Scholars Journal of Physics, Mathematics and Statistics

Abbreviated Key Title: Sch. J. Phys. Math. Stat. ©Scholars Academic and Scientific Publishers (SAS Publishers) (An International Publisher for Academic and Scientific Resources) ISSN 2393-8056 (Print) ISSN 2393-8064 (Online)

Fixed Point Theorems for Geraghty-Khan Contractions in B-metric Spaces

Liu Jingshuai, Ji Peisheng*

School of Mathematical Sciences, Qingdao University, Shangdong 266071, P. R. China

*Corresponding author Ji Peisheng	Abstract: In this paper, we introduce the concept of Geraghty-Khan contraction in b - metric spaces. By using the method of the fixed point theory, we prove some fixed point results for this contraction in complete b -metric space.
Auticle III sterry	Keywords: Fixed point, Geraghty-Khan contraction, b -metric space.
Article History Received: 16.10.2018 Accepted: 25.10.2018 Published: 30.10.2018 DOI: 10.21276/sjpms.2018.5.5.6	INTRODUCTION The Banach contraction principle introduced by Banach [1] is one of the most important results in mathematical analysis. Indeed, it is widely used as the source of metric fixed point theory. In 1973, Geraghty [2] generalized Banach contraction principle as follow:
	Theorem1.1[2] Let (X, d) be a complete metric space and $T : X \to X$ be a self-mapping such that for all $x, y \in X$, $d(Tx, Ty) \le \beta(d(x, y))d(x, y)$, where $\beta : [0, \infty) \to [0, 1)$ is a function satisfying $\beta(t_n) \to 1$ implies $t_n \to 0$ as
	$n \to \infty$. Then T has a unique fixed point. Afterward, some authors have obtained fixed point theorems for some kinds of Geraghty type contractive mappings (see [3,4,10,11,12]).

Recently, H. Piri *et al.* [5] obtained Khan type fixed point theorems in a generalized metric space. Hossein Piri *et al.* [7] introduced the concept of F-Khan-contractions and proved a fixed point theorem in complete metric spaces. Besides, some authors have proved some Khan type fixed point theorems see [6,8].

In 1993, Czerwik introduced in [9] the concept of a b-metric space. Since then, several papers dealt with fixed point theory for single-valued in b-metric spaces see [10-14].

In this paper, we will introduce the Geraghty-Khan contraction and we shall prove the existence of new fixed point theorem for this contraction in complete b-metric space. Through this paper, we denote by N the set of positive integers.

Preliminaries

For the sake of completeness, we recall some basic definitions and lemma.

Definition 2.1. [9] Let X be a (nonempty) set and $s \ge 1$ be a given real number. A function $d: X \times X \rightarrow [0, \infty)$ is a *b*-metric on X, if for all x, y, $z \in X$, the following conditions hold:

- (1) d(x, y) = 0 if and only if x = y;
- (2) d(x, y) = d(y, x);
- (3) $d(x, y) \le s[d(x, z) + d(z, y)]$ (*b* -triangular inequality).

Then (X, d) is called a b-metric space.

Definition 2.2. [12] Let X be a b -metric space and $\{x_n\}$ is a sequence in X. Then

- (a) the sequence $\{x_n\}$ is convergent if and only if there exists $z \in X$ such that $\lim d(x_n, z) = 0$;
- (b) the sequence $\{x_n\}$ is Cauchy if and only if $d(x_n, x_m) \to 0$ as $n, m \to \infty$;
- (c) $\{x_n\}$ is complete, if every Cauchy sequence in X is convergent.

The following lemma will be used for proving our main results.

