a mapping   from the vertex set  V G to the set  1, 2 k， ，  such that 

each color class induces an acyclic subgraph, i.e.,a forest. The vertex arboricity  va G  of G  is the smallest integer k

such that G  has a k -coloring, which is defined by Chartrand et al. [1] in 1968. 

 

It well known that determining the vertex arboricity of a graph is NP-hard [2]. In 1968, Chartrand et al. [1] also 

proved that for any graph G , the     1 / 2va G G   
 

, and for any planar graph, the   3va G  . For planar 

graph without 3 - cycles, without 5 - -cycles, without 6 -cycles, the   2va G  , which has been demonstrated in [3, 4]. 

Besides that for planar graph without 4 -cycles[5] , without 7 -cycles[6], without intersecting 3 -cycles[7], without 

intersecting 5 -cycles[8], without chordal 6 -cycles[9], the   2va G   has been proved. 

 

Theorem 1 If G  is a planar graph without 5 -cycles intersecting with 6 -cycles , then   2va G  . 

 

To facilitate the proof below, we give some simple definitions and symbols. If a vertex is of degree k , at least 

k , and at most k , then we call it  k -vertex, k

 vertex and k


 vertex, respectively. Similarly, we define k -face, 

k

 face and k


-face. If the boundary of face f  is  1 2

, , ,
k

v v v , then face f can be expressed as 

 1 2
( ), ( ), , ( )

k
d v d v d v -face. We use  k

n v  to denote the number of k  vertex adjacent to v ;  k
n f  to denote 

the number of k  vertex incident with f ; and  k
f v  to denote the number of k  face incident with f . We say that 
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two circles are intersecting if they share at least one common vertex; two circles are adjacent if they share at least one 

common edge. and a k  cycle be called a chordal k  cycle if the k  cycle having a chord. 

 

PROOF OF THEOREM 

Let G  be a smallest counterexample to Theorem 1 with the fewest number of vertex and edges. Clearly, G  is 

2  connected, so the boundary of each face of G forms a cycle. We first give the structural properties of G , then use 

Euler's formula and the discharging rules to gain a contradiction. 

Lemma 1 ([6])   4G  . 

Lemma 2 ([6,9]) Suppose that  1 2 3
, ,v v v  and  1 3 4

, ,v v v  are two adjacent 3  face having a common edge 
1 3

v v . 

If    1 3
9d v d v  , then    2 4

9d v d v  . 

Lemma 3 ([10]) G  does not contain a k  cycles  1 2
, , ,

k
v v v  adjacent to a 3  cycle  1 2

, ,v v u  such that 

  4d u   and   4
i

d v   for every  1, 2, ,i k . 

 

In order to complete the proof, we need to make use of discharging method.  In the following, we assume that 

G  is a planar graph. Firstly, we give each vertex v  a charge    2 6w v d v   and each face f  a charge 

    6w f d f  . Thus by the Euler's formula 2V E F    and      2

v V f F

d v d f E G

 

   , we 

have   2 6

v V

d v



   + 6 1 2 0

f F

d f



    .  So   1 2 0
x V F

ch x


   . In the following, we will 

reassign a new charge to each x V F  denoted by  ch x  according to the discharging rules. Because our 

discharging rules only move change around and do not influence the sum, we have

   = -1 2 < 0
x V F x V F

ch x ch x
 

   . If. we will show that   0ch x   for each x V F , then we will 

gain an obvious contradiction to    0 =
x V F x V F

ch x ch x
 

   12 0   . 

  

Our discharging rules are as follows 

R1. Let v  be a 4  vertex incident with a face f . 

(1)   0v f   , if f  is a 5  face and  3
1f v 

 
and  4

2f v  . 

(2)  
1

2
v f   , if f  is a 5  face and  4

1f v  . 

(3)  
1

2
v f   , if f  is a 4  face . 

(4)  
1

2
v f   , if f  is a 3  face and  3

4f v  . 

(5)  
2

3
v f   , if f  is a 3  face and  3

3f v  . 

(6)   1v f   , if f  is a 3  face and  3
2f v  . 

(7)   1v f   , if f  is a 3  face and  3
1f v  . 

R2.  Let v  be a 5 - vertex incident with a face f. 

(1)  
1

2
v f   , if f  is a 5  face. 

(2)  
1

2
v f   , if f  is a 4  face. 



