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Abstract: The present theory a consistent criteria for testing hypotheses can be used, for 

example, in the reliably predication of different engineering designs. In the paper there 

are discussed statistical structures { , , ,
i

E S i I   }. We prove sufficient conditions for 

extence of such criteria and we prove conditions for extence exstremal points. 
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INTRODUCTION 

In the general theory of testing hypotheses there often arises a problem of 

transition from weakly separated family of probability measure to the corresponding 

strongly separated family.In the ZF theory Z. Zerakidze (see[3] –[4]) proved that the 

countable family of probability, ortogonaly and strongly separability are aquivalent.  

 

The consistent criteria for testing hypotheses 

Let ( ,E S ) be a measurable space with a geven family of probability 

measures: { ,
i

i I  }. The following definitions are taken from the works ( [1]-[8]). 

 

Definition 2.1.  An object { , , ,
i

E S i I   } is called a statistical structure. 

 

Definition 2.2.  A  statistical structure  { , , ,
i

E S i I   } is called  orthogonal if the family of probability measures {

,
i

i I  } are pairwise singular measures. 

 

Definition 2.3.  A  statistical structure  { , , ,
i

E S i I   } is called  weakly separable if there exists a family  S -

measurable sets  { ,
i

X i I } such that the relactions are fulfilled:  

1,
( )

0 ,
i j

ifi j
X

if i j



 



 

Definition 2.4.  A  statistical structure  { , , ,
i

E S i I   } is called  strongly separable  if there exists a family  S -

measurable  sets  { ,
i

X i I } such that the relactions are fulfilled:  

1) ( ) 1, ;
i i

X i I     

  2)  , , , , ,
i j

X X i j i j i j I      ; 

3) 
i

i I

X E



 . 

 

Let H  be the set hypotheses and { ,
h

h H  } be probability measures definded on the measurable space (

,E S ).  For each h H  denote 
h

  the complection of the measure 
h

 , and denote by  dom(
h

 )  the   -algebra of 

all 
h

  measurable subsets  of E . Let  

1
( )

h

h H

S d o m 



 . 
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Let H  be the set of hypotheses and ( )B H  be  -algebra of subsets of which contains all finite subsets of H . 

 

Definition 2.5.   We Will say that the singular statistical structure {
1

, , ,
h

E S h H  } admits a counsistent  criteria for 

testing hypotheses if there exists at last one measurable mapping 

 

1
: ( , ) ( , ( ) )E S H B H  , 

such that  

({ : ( ) } ) 1, .
h

x x h h H     
 

 

Remark 2.1. The definition and construction of the consistent criteria is studied z. zerakidze (see[2]). 

Definition 2.6.   Let G some  -subalgebra of  -algebra
1

S . Algebra G  is called free (relatively hypotheses h H ), 

if all restriction of probability  measures { ,
h

h H  } on the algebra G much up. 

 

Definition 2.7.   A statistical structure  {
1

, , ,
h

E S h H   } is called  isolated, if minimal  -algebra D  relatively 

which measurable all function with from 
1

( ) ,
h

h A A S  devides points on H . 

 

Definition 2.8.   A statistical structure {
1

, , ,
h

E S h H   } is called strongly isolated if -algebra D contains all finite 

subsets of H . 

 

Definition 2.9.   A statistical structure {
1

, , ,
h

E S h H   } is called decomposable, if there exist two such sub algebra  

2 3 1
,S S S whose union generates   -algebra  

1 2
S S  is sufficient and 

3
S is free.The such couple  

2 3
( , )S S is called 

decomposition of statistical structure  {
1

, , ,
h

E S h H  }. For any set 2
H

G   by symbol < G > we will denote the 

algebra generated by set G  and G    the   -algebra generated by set  G . 

 

Let 
*

1
{ : ( ) 0}

h

h H

I A S A



    

 

Definition 2.10.   Algebra 
1 1

B S is called minimal sufficient,  if 
1

B is sufficient and for any sufficient  algebra 
'

1
B

fulfilled condition 
' *

1 1
B B I   . 

 

Let   some  -subalgebra of algebra 
1

S  and  -probability measure defined on   , we will denote by 

1
( , )S S


  the set of finite and finity additive continuations of measure   on the  -algebra 

1
S  and let 

1
( , )e x S S


  

the set its exstremal points.  
1

( , )S S



  the set of all countable additive continuations of measure   on the  -algebra 

1
S  and 

1
( , )exS S




  the set its exstremal points.                                                     

 

Is known, that  
1

( , )e x S S


   , but the set   
1

( , )S S



 my  be empty ([7]).                                                   

 

Example 2.1. 

