
Citation: Samuel Okon Essang, Adie Benimpuye Emmanuel, Sylvia Adaobi Akpotuzor, Philia Agam Ayuk,

Aigberemhon Ede Moses, Blessed Yahweh, Nko Samuel Bassey, Ekemini Anietie Johnson, Jude

Alphonsus Inyangetoh, Anietie Emmanuel John, Jackson Efiong Ante. A Comprehensive Mathematical

Exposition of Machine Learning Algorithms and Applications. Sch J Phys Math Stat, 2025 Aug 12(7): 309-322.

309

Scholars Journal of Physics, Mathematics and Statistics

Abbreviated Key Title: Sch J Phys Math Stat

ISSN 2393-8056 (Print) | ISSN 2393-8064 (Online)
Journal homepage: https://saspublishers.com

A Comprehensive Mathematical Exposition of Machine Learning

Algorithms and Applications
Samuel Okon Essang1*, Adie Benimpuye Emmanuel2, Sylvia Adaobi Akpotuzor1, Philia Agam Ayuk3, Aigberemhon Ede

Moses4, Blessed Yahweh5, Nko Samuel Bassey6, Ekemini Anietie Johnson7, Jude Alphonsus Inyangetoh8, Anietie

Emmanuel John9, Jackson Efiong Ante10

1Department of Mathematics and Computer Science, Arthur Jarvis University, Akpabuyo
2Department of Mathematics and Computer Science Education, University of Calabar, Calabar
3Department of Statistics, University of Calabar, Calabar
4Electrical Electronics Department, University of Cross River State, Calabar
5Department of Research and Technological Development, The MindBook Group, Uyo,
6Department of Biological Sciences, Topfaith University, Mkpatak
7Department of Computer Science, Federal Polytechnic, Ukana
8Department of Statistics, Federal Polytechnic, Ukana
9Department of Computer Science, Ritman University, Ikot Ekpene
10Department of Mathematics, Topfaith University, Mkpatak

DOI: https://doi.org/10.36347/sjpms.2025.v12i07.005 | Received: 18.06.2025 | Accepted: 06.08.2025 | Published: 27.08.2025

*Corresponding author: Samuel Okon Essang
Department of Mathematics and Computer Science, Arthur Jarvis University, Akpabuyo

Abstract Original Research Article

A deep dive into the mathematical foundations of artificial intelligence that is both brief and comprehensive. The

purpose of this article is to shed light on the fundamental rigor that lies behind every intelligent system by illuminating

how the beautiful concepts of linear algebra, calculus, probability, and optimization drive machine learning's capacity

to learn, adapt, and tackle the world's most challenging tasks.

Keywords: Machine Learning, Mathematical Principles, Optimization Algorithms, Data Transformation, Predictive

Modeling.
Copyright © 2025 The Author(s): This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International

License (CC BY-NC 4.0) which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original

author and source are credited.

1. INTRODUCTION
Overview of Machine Learning (The Mathematical

Perspetive)

Imagine a world where computers don't just

follow instructions but actually learn from experience,

adapt, and make smart decisions on their own. This isn't

science fiction; it's the reality of machine learning

(ML). At its heart, ML teaches algorithms to uncover

hidden patterns and make predictions or choices

directly from data, much like humans learn, but at an

incredible scale and speed.

This vast field breaks down into a few main ways

machines learn:

1. Supervised learning is like a diligent student with a

teacher. It learns from examples where both the

input and the correct answer are provided. It then

figures out how to make predictions for new,

unseen information. Think of it identifying spam

emails or predicting house prices [3].

2. Unsupervised learning is the curious explorer. It

dives into data without any labels or guidance,

searching for hidden structures, relationships, or

ways to simplify complex information [1]. This

includes tasks like grouping similar data points

together (clustering) or making complex data easier

to understand (dimensionality reduction).

3. Reinforcement learning (RL) is a dynamic

approach where an "agent" learns by interacting

with its environment, much like a child learning to

ride a bike through trial and error. It receives

rewards or penalties for its actions, constantly

refining its strategy to maximize its overall "score"

over time [4].

https://saspublishers.com/

Samuel Okon Essang et al, Sch J Phys Math Stat, Aug, 2025; 12(7): 309-322

© 2025 Scholars Journal of Physics, Mathematics and Statistics | Published by SAS Publishers, India 310

The incredible power of ML isn't magic; it's

built on deep mathematical foundations. Math isn't just

a side tool for ML; it's the indispensable core for

developing, analysing, and optimizing these systems.

This mathematical bedrock provides the rigorous

framework to precisely define algorithms, understand

how they work, prove they will actually learn, quantify

any uncertainties, and fine-tune their performance [2].

Without a solid grasp of these mathematical principles,

it's impossible to truly understand, build, troubleshoot,

or improve ML models for real-world impact.

Mathematical Foundations of Machine Learning

Linear Algebra

Linear algebra and calculus are foundational in

machine learning. Linear algebra helps in organizing

and manipulating data using structures like vectors,

matrices, and tensors. Operations such as addition,

multiplication, and transformations (e.g., scaling and

rotation) are key for data manipulation and model

computations. Eigenvalues and Singular Value

Decomposition (SVD) help with dimensionality

reduction, crucial for efficient data processing.

Calculus and Optimization Theory

Calculus, especially derivatives and gradients,

is essential for optimizing machine learning models.

The gradient points to the steepest increase of a

function, and algorithms like Gradient Descent use this

to minimize errors by adjusting model parameters

iteratively. Calculus also ensures models can learn

effectively, especially with differentiable activation

functions in neural networks, allowing backpropagation

and optimization [7, 8].

Chain Rule and Backpropagation:

Derivation and Significance in Neural

Networks. The Chain Rule is a cornerstone of calculus,

a fundamental rule for computing the derivative of a

composite function. If a function f depends on g, which

in turn depends on x, then the chain rule states

df df dg

dx dg dx
= . This elegant rule is absolutely central to

Backpropagation, the key algorithm for efficiently

training neural networks. Backpropagation efficiently

computes the gradients of the loss function with respect

to all network weights and biases. It involves a

"forward pass" where input data propagates through the

network to compute the final prediction, followed by a

"backward pass" where gradients are computed by

chaining derivatives layer-by-layer from the output

back to the input, precisely using the Chain Rule [10,

12].

In machine learning, the Jacobian and Hessian

matrices are used for more advanced optimization. The

Jacobian tracks the first-order changes in multi-output

functions, while the Hessian provides second-order

derivatives, helping optimize functions faster using

methods like Newton's method.

Figure 2: Neural Network Training Flow Diagram, showing a top-

down progression from input features through each training stage

to parameter updates

Probability and statistics are vital for

modelling uncertainty in data. Random variables and

distributions (Bernoulli, Binomial, Gaussian) help

quantify uncertainty. Bayes' theorem is essential for

updating beliefs, with applications like Naive Bayes

classification. Techniques like Maximum Likelihood

Estimation (MLE) and Maximum A Posteriori (MAP)

estimate model parameters and reduce overfitting.

Hypothesis testing and confidence intervals assess

model reliability, and descriptive statistics summarize

data characteristics [8,9].

Optimization theory focuses on minimizing

loss functions to improve machine learning models,

making it essential for model performance and

application.