 

 
Hongling Chen.; Sch. J. Phys. Math. Stat., 2018; Vol-5; Issue-5 (Sept-Oct); pp-322-327 

Available Online:  http://saspjournals.com/sjpms   324 

 

 

(3)  
4

3
v f   , if f  is a 3  face and  3

3f v  . 

(4)  
3

2
v f   , if f  is a 3  face and  3

2f v  . 

(5)   2v f   , if f  is a 3  face and  3
1f v  . 

R3.  Let v  be a 6

 vertex incident with a face f . 

(1)  
1

2
v f   , if f  is a 5  face. 

(2)  
1

2
v f   , if f  is a 4  face. 

(3)  
3

2
v f   , if f  is a 3  face . 

 

After applying the vertex rules, we say a face is bad if a negatively charged small face. We now give the rules 

for face f . Let face f  be a face with   7d f  , and let 
0

f , 
1

f , 
2

f , , 
  0d f

f f  be the face adjacent to f  in a 

clockwise order. The charge of the face f  can be obtained by the Euler's formula, so the face f  can be given its 

adjacent face at least 
1

7
.  

R4.  Let f  be a 7

 face incident with a face 

i
f . 

(1)  
1

7
i

f f   , if   3
i

d f   or   5
i

d f  . 

(2)  
1

7
i

f f   , if  +1
4

i
d f   or  +1

7
i

d f  . 

R5. Assume  , ,f u v w  be a  5 , 4 , 4


 face, if   3
4f w   and w  incident with a  4, 4, 4  face, let 

 0
4, 4, 4f  , then  0

1 1

6 7
f f    . 

R6. Assume  , ,f u v w  be a  5 , 4 , 4


 face, if   3
3f w   and w  incident with a  4, 4, 4  face, let 

 0
4, 4, 4f  , then  0

1

7
f f   . 

Now we are explaining that there are   0ch x   for all x V F . 

Let f  be a face of G . If   6d f  , then    = 0ch x ch x  . If   4d f  , then 

 
1

2 4 0
2

ch f       by R1(3), R2(2), and R3(2). 

Case 1  Assume  1 2 3 4 5
, , , ,f v v v v v  be a 5  face of G . 

Case 1.1   4
5n f  . 

 

If the five 4  vertices incident with f  are adjacent with 3  face, then  
1

1 5
2

c h f      
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1
+ 5 0

7
  by R4(1) and R1(2). If exactly one 4  vertices in the incident vertices of f  is not adjacent with 3  face, 

then  
1 1

1 5 + 3 0
2 7

ch f        by R1(2) and R4(1). If at least two 4  vertices in the incident vertex of f  are 

not adjacent with 3  face, then   1 m inch f     

1 1 1 1 1 1 1 1 1
5 + 2 4 + 3, 5 + , 4 , 5 0

2 7 2 7 2 2 7 2 2

 
        

 

， ， by R1(1), R1(2) , R2(1) and R4(1).  

Case 1.2  4
4n f  . 

 

If the four 4  vertices incident with f  are adjacent with 3  face, then  
1

1
2

ch f      

1
5 + 3 0

7
  by R1(2),  R2(1) and R4(1). If exactly one 4  vertex in the incident vertices of f  is not adjacent with 

3  face, then  
1 1 1 1

1 m in 5 + 2 , 5 + 0
2 7 2 7

c h f
 

        
 

 by R1(2),  R2(1) and R4(1). If at least two 4 

vertices in the incident vertices of f  are not adjacent with 3  face, then 

 
1 1 1 1 1

1 m in 3, 5 + , 4 , 5 0
2 2 7 2 2

c h f
 

         
 

by R1(1), R1(2) , R2(1) and R4(1).  

 

Case 1.3  4
3n f  . 

 

Since face f  is incident with at least two 
+

5  vertices, then  
1

1 m in 5 +
2

c h f


    


 

1 1 1 1 1 1 1 1
2 5 + 3 4 4 + 5 = 0

7 2 7 2 2 2 7 2


      



， ， ， ， ，  by R1(1), R1(2), R2(1)  and R2(1). 

Case 2 Let  1 2 3
, ,f v v v  be a 3  face of G . 

Case 2.1  4
3n f  . 