 

In the terminology of [8]  let ( , , ')b a    denote the set of all ( , ')b a S    with 0   and ( ) 1S  , 

such that /   , where ' is a field of subset of a set S ,   is subfield of '  and ( , )b a S    with 0  and 

( ) 1S  . The set ( , , ')ca   , where   and ' , '   , denote  -fields and  is a probability measure on  , 

is defined ih the same way.  Whereas in the case ( , , ')ca   the set of exstremal points may be empty. Take , for 
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example, for S the set of real numbers, { / }B S B    resp. 
c

B  is countable, ' is defined to be set of Borel 

subsets of S , and  is defined by ( ) 0B  , resp.1  if  B , resp. 
c

B  is countable. 

 

1. The counsistent criteria for testing hypotheses ih Hilbert space of measures and extremal points. 

 

Let    be a real linear space of all alternating finite measures on S . 

 

Definition 3.1.   A linear subset 
H

M M


 is called a Hilbert space of measures if: 

1) One can introduce on 
H

M a scale product ( , )  , ,
H

M   is the Hilbert space and every mutually singular 

measures   and  , ,
H

M   , the scale product ( , ) 0   ; 

2) If 
H

M   and   l ( )f x  l 1 , then ( ) ( ) ( )
f H

A

A f x d x M   , where ( )f x is a 
1

S -measurable real 

function and ( , ) ( , )
f f

    ; 

3) If 
H

M  , 0
n

  , ( ) 1, 2 , . . .
n

E m n     and 0
n

  , then for any 
H

M   , ) 0lim ( n

n

 

 

 .                                                                                                                                           

 

Remark 3.1.  The definition and construction of the Hilbert space    of measures is studied Z. Zerakidze (see[4])     The 

following    theorem has also been proved in this paper (see[4]) 

 

Theorem 3.1. Let  
H

M  is Hilberts space of measures then 
H

M    is the straight sum Hilbert spaces      
2

( )
h

H   so 

2
( )

hH

h H

M H 



   , where 
2

( )
h

H  is the family  of  measures 
1

( ) ( ) ( ),
h

A

A f x d x A S    , that    

2
| ( ) | ( )

h

E

f x d x    and         
2

1

2

2

( )
| ( ) | ( )

h
H h

A

f x d x


 
 

  

 
      . 

 

Theorem3.2.  Let 
2

( )
hH

h H

M H 



   be a Hilbert space of measure,  E  be the complete separable metric space, 
1

S be 

Borel  -algebra in  E  and 02ca rd H


 , then if the correspondence 

f
f  , 

given by the equality 

( ) ( ) ( , ),
f H

f x d x M       

be one-to-one. Denote by ( )
H

F F M  the set of real functions f for which  ( ) ( )
h

f x d x  is defined  

h H
M   . 

 

Then the statistical structure {
1

, , ,
h

E S h H  } admits a consistent criteria for testing hypotheses, and if the statistical 

structures {
1

, , ,
h

E S h H  } is decomposition, 
2 3

( , )S S  then 
1 3

( , ),
h

h
exS S S h H




    . 

 

Proof. Let ( )
H

f F M    is corresponded with  
'h H

M    for which    
'

( ) ( ) ( , )
h h h

f x d x   , then    

'''
,

h Hh
M    we have ' '' '' ' ' '' 1 2 2

( ) ( ) ( , ) ( ) ( ) ( ) ( ) ( ) ( )
hh h h h h h

f x d x f x f x d x f x f x d x         . So 

' 1
( )

h
f x f  for almost with respect to measure  '

h
  and  
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' ' ' ' '

2 *

'
( ) 0 , ( ) ( ) , ( ) ( )

h h h h h h
f x f x d x f x d x       , then ' ''

'

* ' ''

''
( ) ( ) ( , ) 0 ,

h
h h h

f x d x h h      , 

On other 
' ' ' '

*
( ) 0 , { : ( ) 0}

h h h h
E X X x f x     . Hence it follows that ' ''

' ''

' ''

1,
( )

0 ,
h h

i f h h
X

if h h


 

 


, the 

statistical  structure  {
1

, , ,
h

E S h H  } is weakly separable. Represent { , } ,
h

h H  card 02H


  as an inductive 

sequence  
1h

  , where 
1

 denotes the first ordinal number of the power of the set H .  

Sense the statistical structure {
1

, , ,
h

E S h H  } is weakly separable, there exists a family S -measurable sets 

{ , }
h

X h H  such that the following are fulfilled 

' ''

' ''

' ''

1' ''

1,
( ) , , [0 , )

0 ,
h h

i f h h
X h h

if h h

 
 

  


. 

