Scholars Journal of Physics, Mathematics and Statistics

Abbreviated Key Title: Sch. J. Phys. Math. Stat. ©Scholars Academic and Scientific Publishers (SAS Publishers) (An International Publisher for Academic and Scientific Resources) ISSN 2393-8056 (Print) ISSN 2393-8064 (Online)

The Consistent Criteria for Testing Hypotheses

Z. Zerakidze^{*}, M. Chania

Gori University, Gori, Georgia; Sukhumi University Tbilisi, Georgia

Abstract: The present theory a consistent criteria for testing hypotheses can be used, for *Corresponding author example, in the reliably predication of different engineering designs. In the paper there Z. Zerakidze are discussed statistical structures { $E, S, \mu_i, i \in I$ }. We prove sufficient conditions for extence of such criteria and we prove conditions for extence exstremal points. **Article History** Keywords: Consistent, Testing, reliably, engineering designs. Received: 02.10.2018 Accepted: 11.10.2018 **INTRODUCTION** Published: 30.10.2018 In the general theory of testing hypotheses there often arises a problem of transition from weakly separated family of probability measure to the corresponding DOI: strongly separated family. In the ZF theory Z. Zerakidze (see[3] -[4]) proved that the 10.21276/sjpms.2018.5.5.2 countable family of probability, ortogonaly and strongly separability are aquivalent. The consistent criteria for testing hypotheses Let (E, S) be a measurable space with a geven family of probability measures: { μ_i , $i \in I$ }. The following definitions are taken from the works ([1]-[8]). Definition 2.1. An object { $E, S, \mu_i, i \in I$ } is called a statistical structure.

Definition 2.2. A statistical structure $\{E, S, \mu_i, i \in I\}$ is called orthogonal if the family of probability measures $\{\mu_i, i \in I\}$ are pairwise singular measures.

Definition 2.3. A statistical structure $\{E, S, \mu_i, i \in I\}$ is called weakly separable if there exists a family S - measurable sets $\{X_i, i \in I\}$ such that the relactions are fulfilled:

$$\mu_i(X_j) = \begin{cases} 1, & ifi = j \\ 0, & if \quad i \neq j \end{cases}$$

Definition 2.4. A statistical structure $\{E, S, \mu_i, i \in I\}$ is called strongly separable if there exists a family S - measurable sets $\{X_i, i \in I\}$ such that the relactions are fulfilled:

1)
$$\mu_i(X_i) = 1, \forall i \in I;$$

2) $X_i \cap X_j = \emptyset, \forall i, j, i \neq j, i, j \in I;$
3) $\bigcup_{i \in I} X_i = E.$

Let *H* be the set hypotheses and { $\mu_h, h \in H$ } be probability measures definded on the measurable space (*E*, *S*). For each $h \in H$ denote μ_h the complection of the measure μ_h , and denote by dom (μ_h) the σ -algebra of all μ_h measurable subsets of *E*. Let

$$S_1 = \bigcap_{h \in H} dom(\overline{\mu}_h).$$

Let H be the set of hypotheses and B(H) be σ -algebra of subsets of which contains all finite subsets of H.

Definition 2.5. We Will say that the singular statistical structure $\{E, S_1, \mu_h, h \in H\}$ admits a counsistent criteria for testing hypotheses if there exists at last one measurable mapping

$$\delta: (E, S_1) \to (H, B(H)),$$

such that

$$\mu_h(\{x:\delta(x)=h\})=1, \ \forall h\in H$$

Remark 2.1. The definition and construction of the consistent criteria is studied z. zerakidze (see[2]). Definition 2.6. Let *G* some σ -subalgebra of σ -algebra S_1 . Algebra *G* is called free (relatively hypotheses $h \in H$), if all restriction of probability measures { μ_h , $h \in H$ } on the algebra *G* much up.

