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Abstract: This paper studies each type of traveling waves of the traveling wave system 

corresponding to the Bogoyavlenskii-Kadomtsev-Petviashvili equation comprehensively 

and systematically. By transforming its traveling wave system into a dynamical system 

in R
3
, we employ the bifurcation method of dynamical system to investigate its phase 

space geometry in detail. Finally, by calculating the complicated elliptic integrals, we 

obtain exact expressions of all traveling wave solutions of the Bogoyavlenskii-

Kadomtsev-Petviashvili equation without any loss. 
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INTRODUCTION 

               This paper considers the following Bogoyavlenskii-Kadomtsev-Petviashvili 

(BKP) equation [1]; 

 (                        ) 
                    (1.1) 

 

The scalar field  (     )  is an analytic function of the scaled spatial 

coordinates  ,   and temporal coordinate   and presents the amplitude of the relevant 

wave. BKP equation (1.1) can be used to describe the propagation of nonlinear waves in 

fluid, plasma, biology and electrical networks [2,3,4,5]. It is a reduction of the KP 

hierarchy [2], in the specific application, if the surface tension dominates over the 

gravitational force, then      and (1.1) is called BKP-I, whereas if the gravitational 

force is dominant then     and (1.1) is called BKP-II. Therefore, (1.1) has an 

extremely wide range of applications in physics and other nonlinear sciences. 

 

In fact, the BKP equation (1.1) is widely concerned and many efforts have been devoted to its exact solutions. In 

2004, the tanh method was used in [6] to obtain the soliton-like solutions and periodic form solutions of (1.1). In 2011, 

some exact solutions of (1.1) were derived from two existing simple traveling wave solutions by the finite symmetry 

transformation groups [7]. In 2012, by applying a direct symmetry method, some new explicit solutions were obtained 

for the BKP equation, which include trigonometric function solutions and periodic solutions [8]. In 2015, with the use of 

Hirota method, solitary-wave solutions for (1.1) were derived [9]. In 2017, through the Bell polynomials, the one- and 

two-kink-soliton solutions of the BKP equation were got in [10]. Recently, in [11], the binary Bell polynomials method 

was employed to get the multiple wave solutions including the kink periodic solitary wave and bright-dark lump wave 

solutions. 

 

Though there have been so many profound results about exact solutions of (1.1), there are few studies on its 

traveling wave solutions, especially the unbounded traveling wave solution. Calculating the traveling wave solutions of a 

nonlinear partial differential equation (NPDE) is of great help in understanding the nonlinear physical phenomena and 

wave propagation described by the NPDE. In this paper, our aim is to use the bifurcation method of dynamical system to 

comprehensively and systematically study each type of traveling waves of the BKP equation (1.1) and give all the exact 

expressions of them without any loss. The bifurcation method of dynamical system can not only clearly explain how 

these solutions evolve when the parameters change, but also study the dynamical behavior of solutions. In recent 

decades, this method has been widely and effectively applied to many different equations [12-15]. 

 

Bifurcation analysis of traveling wave system of the BKP equation 

Letting  (     )   ( )   (       ), where     represents the wave number in the   direction and 

    is the wave velocity, we transform (1.1) into its corresponding traveling wave system as follows 
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(      )                               (   )                   (2.1) 

where ＇denotes the derivative with respect to  . Integrating (2.1) twice, we get 

 

(      )               (  )   , 

where parameter   is the integral constant. Letting     , we have 

 

,

                                                                                                                     (   )

          (    
  

 
)    

 

 
                                                           (   )

 

Since (2.3) does not contain function  , we can start with our analysis of (2.3) firstly. Then, rewrite (2.3) to the following 

equivalent system 

,

                                                           

         (    
  

 
)    

 

 
 
                                                         (   ) 

which has the first integral 
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When (    
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  , (2.4) has two equilibria  ( 
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  ). Letting  (   ) denotes the coefficient matrix of the linearized 

system of (2.4) at point (   ), then 
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By the properties of the Hamilton system [16], the equilibrium   is a saddle, while   is a center. 

 

When (    
  

 
)     

 

 
  , (2.4) has a unique degenerated equilibrium  (

 

  
 

   

  
  ), its coefficient matrix is 

 ( )  *
  
  

+  

According to the qualitative theory of differential equation [17], we know that   is a cusp. 

When (    
  

 
)     

 

 
  , there is no equilibrium of (2.4). 

Based on the above analysis, we get the following results: 

 

Case 1. When (    
  

 
)     

 

 
  , there exists a homoclinic orbit   which connects the saddle  . Center   is 

surrounded by a family of periodic orbits 
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where  ( ) tends to   as   
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. Except the homoclinic orbit and periodic 

orbits, other orbits of (2.4) are unbounded, as shown in Figure 1(a). 
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Case 2. When  (    
  

 
)     

 

 
  , there only exist unbounded orbits of (2.4), as shown in Figure 1(b-c). 