Supervised Learning: The primary goal is to find an

optimal mapping function ,()if x  with parameters θ

Samuel Okon Essang et al, Sch J Phys Math Stat, Aug, 2025; 12(7): 309-322

© 2025 Scholars Journal of Physics, Mathematics and Statistics | Published by SAS Publishers, India 311

that minimizes a loss function (()), ,i iL y f x  over the

training samples. Common loss functions include the

squared Euclidean distance (Mean Squared Error),

cross-entropy, and hinge loss. To mitigate overfitting,

regularization terms (e.g., L2 norm) are frequently

added to the objective function, resulting in a penalized

loss:
2

2
1

(
1

,), ()
N

i i
i

min L f
N

 
=

 +y x θ θ Unsupervised

Learning: Clustering (K-Means): Aims to partition

samples into K clusters by minimizing the within-

cluster sum of squares (WCSS), which measures the

squared Euclidean distance between each point and its

assigned cluster centroid:
2

2
1 k

K

s x S k
k

min 
=

 −x μ [2,

20]

Dimensionality Reduction (PCA): Seeks to retain as

much original information as possible after projecting

data into a low-dimensional space. This is formulated as

minimizing the reconstruction error, which is equivalent

to maximizing the variance of the projected data.

Probabilistic Models: For tasks like density estimation,

the objective is to find an optimal probability density

function p(x) that maximizes the logarithmic likelihood

function (MLE) of the training samples:
1

();
N

i
i

lnp x 
=



Reinforcement Learning: The objective is to find an

optimal strategy function (policy π) whose output varies

with the environment, with the goal of maximizing

cumulative rewards. This is often expressed as

maximizing the expected value function of a state s

under policy π: max ()V s E  = [21].

Optimization algorithms in machine learning are

classified into three types: first-order, second-order, and

heuristic methods.

1. First-Order Methods: These methods, like

stochastic gradient descent, use gradient

information to iteratively adjust model parameters.

They are computationally efficient and scalable but

may get stuck in local minima, especially in non-

convex functions like those found in deep learning.

2. Second-Order Methods:An example is Newton's

method, which uses second-order derivatives

(Hessian matrix) to speed up convergence. These

methods converge faster but are computationally

expensive, especially in high-dimensional

problems.

3. Heuristic Methods: These are derivative-free

methods like coordinate descent, which are useful

for problems where gradient information is not

available or difficult to compute.

Figure 1: Flow Diagram of Supervised Learning – This illustrates the sequential stages in a typical supervised learning

pipeline. Comparison of Optimization Algorithms – This bar chart compares different optimization approaches used in

machine learning based on relative speed and convergence quality

The challenge of local minima arises in non-

convex functions, where algorithms may converge to a

local optimum rather than the global one. While first-

order methods are often used in deep learning due to

their scalability and lower computational cost, they may

not always find the global minimum. In contrast,

second-order methods offer better convergence but at

the cost of higher computation [10-14].

Samuel Okon Essang et al, Sch J Phys Math Stat, Aug, 2025; 12(7): 309-322

© 2025 Scholars Journal of Physics, Mathematics and Statistics | Published by SAS Publishers, India 312

Optimization algorithms are essential for

machine learning, as they iteratively adjust model

parameters to minimize the error, allowing models to

learn and adapt from data.

Table 1: Machine Learning Paradigm and Mathematical Objectives

ML Paradigm General Objective Example

Algorithm

Mathematical Formula

(Example)

Supervised Learning Parameter

Learning/Mapping

Linear

Regression
1

(())
1

, ;
N

i i
i

min L f
N


=

 y x θ

Unsupervised Learning (Clustering) Data grouping K- Means
2

2
1 k

K

s x S k
k

min 
=

 −x μ

Unsupervised Learning

(Dimensionality Reduction)

Feature Transformation PCA
' 2

2
1

K

i
k

min
=

 −ix x

Unsupervised Learning (Probabilistic

Models)

Density Estimation Bayesian

Network 1

)max log (;
N

i
i

p 
=

 x

Reinforcement Learning Policy Optimization Q-Learning
: (m x)a t

t

t o

V s E r  


=

 
=  

 


2. MATERIALS AND METHODS
This study looks at the math behind machine

learning algorithms and how they are used in many

industries, such as healthcare and finance. It brings

together information from other sources to give a full

picture of how arithmetic concepts are used to create

and test machine learning models.

The methodology section talks about the main

math tools used in machine learning, like linear algebra,

calculus, and statistics and probability. It looks at how

these fields function with machine learning algorithms

such as support vector machines, decision trees, and

neural networks. The study also talks about the trade-

offs that come with model performance, like the bias-

variance trade-off, and how different assessment

measures help you choose the best model.

The paper's materials part talks about

important uses in healthcare (predictive diagnostics,

personalised medication) and finance (algorithmic

trading, fraud detection). It shows how machine

learning algorithms use strict maths to handle hard

problems in the real world. It also stresses the need for

openness and moral considerations, especially in fields

with high stakes like healthcare.

The goal of this review is to give a methodical

look at the mathematical foundations of machine

learning while also showing how it may be used in the

real world, the problems it faces, and its future

potential.

Core Machine Learning Algorithms: Mathematical

Formulations and Applications

This section provides a detailed mathematical

exposition of key machine learning algorithms,

unveiling their objective functions, optimization

strategies, and the elegant mathematical principles that

govern their operation.

Supervised Learning Algorithms

Supervised learning algorithms are the

workhorses of predictive modelling, meticulously

designed to infer a mapping function from input

features (x) to output labels (y) using a dataset where

both inputs and their corresponding correct outputs are

provided. The learning process typically involves

minimizing a predefined loss function that precisely

quantifies prediction errors, guiding the model towards

accuracy [20,21].

Linear Regression

Linear regression stands as a foundational

supervised learning algorithm, a cornerstone for

modeling the straightforward, linear relationship

between input features and a continuous output

variable. It's often the first step in understanding

predictive modeling.

Mathematical Model and Objective Function (Mean

Squared Error).

The model posits a simple linear relationship, expressed

as
Ty w x b= + where y is the predicted output, x is

the input feature vector, w represents the weight vector

(determining the slope of the relationship), and b is the

bias (or intercept). The most common objective

function for linear regression is the Mean Squared Error

(MSE), which quantifies the average of the squared

differences between the predicted values and the actual

observed values. Formally, the MSE is given by

2

1

() (()
1

),
N

T

i i
i

J w b y w x b
N =

=  − + where N is the

number of samples, yi are the true labels, and
Ty b= +W X are the predictions. Minimizing MSE is

statistically equivalent to maximizing the likelihood of

the observed data, under the assumption that the errors

Samuel Okon Essang et al, Sch J Phys Math Stat, Aug, 2025; 12(7): 309-322

© 2025 Scholars Journal of Physics, Mathematics and Statistics | Published by SAS Publishers, India 313

are independently and identically normally distributed

with zero mean [22,23,24].

Closed-Form Solution: Normal Equation Derivation.

For linear regression, a remarkable property exists: the

optimal parameters w and b can be determined directly,

without any iterative process, by simply setting the

gradient of the MSE objective function with respect to

the parameters to zero. This elegant derivation leads to

the Normal Equation: ()
1

T Tw
−

= X X X y where X is the

design matrix (augmented with a column of ones for the

bias term) and y is the vector of true labels. This

method offers a direct, one-shot calculation of the

optimal parameters [25,26].

Iterative Solution: Gradient Descent Application.