Definition 2.7. A statistical structure $\{E, S_1, \mu_h, h \in H\}$ is called isolated, if minimal σ -algebra D relatively which measurable all function with from $h \to \mu_h(A), A \in S_1$ devides points on H.

Definition 2.8. A statistical structure $\{E, S_1, \mu_h, h \in H_1\}$ is called strongly isolated if σ -algebra *D* contains all finite subsets of *H*.

Definition 2.9. A statistical structure $\{E, S_1, \mu_h, h \in H\}$ is called decomposable, if there exist two such sub algebra $S_2, S_3 \subset S_1$ whose union generates σ -algebra $S_1 \cdot S_2$ is sufficient and S_3 is free. The such couple (S_2, S_3) is called decomposition of statistical structure $\{E, S_1, \overline{\mu_h}, h \in H\}$. For any set $G \subset 2^H$ by symbol $\langle G \rangle$ we will denote the algebra generated by set G and $\sigma \langle G \rangle$ the σ -algebra generated by set G.

Let
$$I^* = \bigcap_{h \in H} \{A \in S_1 : \mu_h(A) = 0\}$$

Definition 2.10. Algebra $B_1 \subset S_1$ is called minimal sufficient, if B_1 is sufficient and for any sufficient algebra B_1 fulfilled condition $B_1 \subset \sigma < B_1 \cup I^* > .$

Let \mathfrak{T} some σ -subalgebra of algebra S_1 and μ -probability measure defined on \mathfrak{T} , we will denote by $S_{\mu}(S_1,\mathfrak{T})$ the set of finite and finity additive continuations of measure μ on the σ -algebra S_1 and let $exS_{\mu}(S_1,\mathfrak{T})$ the set its exstremal points. $S_{\mu}^{\sigma}(S_1,\mathfrak{T})$ the set of all countable additive continuations of measure μ on the σ -algebra S_1 and $exS^{\sigma}(S_1,\mathfrak{T})$ the set its exstremal points.

Is known, that $exS_{\mu}(S_1, \mathfrak{I}) \neq \emptyset$, but the set $exS_{\mu}^{\sigma}(S_1, \mathfrak{I})$ my be empty ([7]).

Example 2.1.

In the terminology of [8] let $ba(\Sigma, v, \Sigma')$ denote the set of all $\mu \in ba(S, \Sigma')$ with $\mu \ge 0$ and $\mu(S) = 1$, such that $\mu / \Sigma = v$, where Σ' is a field of subset of a set S, Σ' is subfield of Σ' and $v \in ba(S, \Sigma)$ with $v \ge 0$ and v(S) = 1. The set $ca(\Sigma, v, \Sigma')$, where Σ' and $\Sigma', \Sigma \subset \Sigma'$, denote σ -fields and v is a probability measure on Σ , is defined in the same way. Whereas in the case $ca(\Sigma, v, \Sigma')$ the set of exstremal points may be empty. Take, for example, for *S* the set of real numbers, $\Sigma = \{B \subset S / B\}$ resp. B^c is countable, Σ is defined to be set of Borel subsets of *S*, and *v* is defined by v(B) = 0, resp.1 if *B*, resp. B^c is countable.

1. The counsistent criteria for testing hypotheses ih Hilbert space of measures and extremal points.

Let M^{σ} be a real linear space of all alternating finite measures on S.

Definition 3.1. A linear subset $M_{H} \subset M^{\sigma}$ is called a Hilbert space of measures if:

- 1) One can introduce on M_{μ} a scale product $(\mu, \nu), \mu, \nu \in M_{\mu}$ is the Hilbert space and every mutually singular measures μ and ν , $\mu, \nu \in M_{\mu}$, the scale product $(\mu, \nu) = 0$;
- 2) If $v \in M_{H}$ and $||f(x)|| \leq 1$, then $\mu_{f}(A) = \int_{A} f(x)v(dx) \in M_{H}$, where f(x) is a S_{1} -measurable real function and $(v_{f}, v_{f}) \leq (v, v)$;

3) If $v \in M_{H}$, $v_{n} > 0$, $v_{n}(E) < +\infty m$ n = 1, 2, ... and $v_{n} \neq 0$, then for any $v \in M_{H}$ lim $(v_{n}, \mu) = 0$.