Lemma 1. ([14]) Let (X, d) be a *b* -metric space with $s \ge 1$, and suppose that sequences $\{x_n\}$ and $\{y_n\}$ are convergent to x, y, respectively. Then we have

$$\frac{1}{s^{2}}d(x, y) \leq \liminf_{n \to \infty} d(x_{n}, y_{n}) \leq \limsup_{n \to \infty} d(x_{n}, y_{n}) \leq s^{2}d(x, y),$$

in particular, if x = y, then we have $\lim d(x_n, y_n) = 0$. Moreover, for each $z \in X$, we have

$$\frac{1}{s}d(x,z) \leq \liminf_{n \to \infty} d(x_n,z) \leq \limsup_{n \to \infty} d(x_n,z) \leq sd(x,z).$$

MAIN RESULTS

As in [11], for a real number s > 1, let F_s denote the class of all functions $\beta : [0, \infty) \rightarrow [0, 1/s)$ satisfying the following condition:

$$\beta(t_n) \to \frac{1}{s}$$
 implies $t_n \to 0$, as $n \to \infty$.

Definition 3.1. Let (X, d) be a *b*-metric space with s > 1, and let $T : X \to X$ be a self-mapping. A mapping *T* is said to be a Geraghty-Khan contraction, if there exist $\beta \in F_s$ such that for all distinct $x, y \in X$, the following conditions holds:

$$d(Tx, Ty) \leq \begin{cases} \beta(M(x, y))M(x, y), & \text{if max} \{ d(x, Ty), d(Tx, y) \} \neq 0, \\ 0, & \text{if max} \{ d(x, Ty), d(Tx, y) \} = 0, \end{cases}$$
(3.1)
where $M(x, y) = \max\{ d(x, y), \frac{d(x, Tx)d(x, Ty) + d(y, Ty)d(y, Tx)}{\max\{ d(x, Ty), d(Tx, y) \}} \}.$

Theorem 3.1. Let (X, d) be a complete *b* -metric space with parameter s > 1 and $T : X \to X$ be a Geraghty-Khan contraction. Then *T* has a unique fixed point x * and for all $x_0 \in X$, the sequence $\{Tx_0\}$ is converges to x *.

Proof. Let $x_0 \in X$ and $\{x_n\}$ be a sequence in X with $x_{n+1} = Tx_n = T^n x_0$, for all $n \in N$. If $x_n = x_{n-1}$ for some $n \in N$, then $x_{n-1} = Tx_{n-1}$, x_{n-1} is a fixed point of T. Therefore, we will assume that $x_n \neq x_{n-1}$ for all $n \in N$. Then $0 < d(x_{n-1}, x_n) \le M(x_{n-1}, x_n)$ for all $n \in N$.

We shall divide the proof into two cases.

d

Case1. Assume that max{ $d(x_{n-1}, Tx_n), d(Tx_{n-1}, x_n) \neq 0$ for all $n \in N$. Then, from (3.1) we have

$$(x_{n}, x_{n+1}) = d(Tx_{n-1}, Tx_{n}) \le \beta(M(x_{n-1}, x_{n}))M(x_{n-1}, x_{n}), \qquad (3.2)$$

where

$$M(x_{n-1}, x_n) = \max\{ d(x_{n-1}, x_n), \frac{d(x_{n-1}, Tx_{n-1})d(x_{n-1}, Tx_n) + d(x_n, Tx_n)d(x_n, Tx_{n-1})}{\max\{ d(x_{n-1}, Tx_n), d(Tx_{n-1}, x_n)\}} \}$$

= max{ $d(x_{n-1}, x_n), \frac{d(x_{n-1}, x_n)d(x_{n-1}, x_{n+1}) + d(x_n, x_{n+1})d(x_n, x_n)}{\max\{ d(x_{n-1}, x_{n+1}), d(x_n, x_n)\}} \}$
= $d(x_{n-1}, x_n).$ (3.3)

Available Online: http://saspjournals.com/sjpms

From (2.2) and (2.3) we have

$$d(x_{n}, x_{n+1}) = d(Tx_{n-1}, Tx_{n}) \le \beta(d(x_{n-1}, x_{n}))d(x_{n-1}, x_{n}) < \frac{1}{s}d(x_{n-1}, x_{n}) < d(x_{n-1}, x_{n}).$$
(3.4)