 

We define 
1

  sequence of parts 
h

Z of the space E , so that the following relations are fulfilled: 

1) 
h

Z  is Borel subset in E  for  all 
1

h  ; 

2) 
h h

Z X  for  all 
1

h  ; 

3) ' ''
h h

Z X    for  all 
' '' ' ''

1 1
, ,h h h h    ; 

 

         Assume that 
0 0

h h
Z X , Let further the particular sequence { }

j
h j i

Z


be already defined for 
1

i  . It is 

clear, that 
*
( ) 0

j
h

j i

Z


 , (see[3]). Thus there exists a Borel subset 
i

h
Y  of space E  such that the following relations 

are valid: 
j i

h h
j i

Z Y


  and ( ) 0
i

h
Y  . Assume 

i i i
h h h

Z X Y   , there by the 
1

  sequence of 
1

{ }
j

h j
Z


disjuntive 

measurable subsets of space E is ciunstructed, Therefore 
1

( ) 1,
h h

X h    . A statistical structure  {

1
, , ,

h
E S h H  },  card 02H


 is strongly separated there there exists a family { }

h h H
Z


of elements of  -algebra 

1
( )

h
h H

S d o m 


  such that:  

1. ( ) 1,
h h

X h H    ; 

2. ' ''

' '' ' ''
, , ,

h h
Z Z h h H h h     ; 

3. 
h

h H

X E


 . 

 

                 For x E ,we put ( )x h  , where h is unique hypotheses from the set H  for which '
h

x Z . The 

extence of such a unique hypotheses H  can be proved using conditions 2), 3). Now let ( )Y B H . 

Then { : ( ) }
h

h Y

x x Y Z


  . We must show that 
0

{ : ( ) } ( )
h

x x Y d o m    for each 
0

h H . If 
0

h Y , then 

0

0
{ }

{ : ( ) } ( )
h h h

h Y h Y h

x x Y Z Z Z
  

   . 

On the one hand, from the validity of  the condition  1), 2), 3)it follows that  

 

0 0
1

( ) ( )
h h h

h H

Z S d o m d o m 


    

 

On the other hard, the validity of the condition 
0

0
{ }

( )
h h

h Y h

Z E Z
 

   implies that 
0

0
{ }

( ) 0
h h

h Y h

Z
 

 . 

The last equality yields that 
0

0
{ }

( )
h h

h Y h

Z d o m 
 

 .  Since 
0

( )
h

d o m   is  -algebra, we deduce that  
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0 0

0
{ }

{ : ( ) } ( ) ( )
h h h

h Y h

x x Y Z Z d o m 
 

   . If 
0

h Y , then
0

{ : ( ) } ( )
h h

h H

x x Y Z E Z


     and  we 

conclude that 
0

{ : ( ) } 0
h

x x Y     the last relation implies that 
0

{ : ( ) } ( )
h

x x Y d o m    for an arbitrary 

0
h H . Hance 

0
1

{ : ( ) } ( )
h

h H

x x Y d o m S 


   .  

 

                 We have shown that the 
1

: ( , ) ( , ( ))m a p E S H B H   is measurable m a p . and 

{ : ( ) } 1,
h

x x h h H      . Thus the statistical structure {
1

, , ,
h

E S h H  } admits a consistent criteria for 

testing hypotheses. The extence of a consistent criterium for testing hypothases
1

: ( , ) ( , ( ) )E S H B H  . 

Let the linear operator  u  is denoted by  

 

1
( ) ( ) ( ), ( , )

h

E

u f f x d x f B E S  . 

 

This operator u is appositive isometric operator with norm 1u   and 

1 1 1 1
: ( , ) ( , ( )) ( ( , )) ( , ( ))u B E S H B H u B E S H B H   .   -algebra 

1
( )H


 is minimai sufficient.In what 

follows 
1

( , )B E S  will always measurable functions on 
1

( , )E S  having the natural order and with norm 

su p | |
x E

f f


 , as 
1

( )
h

h H

S d o m 


 , then 
1 *

1
( ( ) )S B H 


    , 

Where 
*

{ : ( ) 0}
h

h H

A S A


    . 

 

                If statistical structure {
1

, , ,
h

E S h H  } is decomposable
1

2
( ( ) , )B H G


, where 

1
( )B H


 is sufficient 

algebra and 
2

G is free algebra then algebras 
1

S and 
2

G  also is decomposable and 

1

1
, , ( ( ) )A S A C I C B H


     , 

*
I    and ( ) 0 .

h
A C   This denote that 

1

1
ex p ( , ( ( )),

h
S S B H h H




 


    (see [7], Theorem 1). 
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