Remark 3.1. The definition and construction of the Hilbert space of measures is studied Z. Zerakidze (see[4]) The following theorem has also been proved in this paper (see[4])

Theorem 3.1. Let M_{H} is Hilbert space of measures then M_{H} is the straight sum Hilbert spaces $H_{2}(\mu_{h})$ so $M_{H} = \bigoplus_{h \in H} H_{2}(\overline{\mu_{h}})$, where $H_{2}(\overline{\mu_{h}})$ is the family of measures $v(A) = \int_{A} f(x)\overline{\mu_{h}}(dx), \quad \forall A \in S_{1}$, that $\int_{E} |f(x)|^{2} \overline{\mu_{h}}(dx) < +\infty$ and $|\nabla \Box_{H_{2}(\overline{\mu_{h}})} = \left(\int_{A} |f(x)|^{2} \overline{\mu_{h}}(dx)\right)^{\frac{1}{2}}$.

Theorem 3.2. Let $M_{H} = \bigoplus_{h \in H} H_{2}(\mu_{h})$ be a Hilbert space of measure, E be the complete separable metric space, S_{1} be Borel σ -algebra in E and $cardH \leq 2^{\chi_{0}}$, then if the correspondence

 $f \leftrightarrow \psi_f$,

given by the equality

$$\int f(x)v(dx) = (\psi_f, v), \quad \forall v \in M_H$$

be one-to-one. Denote by $F = F(M_H)$ the set of real functions f for which $\int f(x)\overline{\mu}_h(dx)$ is defined $\forall \overline{\mu}_h \in M_H$.

Then the statistical structure { $E, S_1, \overline{\mu_h}, h \in H$ } admits a consistent criteria for testing hypotheses, and if the statistical structures { $E, S_1, \overline{\mu_h}, h \in H$ } is decomposition, (S_2, S_3) then $\overline{\mu_h} \in exS_{\overline{\mu_h}}^{\sigma}(S_1, S_3)$, $\forall h \in H$.

Proof. Let $f \in F(M_{H})$ is corresponded with $\overline{\mu}_{h^{+}} \in M_{H}$ for which $\int f(x)\overline{\mu}_{h}(dx) = (\overline{\mu}_{h^{+}}, \overline{\mu}_{h})$, then $\overline{\mu}_{h^{+}}, \overline{\mu}_{h^{-}} \in M_{H}$ we have $\int f_{h^{+}}(x)\overline{\mu}_{h^{-}}(dx) = (\mu_{h^{+}}, \mu_{h^{-}}) = \int f_{1}(x)f_{2}(x)\mu_{h^{+}}(dx) = \int f_{h^{+}}(x)f_{2}(x)\mu_{h^{+}}(dx)$. So $f_{h^{+}}(x) = f_{1}$ for almost with respect to measure $\overline{\mu}_{h^{+}}$ and

On other $\overline{\mu}_h(E - X_h) = 0$, $X_h = \{x : f_h^*(x) > 0\}$. Hence it follows that $\overline{\mu}_h(X_h) = \begin{cases} 1, & \text{if } h = h \\ 0, & \text{if } h \neq h \end{cases}$, the

statistical structure { $E, S_1, \overline{\mu_h}, h \in H$ } is weakly separable. Represent { $\overline{\mu_h}, h \in H$ }, card $H \leq 2^{\chi_0}$ as an inductive sequence $\overline{\mu_h} < \omega_1$, where ω_1 denotes the first ordinal number of the power of the set H.