 
Fig-1: The phase portraits of (2.4) in different parameter bifurcation sets 

 

All explicit traveling wave solutions of (1.1) 

In this section, we seek explicit expressions of all traveling wave solutions of (1.1), which needs us to combine 

the energy function (2.5) to investigate each type of orbits of (2.4) in different parameter bifurcation sets, including 

bounded and unbounded ones.  

Case 1. When (    
  

 
)     

 

 
  , we need to consider seven types of orbits, as orbits   ,   ,  ,   

 (  
 ),   ,    and 

   shown in Figure 1(a). 

 

Firstly, we consider the unbounded orbit    whose energy is higher than the energy of saddle  . From (2.4), its 

expression can be determined by the following integrals 

∫
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where the real parameter    satisfies the relation         and     
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. By 

calculating elliptic integral, we obtain the first type of traveling wave solution of (2.4) as follows 
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. From (2.2), we need to 

integrate   ( ) once again to get the first type of traveling wave solutions of (1.1) 
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Then, consider the unbounded orbit    whose energy is lower than the energy of center  . Similar to the 

calculation of the orbit   , we can give the explicit expression of the second type of traveling wave solution of (2.4) 
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and the traveling wave solution of (1.1) 
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The bounded orbit  , whose energy is equal to the energy of saddle  , is a homocilinic orbit of (2.4) and can be 

identified by the following integral expressions 

∫
  

(    )√    

  

 

 ∫    
 

 

          

 ∫
  

(    )√    

 

  

 ∫    
 

 

          

where     
 

  
(    

  

 
)  

 

  
√(    

  

 
)
 

    
 

 
,     

 

  
(    

  

 
)  

 

 
√(    

  

 
)
 

    
 

 
 and the 

relation         holds. The solitary wave solution of (2.4) can be given by 
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(     ( √      | |))
                 

Then, the third type of traveling wave solution of (1.1) can be calculated by  

  ( )  ∫  ( )         
 

√      (     ( √       ))
                   

where    is an integral constant. In particular, when     , the third type of traveling wave of (1.1) degenerates to a kink 

wave. 

 

Next, we consider the unbounded orbit   
 (  

 ) whose energy is also equal to the energy of salddle  . So, the 

similar calculation can get its expression as follows 
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     ( √      | |)

(     ( √      | |))
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Integrating above expression once with respect to  , we can get the fourth type of traveling wave solution of (1.1) 
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where    is an integral constant. 
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Consider the orbit    whose energy lies between the energy of saddle   and center  . It is a closed orbit 

surrounding the center    and can be determined by the following integrals 
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where the real parameters   ,    and    satisfy the relation           . Calculating the elliptic integral, we get the 

following periodic wave solution of (2.4)  
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From (2.2), the fifth type of traveling wave solution of (1.1) can be expressed by 
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The expression of the unbounded orbit   , whose energy still lies between the energy of saddle   and center  , 
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where the real parameters   ,    and     satisfy the relation               . The sixth type of traveling wave 

solution of (2.4) is 
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Now, consider the unbounded orbit    whose energy is equal to the energy of center  . By the following two 

integral expressions 
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we get the explicit expression of the seventh type of traveling wave solution of (2.4) 
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where    is an integral constant. 

 

Case 2. When (    
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  , we need to consider three types of orbits, as orbits   (  ),   

 (  
 ) and   

shown in Figure 1(b-c). 

 

Consider the orbits    or    whose energy is not equal to the energy of cusp  . Similar to the calculation of the 

orbit   , it is not difficult to get the eighth type of traveling wave solution of (2.4) 
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We integrate   ( ) once to obtain the eighth type of traveling wave solution of (1.1) as follows 
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Then, we consider another unbounded orbits   
  or   

  whose energy is equal to the energy of cusp  . Its 

expression can be determined by the following integrals 

∫
  

(     )√     

 

  

 ∫    
 

 

             

 ∫
  

(     )√     

  

 

 ∫    
 

 

             

where the real parameter     
 

  
 

   

  
 satisfies the relation         . By a direct calculation, the ninth type of 

traveling wave solution of (2.4) has the following form 
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Finally, similar calculation process can be applied to compute the corresponding traveling wave solution of the 

orbit  , so wo directly give its expression as follows 
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. At last, the tenth type of traveling wave 

solution of (1.1) is 
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Fig-3: "The phase portraits of (2.4) in different parameter bifurcation sets" 

 

CONCLUSIONS 

In this paper, we apply the bifurcation method of dynamical system to study all types of traveling waves of the 

BKP equation. This method allows detailed analysis on phase space geometry of the traveling wave system to clearly 

identify all possible traveling waves and corresponding existence conditions of the BKP equation under different 

parameter ranges. Our results show that all traveling wave solutions of the BKP equation can be divided into ten types 

and their exact expressions can be completely given by direct calculations or elliptic integrals. These obtained solutions 

not only facilitate the verification of numerical solvers and the stability analysis of solutions, but also help to understand 

the dynamic behavior of the nonlinear wave field. 
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