While a closed-form solution exists, Gradient

Descent is widely applicable to linear regression and

becomes an absolute necessity for larger datasets or

more complex models where direct matrix inversion is

computationally intractable or numerically unstable. In

this iterative approach, the weights w and bias b are

progressively adjusted by taking steps proportional to

the negative of the gradient of the MSE. The update

rules are: (,)wJ b − w w w and (,)wb b J b −  w

where α is the learning rate. The partial derivatives of

the MSE with respect to w and b are

1

2
()

N

w i i i

i

J y y
N =

 = − − x and

1

2
()

N

b i i i

i

J y y
N =

 = − − x The MSE objective function

for linear regression possesses the crucial mathematical

property of convexity. This is a pivotal characteristic

because, for convex functions, gradient descent, when

applied with an appropriately chosen learning rate, is

guaranteed to converge to the global minimum. This

stands in stark contrast to more complex, non-convex

models where local minima present a significant

challenge. This property highlights how the

mathematical nature of the objective function directly

determines the convergence guarantees of the

optimization algorithm [27,28]. [29,30].

3.1.2 Logistic Regression

Logistic regression is a classification algorithm

primarily used for binary classification tasks, modelling

the probability of a binary outcome. Despite its name,

it's a classifier, not a regressor, and it's a workhorse in

many high-stakes domains due to its interpretability

[31,32,33].

Mathematical Model: Sigmoid Function and

Probabilistic Interpretation. The model posits that the

log-odds of an event occurring are a linear combination

of the input features:

1

Tp
In b

p

 
= + 

− 
w x to elegantly transform this linear

combination into a probability ranging precisely

between 0 and 1, the logistic (sigmoid) function is

applied:
()

1
(1|) ()

1
T

T

b
P y b

e


− +
= = + =

+ w x
x w x

This transformation allows the model's output to be

directly interpreted as a probability, which is essential

for classification tasks [3, 33].

Objective Function: Cross-Entropy Loss Derivation.

For logistic regression, the learning objective is to

maximize the likelihood of correctly classifying the

training samples, which is mathematically equivalent to

minimizing the Log Loss or Binary Cross-Entropy

Loss. For a single training example (),i iyx , where yi

is the true binary label an iy , is the predicted

probability,the binary cross-entropy loss is

(,) [log() (1) log(1)]i i i i iL y y y y y y= − + − − The total

objective function is the average cross-entropy over all

N samples:

1

1
(,) [log() (1) log(1)]

N

i i i

i

J b y y y y
N =

= − + − −w Cross-

entropy fundamentally measures the dissimilarity

between the true probability distribution of the labels

and the probability distribution predicted by the model,

guiding the model to align its predictions with

reality[34].

Logistic regression uses gradient descent to

minimise cross-entropy loss by updating weights and

bias iteratively. This update uses cross-entropy loss

function gradients for gradient descent. Update

parameters like linear regression but use the sigmoid

activation function and cross-entropy loss for

classification problems. Probabilistic models like

logistic regression benefit from cross-entropy loss

because it matches maximum likelihood estimation for

categorical data, guiding probability predictions.

However, Support Vector Machines (SVMs)

classify by finding the best separating hyperplane. Hard

Margin SVMs maximise the "margin," the distance

between the closest data points from each class and the

decision boundary. This maximisation separates classes,

making SVMs good for binary classification.

The hyperplane itself is mathematically

defined by the equation 0 b= • +w x The margin is the

perpendicular distance between two parallel

hyperplanes 1 , 1b b= • + − = • +w x w x which is given

by 2

w

.Therefore, maximizing this margin is

mathematically equivalent to minimizing 2 21

2
orw w

Samuel Okon Essang et al, Sch J Phys Math Stat, Aug, 2025; 12(7): 309-322

© 2025 Scholars Journal of Physics, Mathematics and Statistics | Published by SAS Publishers, India 314

subject to the constraints () 1iy w xi b+  for all

training samples (xi,yi) where { 1, 1}iy  − + This

formulation seeks the widest possible "street" between

the classes [35,36].

Soft Margin SVM: Introduction of Slack Variables and

Hinge Loss. The strict demands of Hard Margin SVM

that data be perfectly linearly separable are rarely met

in messy, real-world datasets. To address this limitation,

Soft Margin SVM was introduced, gracefully allowing

for some misclassifications or data points to fall within

the margin. This relaxation is achieved through the

ingenious introduction of non-negative slack variables,

0i  which modify the constraint to

() 1i iy w xi b +  − A data point is considered

misclassified if its corresponding 0i  The objective

function for Soft Margin SVM then becomes a

minimization of a combination of the margin term and a

penalty for constraint violations:

2

, ,
1

1
min

2

N

i
w b

i

w C



=

+  . Here, C is a regularization

parameter that carefully balances the trade-off between

maximizing the margin and minimizing the

classification errors. The term ξi can be expressed as

()max 0,1 ()iy i b−  +w x , which is famously

known as the Hinge Loss. Gradient Descent can be

employed to optimize this hinge loss [36].

Optimization: Lagrangian Duality and

Karush-Kuhn-Tucker (KKT) Conditions. SVM

optimization problems are formulated as constrained

convex optimization problems, which are particularly

well-behaved. These problems are typically solved by

transforming the constrained primal problem into an

unconstrained dual problem using the powerful method

of Lagrange Multipliers. For the hard margin SVM, the

Lagrangian is ()
2

1

1
(, ,) () 1

2

N

i i

i

L b w C y i b
=

= −  + −w λ w x

The optimal solution must satisfy the Karush-Kuhn-

Tucker (KKT) conditions, which are a set of necessary

(and sufficient for convex problems) conditions for

optimality in constrained optimization. These

conditions involve the gradients of the Lagrangian with

respect to both primal and dual variables, along with

complementary slackness conditions,

()() 1 0i iy i b  + − =w x . The KKT conditions are

particularly significant as they identify the "support

vectors" those crucial data points for which λi>0 and

which lie precisely on the margin boundary, thus

critically influencing the position of the hyperplane

[37].

Other machine learning algorithms for

classification and regression include decision trees.

They recursively split feature space into subgroups

using simple rules. Gini Impurity and Entropy measure

how mixed or pure the subsets are, determining each

split's effectiveness. Gini Impurity measures subset

misclassification, helping the tree make more accurate

predictions.Its formula is 2

1

1 ()
c

j

j

GI p
=

= − , where pj is

the proportion of instances belonging to class j in the

given set. For binary classification, Gini Impurity

ranges from 0 (perfect purity) to 0.5 (maximum

impurity); for multi-class classification, its range is

1
0,1

C

 
− 

 

. A significant computational advantage of

Gini Impurity is that it does not involve logarithmic

functions, making its calculation faster than entropy

[38].

Entropy: In information theory, entropy quantifies the

amount of uncertainty, randomness, or "information"

associated with a randomly chosen variable's potential

outcome. Its formula is
2

1

log ()
C

j j

j

H p p
=

= − , where pj

is the proportion of instances of class j in the set.

Entropy ranges from 0 (perfect purity) to log2C

(maximum impurity), where C is the number of classes;

for binary classification, the range is [0,1]. Entropy

tends to favour splits that result in a higher reduction of

uncertainty, seeking to maximize information gain [40].

In decision trees, the use of Gini Impurity and

Entropy ties the tree-building process to key principles

from information theory, where the goal is to maximize

information gain or minimize uncertainty with each

split. Each split aims to create purer subsets, reducing

the randomness or impurity of the data within the

nodes. The choice between Gini Impurity and Entropy

often involves a trade-off: Gini Impurity is faster to

compute, making it suitable for large datasets, while

Entropy, though more theoretically pure, comes at the

cost of higher computational expense.