Therefore, $\{d(x_n, x_{n+1})\}$ is decreasing. Then there exists $r \ge 0$ such that $\lim_{n \to \infty} d(x_n, x_{n+1}) = r$. We will prove that r = 0. Suppose on contrary that r > 0. Then, letting $n \to \infty$ from (3.4) we have

$$r \le \lim_{n \to \infty} \beta \left(d \left(x_{n-1}, x_n \right) \right) r < r ,$$

$$r = \lim_{n \to \infty} d \left(x_n, x_{n+1} \right) = 0 .$$
(3.5)

which is a contradiction. We have $r = \lim_{n \to \infty} d(x_n, x_{n+1}) = 0$.

Next, we will show that $\{x_n\}$ is a Cauchy sequence in X. We will prove by using a contradiction technique. Assume that $\{x_n\}$ is not a Cauchy sequence. Therefore there exists $\varepsilon > 0$ for we can find two sub-sequences $\{x_{m_i}\}$ and $\{x_{n_i}\}$ of $\{x_n\}$ such that n_i is the smallest index for which

$$n_i > m_i > i$$
, $d(x_{m_i}, x_{n_i}) \ge \varepsilon$. This means that $d(x_{m_i}, x_{n_i-1}) < \varepsilon$. (3.6)

Taking the upper limit in (3.6) as $i \to \infty$, we get $\lim_{i \to \infty} \sup_{i \to \infty} d(x_{m_i}, x_{n_i-1}) \le \varepsilon$. (3.7) Using *b*-triangular inequality, we have

$$\varepsilon \leq d(x_{m_i}, x_{n_i}) \leq sd(x_{m_i}, x_{m_i+1}) + sd(x_{m_i+1}, x_{n_i}).$$

Taking the upper limit in the above inequality and using (3.5), we get

$$\frac{\varepsilon}{s} \le \limsup_{i \to \infty} d(x_{m_i+1}, x_{n_i}) .$$
(3.8)

In addition, we have $d(x_{m_i}, x_{n_i}) \le sd(x_{m_i}, x_{n_i-1}) + sd(x_{n_i-1}, x_{n_i})$.

By taking the upper limit in the above inequality and using (3.5), we get

$$\lim_{i \to \infty} \sup d(x_{m_i}, x_{n_i}) \le s\varepsilon .$$
(3.9)

Using b -triangular inequality, we have

$$d(x_{m_i+1}, x_{n_i-1}) \le sd(x_{m_i+1}, x_{m_i}) + sd(x_{m_i}, x_{n_i-1}).$$

Taking the upper limit in the above inequality and using (3.5), we get

 $\lim \sup_{i \to \infty} d(x_{m_i+1}, x_{n_i-1}) \le s \varepsilon \text{ . Hence } 0 < \varepsilon \le \max\{ d(x_{m_i}, Tx_{n_i-1}), d(Tx_{m_i}, x_{n_i-1}) \} \text{ .}$

Now putting $x = x_{m_i}$ and $y = x_{n_i-1}$ in (3.1), then we obtain

$$d(x_{m_{i}+1}, x_{n_{i}}) = d(Tx_{m_{i}}, Tx_{n_{i}-1}) \le \beta(M(x_{m_{i}}, x_{n_{i}-1}))M(x_{m_{i}}, x_{n_{i}-1}), \qquad (3.10)$$

where

$$M(x_{m_{i}}, x_{n_{i}-1}) = \max\{ d(x_{m_{i}}, x_{n_{i}-1}), \frac{d(x_{m_{i}}, Tx_{m_{i}})d(x_{m_{i}}, Tx_{n_{i}-1}) + d(x_{n_{i}-1}, Tx_{n_{i}-1})d(x_{n_{i}-1}, Tx_{m_{i}})}{\max\{ d(x_{m_{i}}, Tx_{n_{i}-1}), d(Tx_{m_{i}}, x_{n_{i}-1})\}} \}$$