Sense the statistical structure $\{E, S_1, \mu_h, h \in H\}$ is weakly separable, there exists a family S -measurable sets $\{X_h, h \in H\}$ such that the following are fulfilled

$$\overline{\mu}_{h}(X_{h}) = \begin{cases} 1, & \text{if } h = h \\ 0, & \text{if } h \neq h \end{cases}, \quad \forall h, h \in [0, \omega_{1}).$$

We define ω_1 sequence of parts Z b of the space E, so that the following relations are fulfilled:

- 1) Z_h is Borel subset in E for all $h < \omega_1$;
- 2) $Z_h \subset X_h$ for all $h < \omega_1$;
- 3) $Z_{h} \cap X_{h} = \emptyset$ for all $h' < \omega_1, h'' < \omega_1, h' \neq h'';$

Assume that $Z_{h_0} = X_{h_0}$, Let further the particular sequence $\{Z_{h_j}\}_{j < i}$ be already defined for $i < \omega_1$. It is clear, that $\mu^* (\bigcup_{j < i} Z_{h_j}) = 0$, (see[3]). Thus there exists a Borel subset Y_{h_i} of space E such that the following relations are valid: $\bigcup_{j < i} Z_{h_j} \subset Y_{h_i}$ and $\overline{\mu}(Y_{h_i}) = 0$. Assume $Z_{h_i} = X_{h_i} - Y_{h_i}$, there by the ω_1 sequence of $\{Z_{h_j}\}_{j < \omega_1}$ disjuntive measurable subsets of space E is ciunstructed, Therefore $\overline{\mu}_h(X_h) = 1$, $\forall h < \omega_1$. A statistical structure $\{E, S_1, \overline{\mu}_h, h \in H\}$, card $H \le 2^{\chi_0}$ is strongly separated there there exists a family $\{Z_h\}_{h \in H}$ of elements of σ -algebra $S_1 = \bigcap_{h \in H} dom(\overline{\mu}_h)$ such that: 1. $\overline{\mu}_h(X_h) = 1$, $\forall h \in H$;

2. $Z_{h} \cap Z_{h} = \emptyset, \forall h, h \in H, h \neq h;$ 3. $\bigcup_{h \in H} X_{h} = E.$

For $x \in E$, we put $\delta(x) = h$, where h is unique hypotheses from the set H for which $x \in Z_h$. The extence of such a unique hypotheses H can be proved using conditions 2), 3). Now let $Y \in B(H)$.

Then $\{x : \delta(x) \in Y\} = \bigcup_{h \in Y} Z_h$. We must show that $\{x : \delta(x) \in Y\} \in dom(\overline{\mu}_{h_0})$ for each $h_0 \in H$. If $h_0 \in Y$, then $\{x : \delta(x) \in Y\} = \bigcup_{h \in Y} Z_h = Z_{h_0} \cup (\bigcup_{h \in Y - \{h_n\}} Z_h)$.

On the one hand, from the validity of the condition 1), 2), 3)it follows that

$$Z_{h_0} \in S_1 = \bigcap_{h \in H} dom(\overline{\mu}_h) \subseteq dom(\overline{\mu}_{h_0})$$

On the other hard, the validity of the condition $\bigcup_{h \in Y - \{h_0\}} Z_h \subseteq (E - Z_{h_0})$ implies that $\overline{\mu}_{h_0} (\bigcup_{h \in Y - \{h_0\}} Z_h) = 0$. The last equality yields that $\bigcup_{h \in Y - \{h_0\}} Z_h \in dom(\overline{\mu}_{h_0})$. Since $dom(\overline{\mu}_{h_0})$ is σ -algebra, we deduce that