For regression trees, the objective is to

minimize Mean Squared Error (MSE), which ensures

that the resulting child nodes contain more

homogeneous output values, leading to better

predictions.

In unsupervised learning, K-Means clustering

is a popular algorithm that groups data into clusters

based on the proximity to the nearest centroid. The core

goal of K-Means is to minimize the Within-Cluster Sum

of Squares (WCSS), a measure of how tightly grouped

the data points are within each cluster, thus aiming to

create more cohesive and distinct groups.

Samuel Okon Essang et al, Sch J Phys Math Stat, Aug, 2025; 12(7): 309-322

© 2025 Scholars Journal of Physics, Mathematics and Statistics | Published by SAS Publishers, India 315

Formally, the objective is to find the partition

1 2{ , ,..., }kS S S S= that minimizes
2

2

k

k

x S

x 


− where

μk represents the mean (centroid) of the points within

cluster Sk. This formulation is equivalent to minimizing

the pairwise squared deviations of points within the

same cluster [41,42].

Algorithm Steps: Mathematical Basis for Assignment

and Update Steps. The K-Means algorithm proceeds

iteratively through two main steps, a dance between

assignment and refinement:

1. Initialization: The process begins by randomly

generating K initial cluster centroids within the

data domain.

2. Assignment Step (E-Step): In this phase, each

observation is assigned to the cluster whose

centroid exhibits the least squared Euclidean

distance to that observation. This effectively

partitions the observations according to the Voronoi

diagram generated by the current set of centroids.

Mathematically, for each data point x(i), its cluster

assignment c(i) is determined by

() ()
2

2
arg min

i i

k kc = −x μ

3. Update Step (M-Step): Following the assignment,

the centroids for each cluster are recalculated. Each

new centroid μk is determined as the mean

(geometric mean) of all the data points that have

been assigned to that specific cluster;

1

k

k

x SkS




=  x If a centroid ends up with no

points assigned to it, it is typically re-initialized

randomly [33,34,37].

Moreover, the algorithm's reliance on squared

Euclidean distance (L2 norm) to measure cluster

similarity implies that it tends to favour spherical

clusters. If the true data structure requires a different

distance metric (e.g., Manhattan distance or cosine

similarity), K-Means may not perform optimally,

highlighting the importance of choosing an appropriate

distance metric for the data at hand.This process

enables clearer insights from high-dimensional data

while reducing computational complexity.:
2

1 1
max { } max { }T T

= =
=

w w
Xw w X Xw This formulation

seeks to identify the direction along which the data

exhibits the greatest spread [38].

Derivation: Covariance Matrix, Eigenvectors, and

Eigenvalues. The derivation of PCA involves several

key mathematical steps:

1. Centering Data: Prior to performing PCA, the

data is typically centered by subtracting the

mean of each variable from all its

observations. This ensures that the principal

components pass through the centroid of the

data, simplifying the subsequent mathematical

formulation.

2. Covariance Matrix: The principal components

are mathematically proven to be the

eigenvectors of the data's covariance matrix.

The sample covariance matrix C is computed

from the mean-subtracted data matrix B as
1

1
C

N
=

−

T
B B (or XTX) for mean-centered

data). This matrix is inherently symmetric and

positive semidefinite.

3. Eigenvectors and Eigenvalues: The problem of

maximizing the variance of the projected data

is mathematically equivalent to finding the

eigenvectors of the covariance matrix. The

eigenvalues (λk) associated with these

eigenvectors (vk) quantify the amount of

variance captured along their respective

principal components. Larger eigenvalues

correspond to more significant principal

components, indicating directions of greater

data spread. A notable property is that the

principal components are uncorrelated with

each other.

In dimensionality reduction, Principal

Component Analysis (PCA) projects high-dimensional

data onto a lower-dimensional subspace by selecting

eigenvectors with the largest eigenvalues. This process

effectively retains most of the data’s variance, which is

often used as a proxy for information. While PCA is

useful for reducing noise and facilitating visualization,

it has a crucial assumption: variance indicates the most

"important" information in the data. However, this can

result in the loss of information if it's encoded in

directions with low variance. Despite this, PCA remains

an invaluable tool, particularly because it combines

linear algebra (eigenvectors) and statistics (covariance)

to reduce dimensionality while preserving key data

characteristics.For a single neuron, the net input to the

activation function is i i

i

z w x b T b= + = + w x

When considering an entire layer, these operations can

be efficiently represented using matrix multiplication:

= +Z XW B ,where X is the input matrix, W is the weight

matrix for the layer, and B is the bias vector [15, 24,

43].

Activation Functions

Activation functions are critical components

within neural networks, primarily responsible for

introducing non-linearity into the system. This non-

linearity is what enables networks to learn and model

complex, non-linear mappings between inputs and

outputs. These functions dictate the output of a neuron

given its aggregated input.

Mathematical Definitions and Properties (Sigmoid,

Tanh, ReLU, Softmax).

Samuel Okon Essang et al, Sch J Phys Math Stat, Aug, 2025; 12(7): 309-322

© 2025 Scholars Journal of Physics, Mathematics and Statistics | Published by SAS Publishers, India 316

Linear Activation Function: Defined as f(x)=x, this

function simply returns the input as the output. While

simple, it restricts the network to modeling only linear

relationships, rendering the "depth" of the network

irrelevant for learning complexity. It is primarily used

in the output layer for regression problems where a

numerical value is predicted. Sigmoid (Logistic)

Function: Mathematically expressed as 1
()

1 x
x

e


−
=

+

 ,the

sigmoid function squashes any real-valued input into

the range (0,1). Its output can be interpreted as a

probability, making it suitable for binary classification.

Historically significant, it suffers from the vanishing

gradient problem for very large or very small inputs,

which can impede learning in deep networks.

Tanh (Hyperbolic Tangent) Function: Defined as

() ,
x x

x x

e e
f x

e e

−

−

−
=

+
the tanh function outputs values in

the range [−1,1]. It is essentially a scaled version of the

sigmoid function, but its zero-centered output and

generally stronger gradient (steeper derivatives) can

lead to faster convergence in certain problems

compared to sigmoid.

ReLU (Rectified Linear Unit): The ReLU function is

defined as () max(0,),f x x= It outputs the input

directly if it is positive, and zero otherwise. ReLU is

computationally efficient and helps mitigate the

vanishing gradient problem for positive inputs.

However, it can suffer from the "dying ReLU" problem

where neurons can become inactive if their input is

consistently negative [27].

Softmax Function: Primarily used in the output layer for

multi-class classification problems, the softmax

function transforms a vector of raw scores (logits) into a

probability distribution where all elements are non-

negative and sum to 1. For an input vector x with

elements x1,…,xC,the softmax for element xi is

1

()
i

i

x

i C
x

j

e
f x

e
=

=



.The primary role of activation functions

in neural networks is to introduce non-linearity,

enabling the network to learn and represent complex,

non-linear relationships in data. Without non-linearity,

even a deep multi-layered network would behave like a

single linear model, unable to capture the intricate

patterns in real-world data. By introducing non-linear

behaviour, activation functions significantly increase

the flexibility and power of neural networks, allowing

them to model more complex data.

In deep learning, loss functions are crucial for

training as they measure the discrepancy between the

model’s predictions and the actual labels. These

functions guide the optimization process, helping the

model minimize errors and learn effectively. Common

loss functions include:

1. Mean Squared Error (MSE): Measures the average

of the squared differences between predicted and

actual values. It is commonly used in regression

tasks.