$$= \max\{ d(x_{m_{i}}, x_{n_{i}-1}), \frac{d(x_{m_{i}}, x_{m_{i}+1})d(x_{m_{i}}, x_{n_{i}}) + d(x_{n_{i}-1}, x_{n_{i}})d(x_{n_{i}-1}, x_{m_{i}+1})}{\max\{ d(x_{m_{i}}, x_{n_{i}}), d(x_{m_{i}+1}, x_{n_{i}-1})\}} \}$$

$$\leq \max\{ d(x_{m_{i}}, x_{n_{i}-1}), d(x_{m_{i}}, x_{m_{i}+1}) + d(x_{n_{i}-1}, x_{n_{i}})\}.$$
(3.11)

Taking the upper limit $i \to \infty$ in (3.11), by using (3.5) and (3.7) we get

$$\lim_{i \to \infty} \sup M(x_{m_i}, x_{n_i-1}) \le \varepsilon .$$
(3.12)

Available Online: http://saspjournals.com/sjpms

Liu Jingshuai & Ji Peisheng.; Sch. J. Phys. Math. Stat., 2018; Vol-5; Issue-5 (Sept-Oct); pp-316-321

Next, taking the upper limit as $i \to \infty$ in (3.10) and using (3.8), (3.11) and (3.12) we have

$$\frac{\varepsilon}{s} \leq \limsup_{i \to \infty} d(x_{m_i+1}, x_{n_i}) \leq \limsup_{i \to \infty} \beta(M(x_{m_i}, x_{n_i-1}))M(x_{m_i}, x_{n_i-1})$$
$$< \frac{1}{s} \limsup_{i \to \infty} M(x_{m_i}, x_{n_i-1})$$
$$\leq \frac{\varepsilon}{s} < \varepsilon,$$

which is a contradiction. Hence $\{x_n\}$ is a Cauchy sequence in X. Since (X, d) is complete, there exists $x^* \in X$ such that $\lim_{n \to \infty} d(x_n, x^*) = 0$. (3.13)

We show that x * is a fixed point of T.

If for each $n \in N$, there exists $i_n \in N$ such that $x_{i_n} = Tx * and i_n > i_{n-1}$, then we have

$$x^* = \lim_{n \to \infty} x_{i_{n+1}} = Tx^*.$$

This proves that x * is a fixed point of T.

Suppose now, there exists $N \in N$ such that $x_n \neq Tx^*$. This implies $d(x_n, Tx^*) > 0$, $\forall n > N$. For all n > N, we have max{ $d(x_n, Tx^*), d(Tx_n, x^*)$ } > 0. From (3.1), we get

----,

$$d(x_{n+1}, Tx^*) = d(Tx_n, Tx^*) \le \beta(M(x_n, x^*)) M(x_n, x^*), \qquad (3.14)$$

where

$$M(x_{n}, x^{*}) = \max\{ d(x_{n}, x^{*}), \frac{d(x_{n}, Tx_{n})d(x_{n}, Tx^{*}) + d(x^{*}, Tx^{*})d(x^{*}, Tx_{n})}{\max\{ d(x_{n}, Tx^{*}), d(Tx_{n}, x^{*})\}} \}$$
$$= \max\{ d(x_{n}, x^{*}), \frac{d(x_{n}, x_{n+1})d(x_{n}, Tx^{*}) + d(x^{*}, Tx^{*})d(x^{*}, x_{n+1})}{\max\{ d(x_{n}, Tx^{*}), d(x_{n+1}, x^{*})\}} \}.$$