 

If a 4  vertices is incident with four 3  faces, then the remaining two 4  vertices are incident with at most 

two 3  faces. so  
1 1 1 1

3 1 2 2 0
2 7 6 7

ch f            by Lemma2, R1(4), R1(5), R1(6), R4 and R5. If a 

4  vertices is incident with three 3  faces, then the remaining two 4  vertices are incident with at most two 3 

faces. So  
2 1

3 m in 1 2 + +
3 7

c h f


     


 

2 1
3 1 2 + + 4 0

3 7


  



，  by Lemma2, Lemma 3, R1(4), R1(5), R1(6), R4 and R6. If these three 4  vertices are exactly 

incident with two 3  faces, then  
1

3 1 3 3 0
7

ch f         by R1(6) and R4. 

Case 2.2  4
2n f  . 

 



 

 
Hongling Chen.; Sch. J. Phys. Math. Stat., 2018; Vol-5; Issue-5 (Sept-Oct); pp-322-327 

Available Online:  http://saspjournals.com/sjpms   326 

 

 

If a 4  vertices is incident with four 3  faces, then the remaining 4  vertices is incident with at most two 

3  faces. so  
4 1 1

3 1 2 0
3 2 7

ch f          by  R1(4),  R1(6) and R4 . If a 4  vertices is incident with three 

3  faces, then the remaining 4  vertices is incident with at most two 3  faces. so

 
4 2 1 4 2 1

3 m in 1+ + + 2 ,1+ + + 3 0
3 3 7 3 3 7

c h f
 

       
 

 by R1(4),  R1(5) and R4 . If these two 4  vertices 

are exactly incident with two 3  faces, then  
4

3 +
3

c h f     

1
1 2 + 0

7
   by R1(6), R2(3) ,R3(3) and R4. 

Case 2.3  4
1n f  . 

 

 

If the 4  vertices is incident with four 3  faces, then  
4 1 1

3 2 0
3 2 7

ch f         by  R1(4), R2(3), 

R3(3) and R4 .If the 4  vertices is incident with three 3  faces, then 

 
4 2 1 4 2 1

3 m in 2 + + , 2 + + 2 0
3 3 7 3 3 7

c h f
 

        
   

by R1(5), R2(3), R3(3) and R4 .If the 4  vertices is 

incident with at most two 3  -faces, then  
4

3 2 1 0
3

ch f       by R1(6), R1(7), R2(3) and R3(3). If there is no 

4  vertex, then  
4

3 3 0
3

c h f       by R2(3) and R3(3). 

 

Let v  be a vertex of G . Assume   4d v  , if  3
4f v  , then  

1
2 4 0

2
ch v    

 

 

 

by R1(4). If  3
3f v  , then  

2
2 3 0

3
ch v     by R1(5). If  3

2f v  , then   2 1 2 0ch v      by 

R1(6). If  3
1f v  , then  

1
2 1 2 0

2
ch v       by  R1(1),  R1(4) and R1(6). If  3

0f v  , then 

 
1

2 4 0
2

ch v      by  R1(2)  and  R1(4). Assume   5d v  , if  3
3f v  , then  

4
4 3 0

3
ch v      by 

R2(3). If  3
2f v  , then  ch v   

3 1 3
4 m a x 2 , 2 0

2 2 2

 
     

 

 by R2(2) and R2(4). If  3
1f v  , then  

1
4 2

2
ch v      4 0  by R2(1), 

R2(2) and R2(5). If  3
0f v  , then   

1
4 5 0

2
ch v      by R2(1). Assume   6d v  , if  3

4f v  , then  

 
3

6 4 0
2

ch v      by R3(3). If  3
3f v  , then  

3 1 3
6 m a x 3 , 3 0

2 2 2
c h v

 
       

 

 by R3(1) and 

R3(3). If  3
2f v  , then   6ch v   

3 1 3 1
m a x 2 2 , 2 3 0

2 2 2 2

 
       

 

 by R3(1) and R3(3). If  3
1f v  , then   6ch v    
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3 1
+ 5 0

2 2
   by R3(1), R3(2) and R3(3). Assume   7d v  , since G  contains no 5  cycles intersecting with 6 

cycles, if    3

3

4
f v d v

 

 
 

, then    4 5
0f v f v  , and  we have    

3 3
2 6

2 4
d v d v

 
  

 
 

   
3 3 7

2 6 =
2 4 8

d v d v      6 0d v   , so  ch v 0 . 
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