2. Binary Cross-Entropy: Used for binary

classification, it quantifies the difference between

predicted probabilities and true binary labels.

3. Categorical Cross-Entropy: Used for multi-class

classification, it measures the difference between

predicted probabilities and the true categorical

labels.

Each of these loss functions plays a vital role in

determining how the model's parameters should be

updated to improve its predictions.

Widely used for regression tasks where the output is

continuous. It calculates the average of the squared

differences between predicted values ()y

And actual values
2

1

1
: ()

N

i i i

i

y J y y
N =

= − , due to

the squaring of errors, MSE penalizes larger errors more

heavily and is sensitive to outliers [40].

Binary Cross-Entropy Loss (Log Loss): Employed for

binary classification problems where the model's output

is a probability value between 0 and 1. It measures the

performance of a classification model by penalizing

false classifications, particularly when the predicted

probability deviates significantly from the true label.

The formula for N samples is

()
1

1
log() 1 log(1)

N

i i i i

i

J y y y y
N =

= − + − −   , where yi

is the true binary label and ŷi is the predicted

probability.

Categorical Cross-Entropy Loss: Used for multi-class

classification problems, typically in conjunction with a

Softmax activation function in the output layer. It

calculates the error for predicted class probabilities

across multiple categories. For N samples and M

classes, the formula is

1 1

1
log()

N M

ij ij

i j

J y p
N = =

 = −   where

yij is 1 if sample i belongs to class j and 0 otherwise,

and pij is the predicted probability for class j.

Deep learning uses specialized loss functions

tailored to specific tasks, like Huber Loss (less sensitive

to outliers), Hinge Loss (for SVMs), Dice Loss (in

image segmentation), and Kullback-Leibler Divergence

(for measuring distribution differences). The choice of

loss function depends on the task (e.g., regression,

classification) and the type of output, ensuring the

model is optimized for its goal, whether it's minimizing

errors or maximizing accuracy.

Samuel Okon Essang et al, Sch J Phys Math Stat, Aug, 2025; 12(7): 309-322

© 2025 Scholars Journal of Physics, Mathematics and Statistics | Published by SAS Publishers, India 317

Backpropagation is the key algorithm for

training neural networks, efficiently computing

gradients using the chain rule. It works in two phases:

1. Forward Pass: Data flows from the input to the

output, with each neuron processing inputs through

weighted sums and activation functions.

2. Backward Pass: Gradients are calculated from the

output back through the network, adjusting the

weights and biases of earlier layers. This helps the

model improve by iteratively reducing errors.

For a composite function ()()f g x , the chain rules

states ,
f f g

x g x

  
=

  
In a neural network, this

translates to calculating how changes in a weight affect

the loss by multiplying the sensitivity of the loss to the

neuron's output by the sensitivity of the neuron's output

to the weight. These computed gradients indicate the

sensitivity of the overall loss to changes in individual

parameters, guiding their adjustment [44].

Backpropagation implicitly treats the neural

network as a differentiable computational graph, where

nodes represent mathematical operations and edges

represent the flow of data. The chain rule then enables

the efficient flow of gradients backward through this

graph. This conceptualization is fundamental to modern

deep learning frameworks (e.g., TensorFlow, PyTorch),

which automate the complex process of gradient

computation, allowing researchers and practitioners to

focus on model architecture and data rather than tedious

manual gradient derivation [33].

Gradient Descent Variants

Gradient Descent, as the core optimization

algorithm, has several variants that differ in how much

data they use to compute the gradient at each step.

These differences profoundly impact training speed,

stability, and convergence characteristics, making the

choice of variant a crucial decision for practitioners.

Batch, Stochastic, Mini-batch Gradient Descent

(Mathematical Update Rules).

Batch Gradient Descent (BGD): In BGD, the gradient

of the loss function is computed using the entire

training dataset before each parameter update. The

update rule is (); ,J − θ θ θ X y where X, y

represents the full dataset. While BGD is guaranteed to

converge to the global minimum for convex functions

and provides stable updates, it can be extremely slow

for large datasets due to the computational cost of

processing all data points in each iteration [37,46].

Stochastic Gradient Descent (SGD): In stark contrast to

BGD, SGD computes the gradient and updates

parameters using only one randomly chosen training

example at a time for each update. The update rule is

(); ,i iJ − θ θ θ x y for a single sample i. SGD offers

significantly faster updates, particularly beneficial for

very large datasets or online learning scenarios, and its

noisy updates can help escape shallow local minima in

non-convex landscapes. However, the high variance in

updates can lead to oscillations around the minimum,

making convergence less smooth.

Mini-batch Gradient Descent: This variant strikes a

practical balance between BGD and SGD. It computes

the gradient using a small subset (a "mini-batch") of the

training data, typically comprising 32 or 64 examples.

The update rule is (); ,batch batchJ − θ θ θ x y Mini-

batch GD balances speed and stability, providing more

stable convergence than SGD while leveraging

vectorized operations for computational efficiency. The

optimal mini-batch size often requires careful tuning to

achieve the best performance [9,42].

The Importance of the Learning Rate

Think of training a machine learning model as

trying to find the lowest point in a hilly landscape. The

learning rate (η) is like the size of your steps as you

walk down. It's an incredibly important setting (what

we call a "hyperparameter") in all variations of gradient

descent, which is the mathematical engine that helps

models learn.

Mathematically, the learning rate precisely

controls how big each step is when the model adjusts its

internal parameters based on the "slope" of the error

landscape. If your steps are too big, you might

overshoot the lowest point entirely or even bounce

wildly out of control – this is called divergence. On the

other hand, if your steps are too small, it will take an

incredibly long time, possibly forever, to reach the

bottom – this is called slow convergence. For simpler,

"bowl-shaped" problems (what mathematicians call

convex functions), we can only guarantee that we'll

reach the absolute lowest point if we choose the

learning rate just right. This shows that the learning rate

isn't just something you tweak; it's a mathematically

critical factor that directly impacts how stable and fast

the learning process is, often posing a significant

challenge in practical deep learning [7, 40].

4. Advanced Concepts and Model Evaluation

Metrics

This section ventures into crucial concepts that

enhance model performance and interpretability,

alongside the rigorous mathematical metrics used to

objectively evaluate machine learning models. It's about

refining models and truly understanding their

capabilities.

Regularization Techniques

Regularization techniques are essential

mathematical strategies employed to combat the

pervasive problem of overfitting in machine learning

Samuel Okon Essang et al, Sch J Phys Math Stat, Aug, 2025; 12(7): 309-322

© 2025 Scholars Journal of Physics, Mathematics and Statistics | Published by SAS Publishers, India 318

models. They achieve this by adding a penalty term to

the loss function, thereby subtly constraining model

complexity. This constraint encourages the learning of

simpler, more robust models that generalize better to

unseen data, preventing them from memorizing noise.

L1 (Lasso) and L2 (Ridge) Regularization:

Mathematical Penalty Terms and their Effect on

Model Complexity.

L2 (Ridge) Regularization: This technique adds a

penalty proportional to the sum of the squared

magnitudes of the model's coefficients (the L2 norm) to

the original loss function. The objective function

becomes
22

2
1

() () ()
m

Ridge j

j

J J w J     
=

= + = + ,

where J(θ) is the original loss, θ represents the model

parameters (weights wj), and λ is the regularization

parameter. The effect of L2 regularization is to shrink

the coefficients towards zero, but it rarely forces them

to be exactly zero. This helps in reducing the model's

variance, making it less sensitive to training data

fluctuations.