So from (3.5), (3.13) and by lemma 1, taking limits as $n \to \infty$ to each side of (3.14), we get $d(x^*, Tx^*) \le 0$ and hence $d(x^*, Tx^*) = 0$. Now, we show that *T* has a unique fixed point. For this we assume that y^* is another fixed point of *T* in *X* such that $d(x^*, y^*) > 0$. Therefore

$$\max\{ d(x^*, Ty^*), d(Tx^*, y^*) \} = d(x^*, y^*) > 0$$

From (3.1), we have

$$d(x^*, y^*) = d(Tx^*, Ty^*) \le \beta(M(x^*, y^*)) M(x^*, y^*), \qquad (3.15)$$

where

$$M(x^*, y^*) = \max\{ d(x^*, y^*), \frac{d(x^*, Tx^*) d(x^*, Ty^*) + d(y^*, Ty^*) d(y^*, Tx^*)}{\max\{ d(x^*, Ty^*), d(Tx^*, y^*) \}}$$

= $d(x^*, y^*)$. (3.16)

From (3.15) and (3.16), we have

$$d(x^*, y^*) = d(Tx^*, Ty^*)$$

$$\leq \beta (d(x^*, y^*)) d(x^*, y^*)$$

$$< \frac{1}{s} d(x^*, y^*),$$

since s > 1, which is a contradiction. Hence $d(x^*, y^*) = 0$. This complete the proof.

Case 2 Assume that there exists $m \in N$ such that $\max\{ d(x_{m-1}, Tx_m), d(Tx_{m-1}, x_m) \} = 0.$ **X**----

By condition (3.1), it follows that $d(Tx_{m-1}, Tx_m) = 0$ and hence $x_m = Tx_m$. This completes the existence of a fixed point of T. The uniqueness follows as in Case 1.

Corollary 3.2 Let (X, d) be a complete *b* -metric space with parameter s > 1 and let $T : X \to X$ be a self-mapping such that

$$d(Tx, Ty) \leq \begin{cases} k \max\{ d(x, y), \frac{d(x, Tx)d(x, Ty) + d(y, Ty)d(y, Tx)}{\max\{ d(x, Ty), d(Tx, y)\}} \}, & \text{if } \max\{ d(x, Ty), d(Tx, y)\} \neq 0, \\ 0, & \text{if } \max\{ d(x, Ty), d(Tx, y)\} = 0, \end{cases}$$

for all $x, y \in X$ and $x \neq y$, and for some $k \in [0, 1/s)$. The T has a unique fixed point x * and for all $x_0 \in X$, the sequence $\{Tx_0\}$ is converges to x *.

Proof. It is sufficient to take $\beta(t) = k$ for all $t \in [0, \infty)$ in Theorem 3.1.

Theorem 3.3 Let (X, d) be a complete *b* -metric space with parameter s > 1 and let $T : X \to X$ be a self-mapping such that

$$d(Tx, Ty) \leq \begin{cases} \delta d(x, y) + \gamma \frac{d(x, Tx) d(x, Ty) + d(y, Ty) d(y, Tx)}{\max\{ d(x, Ty), d(Tx, y) \}}, & \text{if } \max\{ d(x, Ty), d(Tx, y) \} \neq 0, \\ 0, & \text{if } \max\{ d(x, Ty), d(Tx, y) \} = 0, \end{cases}$$

for all $x, y \in X$ and $x \neq y$, and for some $\delta, \gamma \in [0, 1/s)$ such that $\delta + \gamma < 1/s$. The *T* has a unique fixed point x^* and for all $x_0 \in X$, the sequence $\{Tx_0\}$ is converges to x^* . *Proof.* Since

$$\delta d(x, y) + \gamma \frac{d(x, Tx) d(x, Ty) + d(y, Ty) d(y, Tx)}{\max\{ d(x, Ty), d(Tx, y) \}}$$

$$\leq (\delta + \gamma) \max\{ d(x, y), \frac{d(x, Tx) d(x, Ty) + d(y, Ty) d(y, Tx)}{\max\{ d(x, Ty), d(Tx, y) \}} \}.$$

So by taking $k = \delta + \gamma$ in Corollary 3.2, the proof is complete.