Available Online: http://saspjournals.com/sjpms

 $\{x:\delta(x)\in Y\}=Z_{h_0}\cup(\bigcup_{h\in Y-\{h_0\}}Z_h)\in dom(\overline{\mu}_{h_0})\ .\ \text{If}\ h_0\notin Y\ ,\ \text{then}\ \{x:\delta(x)\in Y\}=\bigcup_{h\in H}Z_h\subseteq (E-Z_{h_0})\ \text{and}\ \text{ we}\ \text{conclude that}\ \overline{\mu}_{h_0}\{x:\delta(x)\in Y\}=0\ \text{the last relation implies that}\ \{x:\delta(x)\in Y\}\in dom(\overline{\mu}_{h_0})\ \text{for an arbitrary}\ h_0\in H\ .\ \text{Hance}\ \{x:\delta(x)\in Y\}\in\bigcap_{h\in H}dom(\overline{\mu}_{h_0})=S_1\ .$

We have shown that the $map \ \delta : (E, S_1) \to (H, B(H))$ is measurable map. and $\overline{\mu}_h \{x : \delta(x) = h\} = 1, \ \forall h \in H$. Thus the statistical structure $\{E, S_1, \overline{\mu}_h, h \in H\}$ admits a consistent criteria for testing hypotheses. The extence of a consistent criterium for testing hypothases $\delta : (E, S_1) \to (H, B(H))$. Let the linear operator u is denoted by

$$u(f) = \int_{E} f(x)\overline{\mu}_{h}(dx), \quad f \in B(E, S_{1}).$$

This operator u is appositive isometric operator with norm $\Box u \Box = 1$ and $u: B(E_1, S_1) \rightarrow (H, B(H)) \cdot (uB(E_1, S_1)) = (H, B(H))$. σ -algebra $\delta^{-1}(H)$ is minimal sufficient. In what follows $B(E, S_1)$ will always measurable functions on (E, S_1) having the natural order and with norm $\Box f \Box = \sup_{x \in E} |f|$, as $S_1 = \bigcap_{h \in H} dom(\overline{\mu}_h)$, then $S_1 = \sigma < \delta^{-1}(B(H)) \cup \mathfrak{I}^* >$, Where $\mathfrak{I}^* = \bigcap_{h \in H} \{A \in S : \mu_h(A) = 0\}$.

If statistical structure $\{E, S_1, \mu_h, h \in H\}$ is decomposable $(\delta^{-1}B(H), G_2)$, where $\delta^{-1}B(H)$ is sufficient algebra and G_2 is free algebra then algebras S_1 and G_2 also is decomposable and $\forall A \in S_1, A = C \Delta I, C \in \delta^{-1}(B(H))$, $I \in \mathfrak{I}^*$ and $\mu_h(A \Delta C) = 0$. This denote that $\mu_h \in \exp S_{\mu}^{\sigma}(S_1, \delta^{-1}(B(H))), \forall h \in H$ (see [7], Theorem 1).

REFERENCES

- 1. Ibramhalilov IA. Skorokhod. Consistent criteria of parameters of random processes. Kiev. 1980.
- Zerakidze Z. Generalization of Neumann-Pearson criterion. Collected scientific of works (in Georgian). The ministry
 of Edication and Science of Georgia, Gori state University, pp 63-69. Tbilisi 2005.
- 3. Zerakidze Z. On weekly divisible and divisible families of probability measures. Bull. Acad. Sci. Georgia SSR 113, 1984.
- 4. Zerakidze Hilbert space of measure Z. Ukr. Math. Journ. 1986; 38(2): p.148-154. Kiev.
- 5. Eliauri L, Mumladze M, Zerakidze Z. Consistent Criteria for checking Hypotheses. Journal of Mathematics and System Science. 2013 Oct 1;3(10):514.
- 6. Akaike H. A new look at the statistical model identification. IEEE transactions on automatic control. 1974 Dec;19(6):716-23.
- 7. Plachky D. Extremal and monogenic additive set functions. Proceedings of the American Mathematical Society. 1976;54(1):193-6.
- 8. Dunford N, Schwartz JT. Linear operators part I: general theory. New York: Interscience publishers; 1958.