L1 (Lasso) Regularization: In contrast, L1

regularization adds a penalty proportional to the sum of

the absolute magnitudes of the coefficients (the L1

norm). The objective function is

1

() ()
m

Lasso j

j

J J w
=

= + θ θ A key characteristic of L1

regularization is its remarkable ability to shrink some

coefficients exactly to zero, effectively performing

automatic feature selection by eliminating less

important predictors from the model [30,44].

λ (Regularization Parameter): The parameter λ is a

crucial tuning parameter that controls the strength of the

regularization. A value of λ=0 implies no regularization,

reverting to the original loss function. Increasing λ

increases the penalty, leading to simpler models.

Elastic Net. Elastic Net Regression ingeniously

combines both L1 and L2 regularization, incorporating

both the absolute and squared measures of the weights

into the penalty term. Its objective function is

() 2

1 1

() () 1
m m

ElasticNet j j

j j

J J w w  
= =

 
= + + − 

 
 θ θ Here, α

is a mixing parameter, ranging from 0 to 1, that

balances the contributions of L1 and L2 regularization,

offering a flexible approach to model complexity

[45,46].

Regularization techniques directly address the

bias-variance trade-off by imposing a penalty on model

complexity. This mathematical intervention aims to

improve the model's generalization performance on

unseen data. L1 regularization, in particular, promotes

sparsity in the model by driving some coefficients to

zero, which simplifies the model and can effectively

reduce variance. This demonstrates a mathematically

defined strategy for navigating the bias-variance

dilemma, leading to models that generalize more

effectively.

The impact of regularization can be understood

through a compelling geometric interpretation of the

penalty terms. The L1 penalty term,
1

m

j

j

w
=

 
 
 


corresponds to a diamond-shaped constraint region in

the parameter space (for a 2D example,

()1 2w w s+  . The L2 penalty term 2

1

m

j

j

w
=



corresponds to a circular (or spherical) constraint region

()2 2

1 2w w s+  The minimization of the loss function,

subject to these constraints, often leads to solutions at

the "corners" of the L1 diamond, where some

coefficients are exactly zero. In contrast, the smooth,

rounded nature of the L2 circle typically results in

coefficients that are shrunk towards zero but rarely

become exactly zero. This geometric difference directly

explains why L1 regularization leads to sparse solutions

(feature selection), while L2 regularization primarily

shrinks coefficients without eliminating them

[11,45,46].

Bias-Variance Trade-off: In machine learning,

the bias-variance trade-off refers to the challenge of

minimizing two sources of error: bias and variance,

which both affect a model’s ability to generalize beyond

its training set.

1. Bias is the error from overly simplistic

assumptions made by the model, often leading

to underfitting. A high-bias model doesn’t

capture the underlying patterns well, resulting

in poor performance on both training and new

data.

2. Variance is the error caused by the model’s

sensitivity to fluctuations or noise in the

training data. High variance leads to

overfitting, where the model learns the noise in

the training data, making it perform well on

the training set but poorly on new, unseen data.

3. Irreducible Error represents noise in the data

itself, which no model can reduce.

The goal is to strike a balance between bias

and variance, finding a model that is complex enough to

capture important patterns but simple enough to avoid

overfitting to the noise. This balance is often addressed

using techniques like regularization, early stopping,

pruning, and ensemble methods.

Underfitting and Overfitting:

1. Underfitting occurs when a model is too simple,

failing to capture the true patterns in the data. It

typically shows high bias and low variance.

Samuel Okon Essang et al, Sch J Phys Math Stat, Aug, 2025; 12(7): 309-322

© 2025 Scholars Journal of Physics, Mathematics and Statistics | Published by SAS Publishers, India 319

2. Overfitting happens when a model becomes too

complex and learns even the noise in the training

data, leading to low bias but high variance.

The bias-variance trade-off involves adjusting

the model's complexity to avoid both underfitting and

overfitting, optimizing its ability to generalize to new

data.

Evaluating Models: To measure a model’s performance,

we use rigorous evaluation metrics that quantify its

accuracy and ability to generalize. In classification tasks

(e.g., determining spam or disease), the chosen metric

depends on the problem, ensuring that the model is

assessed objectively for its predictive quality and

generalization ability.

Accuracy:

Definition: The proportion of all correct classifications

(both true positives and true negatives) relative to the

total number of input samples.

Formula for accuracy is given as;

TP TN
Accuracy

TP TN FP FN

+
=

+ + +
,

Interpretation: Provides a quick overview of overall

correctness. However, it can be misleading for datasets

with imbalanced class distributions, where a model

might achieve high accuracy by simply predicting the

majority class.

Precision:

Definition: The proportion of all positive predictions

made by the model that are actually correct (True

Positives). Formula: TP
Accuracy

TP FP
=

+

Interpretation: Measures the exactness or quality of

positive predictions. High precision indicates a low rate

of false positives, crucial when false alarms are costly

(e.g., flagging legitimate transactions as fraudulent).

Recall (Sensitivity, True Positive Rate - TPR):

Definition: The proportion of all actual positive

instances that were correctly identified by the model.
TP

Accuracy
TP FN

=
+

Interpretation: Measures the completeness or coverage

of positive predictions. High recall indicates a low rate

of false negatives and is crucial when false negatives

carry high costs (e.g., missing a disease diagnosis) [44].

F1-Score:

Definition: The harmonic means of precision and recall,

providing a single metric that balances both.

Formula:
1

Pr Re 2
2

Pr Re 2

ecision call TP
F

ecision call TP FP FN


= =

+ + +

Precision and Recall: These metrics are especially

useful for class-imbalanced datasets, as they account for

both false positives and false negatives. A value of 1.0

represents perfect precision and recall.

Confusion Matrix: This N×N matrix displays the

performance of a classification model by showing the

counts of True Positives (TP), True Negatives (TN),

False Positives (FP), and False Negatives (FN). It

provides a detailed breakdown of the correct and

incorrect classifications, serving as the foundation for

calculating other metrics.

AUC-ROC: The ROC curve plots the True Positive

Rate (Recall) against the False Positive Rate (FPR) at

various threshold settings. The AUC quantifies the

classifier’s overall performance, ranging from 0 to 1.

An AUC of 1.0 means a perfect classifier, while 0.5

indicates random guessing. AUC is valuable for

comparing models, but for imbalanced datasets,

Precision-Recall curves can provide a more informative

evaluation.

For regression models, Mean Squared Error

(MSE) is commonly used. It measures the average

squared difference between predicted and actual values,

quantifying the magnitude of prediction errors.

Formula: ()
2

1

1 N

i i

i

MSE y y
N =

= −

Interpretation: MSE penalizes larger errors more

heavily due to the squaring operation, making it

sensitive to outliers. It's a good choice when large errors

are particularly undesirable.

Root Mean Squared Error (RMSE):

Definition: The square root of the Mean Squared Error.

Formula: ()
2

1

1 N

i i

i

RMSE y y
N =

= −

Interpretation: RMSE has the same units as the target

variable, which often makes it more interpretable than

MSE, as it represents the typical magnitude of error.

Like MSE, it is also sensitive to outliers. RMSE is

frequently preferred over Mean Absolute Error (MAE)

when the errors are assumed to be normally distributed.

R-squared (R2):

Definition: Measures the proportion of the variance in

the dependent (target) variable that is predictable from

the independent (feature) variables. It quantifies how

well the model explains the variability in the data.