Corollary 3.4 ([13]) Let (X, d) be a complete *b* -metric space with parameter s > 1 and let $T : X \to X$ be a self-mapping such that

$$d(Tx, Ty) \leq \begin{cases} \delta d(x, y) + \gamma \ \frac{d(x, Tx)d(x, Ty) + d(y, Ty)d(y, Tx)}{d(x, Ty) + d(Tx, y)}, & \text{if } d(x, Ty) + d(Tx, y) \neq 0, \\ 0, & \text{if } d(x, Ty) + d(Tx, y) = 0, \end{cases}$$

for all $x, y \in X$ and $x \neq y$, and for some $\delta, \gamma \in [0, 1/s)$ such that $\delta + \gamma < 1/s$. The *T* has a unique fixed point x^* and for all $x_0 \in X$, the sequence $\{Tx_0\}$ is converges to x^* . *Proof.* Since

$$\frac{d(x,Tx)d(x,Ty) + d(y,Ty)d(y,Tx)}{d(x,Ty) + d(Tx,y)} \le \frac{d(x,Tx)d(x,Ty) + d(y,Ty)d(y,Tx)}{\max\{d(x,Ty), d(Tx,y)\}}$$

So from Theorem 3.3, the proof is complete.

Liu Jingshuai & Ji Peisheng.; Sch. J. Phys. Math. Stat., 2018; Vol-5; Issue-5 (Sept-Oct); pp-316-321

REFERENCES

- 1. Banach S. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fund. math. 1922 Jan 1;3(1):133-81.
- Geraghty M A. On contractive mappings [J]. Proceedings of the American Mathematical Society. 1973, 40(2): 604-608.
- 3. Đukić D, Kadelburg Z, Radenović S. Fixed points of Geraghty-type mappings in various generalized metric spaces[C]//Abstract and Applied Analysis. Hindawi. 2011, 2011.
- 4. Popescu O. Some new fixed point theorems for α -Geraghty contraction type maps in metric spaces [J]. Fixed Point Theory and Applications. 2014, 2014(1): 190.
- 5. Piri H, Rahrovi S, Kumam P. Khan type fixed point theorems in a generalized metric space [J]. J. Math. Computer Sci. 2016, 16: 211-217.
- 6. Piri H, Rahrovi S, Kumam P. Generalization of Khan fixed point theorem [J]. J. Math. Computer Sci. 2017, 17: 76-83.
- 7. Piri H, Rahrovi S, Marasi H. Fixed point theorem for F-Khan-contractions on complete metric spaces and application to the integral equations [J]. Journal of Nonlinear Sciences and Applications. JNSA, 2017, 10(9): 4564-4573.
- Ansari A H, Saleem N, Fisher B. C-Class Function on Khan Type Fixed Point Theorems in Generalized Metric Space [J]. Filomat. 2017, 31(11): 3483-3494.
- 9. Czerwik S. Contraction mappings in b-metric spaces[J]. Acta Mathematica et Informatica Universitatis Ostraviensis. 1993, 1(1): 5-11.
- 10. Shahkoohi R J, Razani A. Some fixed point theorems for rational Geraghty contractive mappings in ordered b-metric spaces [J]. Journal of Inequalities and Applications. 2014, 2014(1): 373.
- 11. Huang H, Paunovic L, Radenovic S. On some new fixed point results for rational Geraghty contractive mappings in ordered b-metric spaces [J]. J. Nonlinear Sci. Appl, 2015, 8: 800-807.
- 12. Boriceanu M. Strict fixed point theorems for multivalued operators in b-metric spaces [J]. Int. J. Mod. Math. 2009, 4(3): 285-301.
- 13. Sarwar M, Rahman M U. Fixed point theorems for Ciric's and generalized contractions in b-metric spaces [J]. International Journal of Analysis and Applications. 2015, 7(1): 70-78.
- 14. Aghajani A, Abbas M, Roshan J. Common fixed point of generalized weak contractive mappings in partially ordered b-metric spaces [J]. Mathematica Slovaca. 2014, 64(4): 941-960.