Samuel Okon Essang et al, Sch J Phys Math Stat, Aug, 2025; 12(7): 309-322

© 2025 Scholars Journal of Physics, Mathematics and Statistics | Published by SAS Publishers, India 320

Formula: 2 ()
1 1 .

() ()

Variance error MSE
R

Variance y Var y
= − = −

Interpretation: R2 values typically range from 0 to 1,

with higher values indicating a better fit of the model to

the data. A value of 1 implies that the model perfectly

explains all the variance in the target variable.

Evaluating a model’s performance goes

beyond measuring raw errors. It involves choosing the

right error measurement technique based on the data’s

error distribution. For instance, MSE and RMSE are

ideal for errors following a normal distribution, where

larger errors are more impactful, while MAE is better

for distributions with long tails, as it’s more forgiving of

outliers. Additionally, R-squared (R2) helps assess how

well the model explains the data variation and its ability

to generalize to new data, providing insights into its

predictive power beyond just error metrics.

5. Applications of Machine Learning

Real-World Impact in Healthcare:

Machine learning is transforming healthcare

by enabling personalized treatments based on an

individual’s genetics, lifestyle, and environment. It’s

especially powerful in predictive diagnostics, such as

detecting diseases early, and in accelerating drug

discovery, which reduces development time. However,

the complexity of personalized medicine and the high

stakes of healthcare require ML models to be accurate,

trustworthy, and transparent. Challenges like the "black

box" problem and the bias-variance trade-off are

critical, as they influence the safety, fairness, and

effectiveness of ML in clinical settings.

Finance:

In algorithmic trading, ML models analyse

vast amounts of financial data to make quick, informed

decisions, minimizing human error and optimizing

returns. In fraud detection, ML efficiently sifts through

transaction data to spot suspicious activity, improving

security and reducing financial losses. Credit risk

assessment benefits from ML’s ability to evaluate a

wider range of data, resulting in faster, more inclusive

lending. Portfolio management also benefits from ML,

which interprets market data to enhance returns and

minimize risks. Reinforcement learning is especially

valuable here, as it allows models to adaptively make

decisions that maximize rewards in dynamic market

conditions. The mathematical efficiency of ML in

processing fast-moving financial data is key to its

transformative role in the finance sector.

Natural Language Processing (NLP):

NLP enables machines to understand and

generate human language. Early systems were rule-

based, but with the shift to statistical models and deep

learning, NLP capabilities—like sentiment analysis,

machine translation, and text generation—have vastly

improved. However, converting language data into

high-dimensional numerical representations presents

challenges like the curse of dimensionality. Techniques

such as Latent Dirichlet Allocation (LDA) help manage

large datasets by identifying underlying topics, making

the data more digestible and interpretable.

COMPUTER VISION:

Computer vision empowers machines to

interpret visual data. Key tasks like image recognition,

object detection, and image segmentation rely on

Convolutional Neural Networks (CNNs). CNNs are

effective because they learn hierarchical features,

starting from simple elements like edges and textures

and progressing to complex representations such as

objects. This layered learning process, enabled by deep

learning, is crucial for applications in autonomous

vehicles and healthcare diagnostics. The success of

computer vision models relies on the precise application

and continuous refinement of mathematical principles,

ensuring high reliability and performance in real-world

scenarios.

6. CONCLUSIONS
At its core, machine learning (ML) isn't just

supported by math; it is math. Think of mathematics as

the fundamental language and operating system for all

of AI. Every time an ML algorithm "learns"—whether

it's predicting outcomes, finding hidden patterns, or

figuring things out through trial and error—what it's

really doing is solving an optimization problem. This

means it's constantly trying to make something as good

as it can possibly be.

Different branches of math each play a vital

role. Linear algebra is like the backbone, giving ML

models the structure they need to handle and manipulate

vast amounts of data. Then there's calculus, especially

its gradient-based methods and that clever

backpropagation algorithm; that's the engine that lets

models fine-tune themselves and learn with remarkable

precision. And finally, probability and statistics are

essential for dealing with all the real-world uncertainty,

making sure the models can draw solid conclusions

from noisy data and perform reliably even on

information they've never seen before.

These mathematical ideas aren't just separate

tools; they weave together in every ML algorithm. For

instance, whether it's the straightforward approach of

linear regression, the probabilistic nature of logistic

regression, the geometric elegance of Support Vector

Machines, the smart decision-making of decision trees,

the grouping power of K-Means, the pattern-finding

ability of PCA, or the complex, multi-layered learning

in deep neural networks—it all comes back to these

underlying mathematical principles.

Why does all this math matter so much? Well,

optimization is universal across all of ML, giving

Samuel Okon Essang et al, Sch J Phys Math Stat, Aug, 2025; 12(7): 309-322

© 2025 Scholars Journal of Physics, Mathematics and Statistics | Published by SAS Publishers, India 321

seemingly different algorithms a common mathematical

goal. A deep understanding of these principles isn't just

for academics; it's critical for building trust and

ensuring that complex AI systems work reliably,

especially when they're used in sensitive areas. Math

provides the inherent structure for data, explains the

fundamental "how" and "why" of learning, and helps us

ensure our models are robust and generalize well. It's

also about finding the right balance between how

efficient an algorithm is and how confident we can be

it's found the best possible solution.

In the real world, from revolutionizing

healthcare to optimizing finance, understanding human

language, or empowering computer vision, ML's

mathematical foundations are what allow it to tackle

problems characterized by immense data, high

complexity, and dynamic environments. The ongoing

evolution of ML itself is often driven by the need to

overcome tough mathematical challenges, leading to

even more efficient, robust, and powerful models.

Ultimately, the extraordinary power, versatility, and

transformative potential of machine learning are deeply

rooted in its profound mathematical foundations. A

strong grasp of these principles isn't just about

theoretical advancement; it's absolutely essential for the

practical development, responsible deployment, and

ethical application of intelligent systems in our

increasingly data-driven world.

REFERENCES
1. Arora, S. (2018). Mathematics of machine learning:

an introduction. In Proceedings of the International

Congress of Mathematicians: Rio de Janeiro 2018

(pp. 377-390).

2. Boryshchak, Y. (2020). Mathematical Perspective

of Machine Learning. arXiv preprint

arXiv:2007.01503.

3. Deisenroth, M. P., Faisal, A. A., & Ong, C. S.

(2020). Mathematics for machine learning.

Cambridge University Press.

4. El Khatib, O., & Alkhatib, N. A Comprehensive

Overview of Kernels in Machine Learning:

Mathematical Foundations and Applications.

International Journal of Computer (IJC), 53(1),

150-172.

5. Gabriel, F., Signolet, J., &Westwell, M. (2018). A

machine learning approach to investigating the

effects of mathematics dispositions on

mathematical literacy. International Journal of

Research & Method in Education, 41(3), 306-327.

6. Knights, V., &Prchkovska, M. (2024). From

equations to predictions: Understanding the

mathematics and machine learning of multiple

linear regression. J. Math. Comput. Appl, 3(2), 1-8.

7. Kumar, G., Banerjee, R., Kr Singh, D., & Choubey,

N. (2020). Mathematics for machine learning.

Journal of Mathematical Sciences & Computational

Mathematics, 1(2), 229-238.

8. Essang, S. O., Ante, J. E., Otobi, A. O., Okeke, S.,

I., Akpan, U. D., Francis, R. E., Auta, J. T., Essien,

D. E., Fadugba, S. E., Kolawole, O. M., Asanga, E.

E., & Ita, B., I. (2025). Optimizing Neural

Networks with Convex Hybrid Activations for

Improved Gradient Flow. Abjournals, 5(1), 10–27.

https://doi.org/10.52589/ajste-uobyfv1b

9. Lamba, S., Saini, P., Kukreja, V., & Sharma, B.

(2021, April). Role of mathematics in machine

learning. In Proceedings of the International

Conference on Innovative Computing &

Communication (ICICC).

10. Rajendra, P., Ravi, P. V., & Meenakshi, K. (2024,

August). Machine learning from a mathematical

perspective. In AIP Conference Proceedings (Vol.

3149, No. 1). AIP Publishing.

11. Shi, B., & Iyengar, S. S. (2020). Mathematical

theories of machine learning-Theory and

applications. Springer International Publishing.

12. Wang, J., & Zhang, W. (2020). Fuzzy mathematics

and machine learning algorithms application in

educational quality evaluation model. Journal of

Intelligent & Fuzzy Systems, 39(4), 5583-5593.

13. Wilmott, P. (2022). Machine learning: an applied

mathematics introduction. Machine Learning and

the City: Applications in Architecture and Urban

Design, 217-248.

14. Okon, E. S., Michael, K. O., Friday, R. E., Efiong,

A. J., Obi, O. M., Timothy, A. J., Edet, O. P.,

Dominic, E. R., & Jimmy, U. A. (2024).

Application of AI algorithms for the prediction of

the likelihood of sickle cell crises. Scholars Journal

of Engineering and Technology, 12(12), 394–403.

https://doi.org/10.36347/sjet.2024.v12i12.008

15. Weinan, E. (2022). A mathematical perspective of

machine learning. Plenary LectureS, 2, 914-954.

16. Wilmott, P. (2022). Machine learning: an applied

mathematics introduction. Machine Learning and

the City: Applications in Architecture and Urban

Design, 217-248.

17. Wojtowytsch, S. (2024). Mathematics of Machine

Learning: An Introduction. Pittsburgh

Interdisciplinary Mathematics Review, 2, 1-25.

18. Shi, B., Iyengar, S. S. (2019). Mathematical

Theories of Machine Learning - Theory and

Applications. Germany: Springer International

Publishing.

19. Deisenroth, M. P., Faisal, A. A., Ong, C. S. (2020).

Mathematics for Machine Learning. United

Kingdom: Cambridge University Press.

20. Kneusel, R. T. (2021). Math for Deep Learning:

What You Need to Know to Understand Neural

Networks. United States: No Starch Press.

21. Chaudhury, K. (2024). Math and Architectures of

Deep Learning. United States: Manning.

22. Dawani, J. (2020). Hands-On Mathematics for

Deep Learning: Build a Solid Mathematical

Foundation for Training Efficient Deep Neural

Networks. Germany: Packt Publishing.

23. Essang, S. O., Ante, J. E., Fadugba, S. E., Auta, J.

T., Ezeorah, J. N., Francis, R. E., &Otobi, A. O.

(2025). Optimizing neural networks with linearly

Samuel Okon Essang et al, Sch J Phys Math Stat, Aug, 2025; 12(7): 309-322

© 2025 Scholars Journal of Physics, Mathematics and Statistics | Published by SAS Publishers, India 322

combined activation functions: A novel approach to

enhance gradient flow and learning dynamics.

International Journal of Mathematical Sciences and

Optimization: Theory and Applications, 11(2), 29–

44.

24. Claster, W. (2020). Mathematics and Programming

for Machine Learning with R: From the Ground

Up. United Kingdom: CRC Press.

25. Kroese, D. P., Botev, Z. I., Taimre, T., Vaisman, R.

(2019). Data Science and Machine Learning:

Mathematical and Statistical Methods. United

States: Chapman & Hall/CRC.

26. Hack, S. (2019). Machine Learning Mathematics:

Study Deep Learning Through Data Science. How

to Build Artificial Intelligence Through Concepts

of Statistics, Algorithms, Analysis and Data

Mining. United Kingdom: Amazon Digital Services

LLC - KDP Print US.

27. Suzuki, J. (2021). Statistical Learning with Math

and Python: 100 Exercises for Building Logic.

South Korea: Springer Nature Singapore.

28. Aggarwal, C. C. (2020). Linear Algebra and

Optimization for Machine Learning: A Textbook.

Germany: Springer International Publishing.

29. Calin, O. (2020). Deep Learning Architectures: A

Mathematical Approach. Germany: Springer

International Publishing.

30. Goodfellow, I., Bengio, Y., Courville, A. (2016).

Deep Learning. United Kingdom: MIT Press.

31. Shalev-Shwartz, S., Ben-David, S. (2014).

Understanding Machine Learning: From Theory to

Algorithms. United Kingdom: Cambridge

University Press.

32. Dua, R., Ghotra, M. S., Pentreath, N. (2017).

Machine Learning with Spark - Second Edition.

United Kingdom: Packt Publishing.

33. Essang, S. O., Okeke, S. I., Effiong, J. A., Francis,

R., Fadugba, S. E., Otobi, A. O., Auta, J. T.,

Chukwuka, C. F., Ogar-Abang, M. O., & Moses, A.

(2025). Adaptive hybrid optimization for

backpropagation neural networks in image

classification. Proceedings of the Nigerian Society

of Physical Sciences, 150.

https://doi.org/10.61298/pnspsc.2025.2.150

34. Howard, J., Gugger, S. (2020). Deep Learning for

Coders with Fastai and PyTorch. Japan: O'Reilly

Media.

35. The Mathematics of Data. (2018). United States:

American Mathematical Society.

36. Simovici, D. A. (2018). Mathematical Analysis for

Machine Learning and Data Mining. Japan: World

Scientific Publishing Company.

37. Chen, L. M., Su, Z., Jiang, B. (2015). Mathematical

Problems in Data Science: Theoretical and

Practical Methods. Germany: Springer

International Publishing.

38. Knox, S. W. (2018). Machine Learning: A Concise

Introduction. United Kingdom: Wiley.

39. Blum, A., Hopcroft, J., Kannan, R. (2020).

Foundations of Data Science. India: Cambridge

University Press.

40. Kepner, J., Jananthan, H. (2018). Mathematics of

Big Data: Spreadsheets, Databases, Matrices, and

Graphs. (n.p.): MIT Press.

41. Conway, D., White, J. M. (2012). Machine

Learning for Hackers. United States: O'Reilly

Media.

42. Halmos, P. R. (1995). Linear Algebra Problem

Book. United Kingdom: Mathematical Association

of America.

43. Bohn, B., Garcke, J., Griebel, M. (2024).

Algorithmic Mathematics in Machine Learning.

United States: Society for Industrial and Applied

Mathematics.

44. Ni, H., Dong, X., Yu, G., Zheng, J. (2021). An

Introduction to Machine Learning in Quantitative

Finance. Singapore: World Scientific.

45.] Essang, S. O., Ante, J. E., Francis, R. E., Otobi, A.

O., Ita, B. I., Kolawole, O. M., Aigberemhon, E.

M., Oluwagbemi, J. T., Fadugba, E. S., Essien, D.

E., Ogar-Abang, M. O., Auta, J. T., & Asanga, E. E.

(2025). Digital literacy awareness to enhance the

learning of mathematics. Computing and Applied

Sciences Impact, 2(2), 7–15.

https://www.researchgate.net/publication/39157227

9

46. Dudek, G. Computational Intelligence and Machine

Learning: Advances in Models and Applications.

Electronics 2025, 14, 1530. https://

doi.org/10.3390/electronics14081530

